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Abstract: Despite the growing share of renewable energy sources, most of the world energy supply
is still based on hydrocarbons and the vast majority of world transport is fuelled by oil products.
Thus, the profitability of many companies may depend on the effective management of oil price risk.
In this article, we analysed the effectiveness of artificial neural networks in hedging against the risk
of WTI crude oil prices increase. This was reformulated from a regressive problem to a classification
problem. The effectiveness of our approach, using artificial neural networks to classify observations,
was verified for over ten years of WTI futures quotes, starting from 2009. The data analysis presented
in this paper confirmed that the buyer of a call option was more often likely to incur a loss as a
result of its purchase than make a profit after the final payoff from the call option. The results of
the conducted research confirm that neural networks can be an effective form of protection against
the risk of price fluctuations. The effectiveness of a network’s operation depends on the choice of
assessment indicators, but analyses show that the networks which, for the indicator that was selected,
gave the best results for the training set, also resulted in positive rates of return for the test set.
Significantly, we also showed interdependence between seemingly unrelated indicators: percentage
of the best possible results achieved in the analysed period of time by the proposed method and
percentage of all available call options that were purchased based on the results from the networks
that were used.

Keywords: effectiveness analysis; crude oil price risk; commodity options; artificial neural networks
(ANNs); support decision-making

1. Introduction

In today’s world, crude oil is one of the most important resources. It is a leading fuel
and its price has a direct effect on the global economy, oil exploration and exploitation, as
well as many other activities. Crude oil plays a key role in numerous areas of the world
economy as an input in the production of numerous types of goods in many sectors of
the economy. Crucially, despite the quickly growing share of renewable energy sources,
transport and delivery of almost all goods and many services still rely on crude oil.

Previous studies have shown that crude oil price fluctuations have a significant impact
on the level of economic activity and consumer sentiment. This correlation was especially
noticeable during the financial crisis in 2007–2008 [1]. There has also been a lot of research
on the relation between oil prices and the rate of real GDP growth, unemployment, and
inflation rate in the USA [2–8] and other countries [9,10] as well as general studies on the
impact of commodity price volatility on growth [11].

Literature has also identified the impact of oil price shocks on macroeconomic aggre-
gates such as the level of investment, stock prices and returns [12–17], inflation rate [18],
industrial production and exchange rates [19–23], as well as financial and monetary pol-
icy [24]. There has also been a large number of studies concerning the impact of crude
oil prices on various groups of commodities such as: gold [25,26], silver, platinum and
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palladium [27], zinc, copper and molybdenum [28], agricultural [29–32], and energy com-
modities [33–37].

The impact of oil prices on the level of countries’ risks is also an increasingly popular
subject of research. Liu et al. [38] have suggested that properties of country risk remain
comparatively steady despite the oil price volatility. They have also found that oil price
fluctuations can expand a country’s risk under some special conditions. Said-Zada identi-
fied technical progress as an important additional source of economic modernisation [39].
In turn, Lee et al. [40] investigated the dynamic relationship between oil price shocks and
country risk using a Structural VAR framework for a sample of both net oil-exporting
and net oil-importing countries. They have shown that positive oil price shocks trigger
a reduction in country risk for net oil-exporting country. The opposite is also true. The
issue of risk and oil prices was also discussed by Lee and Yoon [41]. They found the effect
of volatility spillover from the Brent oil market to the European Union carbon emission
allowance (EUA) market. They also showed that investors can effectively hedge their
investment risk by holding EUAs and energy sources together as assets. Zeng and others
investigated the dynamic volatility spillover effect between EUAs and similar market-based
approaches [42].

Numerous studies showing the impact of fluctuations in crude oil prices on macroe-
conomic indicators and the level of risk incurred by countries and enterprises in various
industries, confirm the importance of effective hedging against resource price changes.
However, to the best of our knowledge existing papers have focused on price forecasting
and regression, whereas we have reformulated this to a classification problem, which can
be a useful approach, especially on the commodity derivatives market.

Derivatives are one of the instruments that can support the price risk management
process. Moreover, due to the variety of delivery methods for raw materials and other
products (their completion is assigned to a specific moment in the future), they constitute
an important part of commodity exchanges. Nonetheless, the misuse of derivatives may
be perceived as an additional source of risk, based on the events preceding the 2007–2008
financial crisis.

For long options, that are the subject of our research, the maximum loss is limited and
equal to the value of the total option premium (the unit option premium multiplied by
the number of options that were bought). This makes it possible to use long options as
a tool offering protection against unfavourable changes in oil prices, without generating
additional risk. Furthermore, taking a long position in a call option does not require the
buyer to make an initial deposit or add to it during the term of the contract. Therefore, the
only cost for the option buyer is the option premium, which is paid on the day the position
is opened. It is also worth noting that this amount is known and it is up to the buyer to
decide whether or not to accept this cost.

The main aim of this paper is to analyse the effectiveness of using artificial neural
networks in search for buy signals for European call options, referring to the nearest
expiration date for future contracts on WTI crude oil (front month futures).

The choice of artificial neural networks (ANNs) to search for option buy signals was
dictated by the complexity of this problem. ANNs are nonlinear methods that imitate
the human brain. They are characterised by: self-organisation, data-driven memory,
self-learning, self-adaptation and associated memory [43]. ANNs use large amounts of
processed information and can capture hidden functional relationships in data, even if the
functional relationships are unknown or difficult to identify.

In order to choose ANNs as a tool to support the decision-making process in the
crude oil options market, we were also influenced by numerous attempts to use this tool
in oil price prediction. Azadeh et al. [44] used a flexible algorithm based on ANNs and
fuzzy regression (FR) to forecast annual oil prices. They showed that the selected ANNs
models considerably outperform the FR models in terms of mean absolute percentage error
(MAPE). Chiroma et al. [45] proposed an approach based on a genetic algorithm and neural
network (GA–NN) for the prediction of WTI crude oil prices. Mann–Whitney test results



Energies 2021, 14, 3308 3 of 26

indicated no significant difference between median WTI crude oil prices predicted by GA–
NN and prices observed from May 2008 to December 2011. In turn, Wang and Wang [43], in
an attempt to forecast crude oil prices and oil stock prices, used a combination of multilayer
perception (MLP), and Elman recurrent neural networks (ERNN) with stochastic time
effective function (ST) to develop a forecasting model, called ST-ERNN. The forecasting
results of the proposed model were more accurate than the backpropagation neural network
(BPNN) and ERNN models. The issue of volatility forecast and option-trading strategy was
explored by Liu and others using an improved Artificial Bee Colony with Back Propagation
(BP) natural network model. They found that the ANN model is better at predicting
implied volatility than for example Monte Carlo simulation [46].

These and other ANNs models [47–56] have shown that ANNs provide an important
alternative to econometrics (both linear and nonlinear) in forecasting crude oil prices.
Dbouk et al. [57] noted, however, that the accuracy of price predictions is not a key aspect
of successful investment or hedging strategies. It is also worth noting that the main aim
of our research was not to use the ANNs to predict future oil prices, but to search for call
options purchase signals with the use of this tool. There are currently no studies other
than our previous article [58] that consider hedging against changes in prices of oil (and
other raw materials) as a classification problem. In the case of options market participants,
especially buyers, the problem of the correct classification (profit or loss) of the return on
hedging is particularly important. Based on copious market data, buyers must make quicks
decision whether the purchase of options at a given point in time will be an effective form
of hedging against oil price fluctuations in the future. In our opinion, using ANNs to make
this type of decisions may facilitate hedging against oil price changes. Thus, this paper
focused on finding network parameters that maximise network effectiveness indicators
which are defined later in the study.

This paper builds on an approach proposed by the authors in [58]. In order to be
able to extend the results, the analyses are carried out on the same data set. To the best of
our knowledge, that was the only study until now indicating that neural networks can be
a useful tool supporting the process of managing the risk of changes in oil prices using
option contracts. Significantly, in this study, we showed the interdependence between two
seemingly unrelated network indicators—the first assessing the quality of the network and
the second the share of options that were purchased.

The dataset that was used covers the period of time from 16 June 2009 to 14 February
2020. In this paper, we present an analysis based on new network effectiveness indicators
which are directly related to the hedging costs (sum of option premiums) and the number
of buy signals generated by a given network. These indicators had a significant impact on
the analysis and our final results.

The remainder of this article is structured as follows: Section 2 presents the proposed
method: the commodity option pricing (Section 2.1), multilayer perception structure
(Section 2.2) and network quality assessment indicators that we use (Section 2.3). Section 3
provides data and reports its statistical properties. Our empirical results are introduced
in Section 4. The summary, conclusions and future research directions are presented in
Section 5.

2. Proposed Methods

We propose a tool to support decision-making processes on the crude oil option
market. To hedge against the risk of oil price increases, we took long positions in call
options. This approach can also be used for other commodities. The proposed tool uses
multilayer perceptron neural networks. In turn, the indicators presented in Section 2.3
were chosen to evaluate the effectiveness of neural networks to search for call options buy
signals.
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2.1. WTI Crude Oil Options and their Parameters

The research focuses on WTI crude oil options available in the New York Mercantile
Exchange (NYMEX). This is a commodity futures exchange owned and operated by CME
Group of Chicago. The underlying asset in crude oil options on NYMEX is a WTI Light
Sweet Crude Oil future contract (symbol: CL). Crude oil futures are settled based on the
price of the WTI oil delivered to Cushing, Oklahoma. Each CL contract is equal to 1000
barrels. The contracts trade in increments of one cent per barrel [59].

A light sweet crude oil option on the NYMEX expires three business days prior to the
underlying futures contract (CL). The analysed option contract is a European Style option
cash settled on the expiration day. The expiration cycle of the crude oil option contract is
monthly. On expiration of a call option, the option payout will be the settlement price of
the CL contract minus the strike price multiplied by 1000 barrels, or zero, whichever is
greater [60]. In our empirical section, we analyse the options underlying the price of the
first (nearest) crude oil futures contract. Hence, the number of days until the expiry of the
option ranged from 34 to 1. For the option pricing model, we used the equation proposed by
Fisher Black in 1976 [61]. The Black model is a variant of the Black–Scholes option pricing
model. Its basic application is for pricing options on futures contracts (mainly commodity
options). The Black model is based on the assumption that prices are the random motion of
particles suspended in a medium (Brownian motion—a case of stochastic Wiener process).
In turn, calculation of the option premium focuses on searching for a value balancing the
payout for the option buyer on the expiration day [62,63]. Eventually, with regard to the
initial assumptions, prices of European commodity call options are expressed with the
following equation [62,64]:

opc = e−rdT [ f0N(d1)− KN(d2)], (1)

where

d1 =
ln
(

f0
K

)
+ σ2

2 T

σ
√

T
, (2)

d2 =
ln
(

f0
K

)
− σ2

2 T

σ
√

T
(3)

and

opc—price of the call option (option premium),
f0—the future price of the underlying asset on the day of opening position
K—strike price,
rd—risk-free interest rate (p.a.),
T—time to expiry (years),
σ—volatility of future price in the analysed period (per year),
N—cumulative distribution function of the standard normal distribution

In our study, we include only ATM (at-the-money) options, i.e., those with strike price
(almost) identical to the WTI future price on a given day. ATM options data were sourced
from the QuikStrike platform provided by CME Group [65].

2.2. Artificial Neural Networks

In the paper, the Statistica software (TIBCO Software Inc, Palo Alto, CA, USA) was
used to build artificial neural networks. The analysed networks were classification net-
works. In this paper, Multilayer Perceptron was used. MLP is one of the most prevalent
neural networks with the ability of complex mapping between inputs and outputs, which
make it possible to approximate nonlinear functions [43]. These are networks with unidi-
rectional information flow (a class of feedforward ANNs).

The networks used in the study consist of three layers, i.e., the input layer, one hidden
layer and the output layer. The Broyden–Fletcher–Goldfarb–Shanno algorithm [66] was
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used as a training algorithm. The number of neurons in the hidden layer of the network
was set ranging from 5 to 80. In the hidden layer, five different types of activation functions
were used: sine, hyperbolic tangent, exponential, linear and logistic. In addition to the
above the softmax function was implemented in the output layer.

The proposed method of determining the time of hedging with the use of an ANN is
referred to as SANN (due to the use of the Statistica software for creating neural networks).
The result of using SANN was to obtain information on whether to buy the call option or
not. The task of the network is therefore to solve the classification problem by searching for
call option buy signals. The signals being sought are referred to in short as ‘buy signals’.

2.3. Network Quality Assessment Indicators

In our considerations, we assumed that no more than one option contract can be
purchased on a given day. In order to be able to assess the performance of individual
networks, we started off by using indicators proposed in [58]. Additionally, we calculated
indicators relating to the number and value of option premiums. It should be noted that
SANNs are trained in a way that maximises the number of correctly classified signals
(accuracy). Hence, the given indicators should be considered as the indicators of network
evaluation for which the training process has already been completed. Below we present
symbol designations, the definitions and the methods of calculating each of these indicators
(in four categories).

Let C be a set, whose elements are observation and C′ is a subset of the set C (C′ ⊂ C).

1. Indicators referring to the maximum profit that could be achieved in the given period
by taking long positions in call options.

(a) MP (Maximum profit)—the sum of profits from the long call options for all
days for which the final result from taking this position was greater than
zero (the option was exercised with payout exceeding the value of the option
premium); the value of MP index is calculated based on the following equation:

MP = ∑
c∈C′

zc·vc, (4)

where c is an element of the set C′ and zc denotes a binary variable described
by the following equation:

zc =

{
1, i f vc > 0
0, i f vc < 0

(5)

The variable vc denotes the value of the final results from the purchase of the
call option for observation c and it is described by the formula:

vc = max{ f − K; 0} − opc, (6)

where

F—the future price of the underlying asset on the day of the option’s expiration
(for options on futures);
K—strike price of the option;
opc—option premium (for the strike price K) for observation c.

(b) pMP—it is the ratio of the sum of the final results for the call options that
brought profit in the given period to the sum of the option premiums paid to
open these positions.

pMP =
∑c∈C′ zc·vc

∑c∈C′ zc·opc
(7)
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(c) pNMP—indicator showing the ratio of the number of days on which the
options brought profit to the number of all options available in the given set of
observations:

pNMP =
1
|C′| ∑

c∈C′
zc (8)

where |C′| is the cardinality of a set C′. It was assumed that only one call
option can be purchased on a given day, therefore the value of |C′| should be
understood as the number of all call options that were available in the given
period.

2. Indicators referring to the maximum loss that could be achieved in the given period
by taking long positions in call options.

(a) ML (Maximum loss)—the sum of all losses from the long call options in a
given period; the following formula is used to calculate the value of the ML
indicator:

ML = ∑
c∈C′

sc·vc (9)

where sc denotes a binary variable described by the following formula:

sc =

{
1, i f vc < 0
0, i f vc > 0

(10)

(b) pML—the percentage of capital loss due to the purchase of loss-making op-
tions. This indicator is assigned to a value ranging from [−1;0). The value −1
indicates a complete loss of the asset involved in options.

pML =
∑c∈C′ sc·vc

∑c∈C′ sc·opc
(11)

(c) pNML—the share of loss-making options to the total number of considered
observations:

pNML =
1
|C′| ∑

c∈C′
sc (12)

3. Indicators referring to the result that could be achieved in the given period by taking
long positions in call options.

(a) AR (Average return)—the total value of the final result from the long call
options on each successive day of quotation in a given period; the AR indicator
is described by the following equation:

AR = ∑
c∈C′

vc = MP + ML (13)

(b) pAR—the percentage indicator of the amount of return on investment for all
observations in the given set of observations:

pAR =
∑c∈C′ vc

∑c∈C′ opc
(14)

4. Indicators presenting the results obtained with the use of a given neural network.

(a) EP (Expected Profit)—represents the result of the neural network operation
on the subset C′; the value of the indicator is obtained from the following
equation:

EP = ∑
c∈C′

oc·vc (15)
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where the value oc is described by the equation:

oc =

{
1, i f f or observation c, a call option was bought

0, i f f or observation c, a call option was not bought
(16)

(b) %MP (percent of maximum profit)—the percentage of the best possible result
(MP) achieved by this method (EP); the value of the %MP is obtained from the
following equation:

%MP =
EP
MP
·100% (17)

(c) pEP—the quotient of the EP index and the sum of all paid option premiums
from the C′ period. Its value is expressed by the equation:

pEP =
∑c∈C′ oc·vc

∑c∈C′ oc·opc
(18)

The following indicator describes the profit (loss) earned with the use of a
given network, considering the total cost of hedging. Since vc is not less than
–opc, the value of the pEP index is a number not less than −1. This indicator
would equal−1 if all call options purchased in the period C′ were not exercised.
The maximum value of the pEP index is potentially unlimited.

(d) pNEP—the indicator that shows the percentage of all available call options
that were purchased on the basis of the used networks; pNEP was defined
with the following equation:

pNEP =
1
|C′| ∑

c∈C′
oc (19)

Indicators from categories 1, 2, and 3 were used for the initial data analysis (which
were divided into two sets: training and testing). In turn, the indicators from category 4
were used to assess the quality of the proposed method to support the decision-making
process in terms of buying call options.

3. Data and Preliminary Analysis

In the empirical part of this study, we focus on the final results in long call options
with European style between 16 June 2009 and 14 February 2020. The study contains
ATM (at-the-money) options and the settlement price of the nearest crude oil futures
contract. The prices of ATM options were determined by the Black model (see Section
2.1.), whereas the parameters required for the option pricing were from the NYMEX (The
New York Mercantile Exchange) and QuikStrike software. The established values for the
options premium allowed us to determine the final result for the buyer of the call option.
The difference between the non-negative payout function and the option premium was
established concerning the method of options contract settlement (see Formula (6)). We
analysed the options underlying the price of the first futures contract, thus in each of the
analysed months, we obtained about 30 final results for the buyer of the call option. The
number of final results for the analysed period was 2630.

The set of observations was divided into a training set and a test set at a ratio of 75%
to 25%, respectively. A continuous set of observations, starting on 17 September 2009, and
ending on 14 July 2017, was chosen as the training set. The observations constituting the
test set covered the period from 17 July 2017 to 14 February 2020. Figure 1 presents the
chart of WTI futures prices and the value of ATM call options. The descriptive statistics for
WTI futures prices, option premiums and the long call final results for the training and test
sets are presented in Table 1.



Energies 2021, 14, 3308 8 of 26

Figure 1. WTI crude oil futures prices (FP) and the long call option premium (OP) for front-month delivery (in USD per
barrel).

Table 1. Descriptive statistics of WTI futures prices, option premium and long call final results (in USD per barrel).

Category of Set Training Test Total

Value WTI
Futures

Option
Premium

Long
Call

WTI
Futures

Option
Premium

Long
Call

WTI
Futures

Option
Premium

Long
Call

Number of obs. 1966 664 2630
Mean 76.92 1.7298 −0.141 59.15 1.3428 −0.1374 72.43 1.6321 −0.14

Median 83.46 1.6501 −0.8629 58.15 1.3013 −0.5246 71.54 1.5446 −0.77
Min 26.21 0.01 −5.4758 42.53 0.063 −4.3831 26.21 0.01 −5.48
Max 113.93 5.4758 12.3858 76.41 4.3831 7.5398 113.93 5.4758 12.39
Q1 51.68 1.13 −1.65 53.77 0.91 −1.33 52.76 1.04 −1.56
Q3 96.44 2.18 0.85 64.42 1.67 0.74 93.12 2.08 0.81

Std deviation 22.82 0.84 2.37 7.1 0.65 1.67 21.48 0.81 2.22
Skewness −0.42 0.86 1.58 0.19 1 0.97 0.05 0.94 1.55
Kurtosis −1.26 1.32 3.26 −0.72 2.19 1.48 −1.4 1.54 3.51

JB 1546.32 474.96 819.81 386.86 128.65 167.67 2062.32 620.29 1081

Notes: the training set was from 17 September 2009 to 14 July 2017; the test set was from 17 July 2017 to 14 February 2020; JB represents the
Jarque–Bera test statistics for normality.

The presented results show that the fluctuations in both oil prices and option premi-
ums were greater in the training set than in the test set. Moreover, mean and median values
for these variables are noticeably higher in the training set. This may be a consequence
of the fact that the training set covers a period of time three times longer than the test set.
Negative mean values and medians for long calls show that both in the training set and the
test set, the process of buying call options was much more likely to bring losses than profits
(almost twice as often the purchase of ATM options generated a loss rather than a profit).

The skewness value suggests that only in the training set the oil prices have negatively
skewed distributions. For option premiums and long call final results, the distribution was
leptokurtic, while for WTI futures prices they were platykurtic (both for training and test
set). The Jorque–Bera statistics give evidence of the non-normality of the oil price, option
premium and long call results distributions for both the training and test sets.

In the next stage of empirical research, we use WTI oil prices from the analysed period
to determine the following indicators:

• Standard deviation for n recent settlement prices of the WTI futures, where n ∈
{1, 2, 3, . . . , 9, 10, 12, 14, . . . , 28, 30, 35, 40, 45, 50, 55, 60};

• Arithmetic mean of n recent settlements price of the WTI futures (moving average),
where n ∈ {2, 3, . . . , 9, 10, 12, 14, . . . , 28, 30, 35, 40, 45, 50, 55, 60}.
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WTI nearest futures prices and the number of days remaining until option expiry, as
well as standard deviations and moving averages based on WTI futures prices, were used
as input data for artificial neural networks. It should be emphasised that the role of these
variables is to reflect the state of the oil market at the time of opening a long position in a
call option (WTI futures price as the level of the current oil price; standard deviation as a of
the dynamics of oil price changes). We also take into account the impact of the number of
days remaining until option expiry as it is a parameter that has a significant impact on the
level of option premiums. In turn, the moving average is widely used in technical analysis
to reflect market trends. Furthermore, Dbouk et al. [57] have shown that this parameter
can be used to predict the directional movement of oil prices with high accuracy.

The last element presented in this part is the values of indicators such as pMP, pML,
pAR (Figure 2), pNMP and pNML (Figure 3) in the training and test sets. These indicators
provide information about the maximum profit, maximum loss and total sum of returns
(losses) that could be achieved in the given period by taking long positions in call options.
This information was used to compare the results obtained from artificial neural networks.

Figure 2. pMP, pML and pAR indicators over time for the training and test sets.

Figure 3. pNMP and pNML indicators over time for the training test sets.
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The values of the analysed indicators were at a similar level in the training and test
sets. Moreover, there is a noticeable tendency of the pAR indicator to reach negative values
quickly and not to exceed the value of 0 at the end of each of the analysed periods of time.
This confirms that taking long positions in call options is much more likely to bring losses
than profits, which is also shown in Figure 3.

4. Results

Next, we analysed the impact of the following parameters on the results of the network
(SANN):

• The number of neurons in the hidden layer, for which three ranges were established:
[5; 30], [31; 55] and [56; 80];

• Activation functions in the hidden layer: linear, logistic, exponential, sine and hyper-
bolic tangent;

• Activation functions in the output layer: linear, logistic, exponential, sine, hyperbolic
tangent and softmax (for the joint entropy error evaluation function).

Additionally, the sum of squares and joint entropy were used as network error func-
tions. The number of neurons in the hidden layer ranged from 5 to 80. For this study, the
values of the proposed indicators for 1,000,000 networks described in [58] were recalculated
and over new 1,500,000 networks were trained.

In the first part of the analysis of the results, we present the impact of such parameters
as the number of neurons, and the activation functions in the output and hidden layer
on %MP, pEP and pNEP indicators. The pEP indicator was used only to illustrate the
ratio of the result (EP) achieved by a given network to the amount of capital needed to
open positions in option contracts (the sum of option premiums). Due to the nature of the
proposed study (i.e., hedging against oil price fluctuations), the pEP indicator was not used
as the parameter for selecting the best networks. For %MP and pNEP indicators, the best
network results were included, marked as b(%MP) and b(pNEP) respectively, where b is
the function that returns the best results for a given indicator—it means ‘the best results’. It
is also worth noting that since the networks were trained on the training set, the best results
will also be for this set, not the test set. For comparison, the results of other indicators
obtained by a given network were also included. Appendix A (Table A1) summarises
all the best results for the %MP and pNEP indicators, classified on the basis of the listed
network parameters, i.e., the number of neurons and activation functions in the output and
hidden layers.

In the figures, we used the following abbreviated names for activation functions:

• Exp—exponential,
• HTan—hyperbolic tangent,
• Lin—linear,
• Log—logistic,
• Sin—sine,
• Smax—softmax.

Figures 4–6 show the impact of network parameters such as the number of neurons,
activation functions in the output and hidden layer on the values of %MP, pEP, and pNEP
indicators. For all the values of each parameter, we presented the values of two networks,
namely those that allowed us to obtain the best result for the %MP indicator (b(%MP)) and
for the pNEP indicator (b(pNEP)) in the training set.
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Figure 4. The highest values of the %MP and pNEP indicators, broken down by the type of activation function in the hidden
layer, from the perspective of the training set.

Figure 5. The highest values of the %MP and pNEP indicators, broken down by type of activation functions in the output
layer, from the perspective of the training set.

Figure 6. The highest values of %MP, pNEP and pEP indicators, considering the number of neurons in the hidden layer.



Energies 2021, 14, 3308 12 of 26

Based on Figure 4, it should be noted that for both the %MP and pNEP indicators, the
highest values were obtained for exponential, hyperbolic tangent and logistic activation
functions in the hidden layer. The obtained rate of return was lower than zero (which is
also referred to as a negative value of the pEP index for this network) only in the case of
maximising the value of the pNEP index for the exponential activation function. Moreover,
all these networks, defined as the best from the perspective of the training set, achieved
positive values of the %MP and pEP indicators in the test set.

For activation functions in the output layer, and for the %MP indicator, the best results
were achieved for the following functions: exponential, hyperbolic tangent, logistic and
softmax. In the case of the pNEP index, the list of activation functions that gives the best
results should also include the sine function, for which the pNEP index had by far the
highest value.

The %MP indicator achieved by far the best values for the neural network for which
the number of neurons ranged from 5 to 30. In terms of the pNEP indicator, we also checked
networks in which the number of neurons in the hidden layer ranged from 31 to 55.

Figures 7–9 present the overall analysis concerning the selection of network parameters
that gave the best network results for the %MP (Figure 7) and pNEP (Figures 8 and 9)
indicators.

Figure 7. The values of %MP, pNEP and pEP indicators, depending on the type of activation function in the hidden layer
and the output layer for the number of neurons in the range from 5 to 30.

Figure 8. List for the best neural networks in accordance with the maximisation of pNEP indicator. Note: The number of
neurons in the hidden layer ranged from 5 to 30.
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Figure 9. List for the best neural networks in accordance with the maximisation of pNEP indicator. Note: The number of
neurons in the hidden layer ranged from 31 to 55.

A detailed list of results that were the source for data presented in Figure 7 is attached
in Table 2.

Table 2. The values of %MP, pNEP and pEP indicators, depending on the type of activation function in the hidden layer
and the output layer for the number of neurons in the range from 5 to 30.

Num.
Activation Function Training Test

Hidden Layer Output Layer %MP pNEP pEP %MP pNEP pEP

1

Exp

Exp 17.1% 8.1% 84.2% 10.4% 3.0% 85.4%
2 Htan 18.1% 12.4% 75.4% 11.4% 2.4% 136.3%
3 Log 43.7% 17.7% 121.8% 17.8% 5.4% 116.9%
4 Smax 51.4% 22.3% 104.1% 11.5% 11.9% 32.9%
5

Htan

Exp 32.4% 16.9% 85.8% 11.2% 2.4% 124.2%
6 Htan 43.1% 13.6% 143.2% 21.3% 8.0% 102.8%
7 Log 69.0% 24.9% 128.1% 15.9% 24.1% 27.4%
8 Smax 66.0% 33.1% 98.3% 24.2% 20.5% 54.0%
9

Log

Exp 23.1% 11.9% 82.7% 10.0% 2.4% 108.7%
10 Htan 21.9% 12.2% 74.1% 8.4% 3.2% 71.2%
11 Log 65.9% 24.9% 129.3% 17.6% 28.5% 29.2%
12 Smax 71.4% 32.3% 103.9% 17.1% 18.2% 44.7%

The highest levels of %MP indicator for the training set were obtained for the hyper-
bolic tangent activation function in the hidden layer with the logistic activation function in
the output layer (69%), and logistic function with softmax (71.4%). Additionally, the highest
values of the pNEP index were achieved for hyperbolic tangent with softmax (33.1%) and
logistic with softmax (32.3%) activation functions.

Figures 8 and 9 present the best networks in terms of the value of the pNEP indicator
(selected in accordance with the previously presented approach). Figure 8 shows the
networks for the number of neurons in the range [5; 30], while Figure 9 depicts a summary
for the number of neurons in the range [31; 55].

Table 3 below presents a summary of the data used to prepare Figures 8 and 9.
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Table 3. List for the best neural networks based on the maximisation of pNEP indicator.

Number Number of
Neurons

Activation Function Training Test

Hidden Layer Output Layer %MP pNEP pEP %MP pNEP pEP

1

5–30

Exp

Exp 5.6% 15.3% 18.9% 12,00% 1.8% 163.2%
2 Htan 17.0% 15.9% 53.00% 11.6% 5.9% 75.4%
3 Log 24.5% 21.3% 56.3% 4.00% 5.00% 29.1%
4 Sin −22.3% 91.1% −11.9% 38.4% 40.8% 45.0%
5 Smax 22.2% 28.9% 36.6% 11.1% 5.9% 65.2%

6

Htan

Exp 27.1% 18.3% 63.0% 4.1% 5.6% 28.3%
7 Htan 20.0% 17.0% 52.3% 12.6% 2.4% 134.5%
8 Log 43.1% 28.1% 69.3% 5.2% 23.6% 9.2%
9 Sin 31.9% 19.6% 79.2% 9.8% 25.2% 16.8%
10 Smax 66.0% 33.1% 98.3% 24.2% 20.5% 54.0%

11

Log

Exp 13.7% 17.5% 35.1% 12.7% 2.1% 149.1%
12 Htan 12.7% 15.4% 34.8% 10.2% 2.1% 128.2%
13 Log 49.2% 27.7% 86.5% 19.3% 31.2% 29.5%
14 Sin 8.6% 15.6% 29.7% 4.8% 4.8% 39.5%
15 Smax 69.7% 33.1% 102.6% 12.1% 29.5% 17.7%

16

31–55

Exp

Exp 7.0% 10.7% 39.3% 9.0% 5.4% 58.2%
17 Htan 10.1% 10.7% 55.9% 11.2% 2.7% 111.4%
18 Log 32.4% 19.2% 79.1% 12.8% 2.1% 150.7%
19 Sin −12.8% 76.7% −8.2% 46.5% 47.3% 43.1%
20 Smax 25.0% 24.1% 52.4% 15.8% 5.6% 86.3%

21

Htan

Exp 22.6% 16.9% 60.1% 13.6% 3.00% 129.1%
22 Htan 6.0% 6.1% 54.3% 11.2% 4.5% 87.9%
23 Log 26.5% 19.7% 57.9% 9.7% 20.3% 18.7%
24 Sin 5.3% 9.1% 29.7% 13.3% 3.6% 109.0%
25 Smax 59.0% 29.1% 98.0% 17.3% 25.8% 27.1%

26

Log

Exp 13.6% 13.1% 41.9% 13.4% 2.3% 148.6%
27 Htan 8.2% 10.1% 43.7% 13.6% 2.4% 148.4%
28 Log 29.2% 20.8% 62.7% 3.1% 15.1% 8.9%
29 Sin −1.8% 27.6% −3.7% 34.2% 42.0% 42.1%
30 Smax 43.1% 24.9% 79.7% 11.3% 8.1% 55.6%

Significantly, the best results for the pNEP indicator were obtained with the use of the
exponential activation function in the hidden layer and the sine activation function in the
output layer (91.1% for 5–30 neurons and 76.7% for 31–55 neurons). The results presented
in Table 3 show that the sine activation function in the output layer was the only function
that returned negative %MP values for the training set. Such a relationship can be observed
both in the case of the two previously indicated combinations, as well as the logistic and
the sine function (with 31–55 neurons). Similarly, the use of sine function in the output
layer resulted in the highest %MP values for the test set (38.4% for 5–30 neurons with the
exponential function, 46.5% for 31–55 neurons with the exponential function and 34.2% for
31–55 neurons with the logistic function). Crucially, the %MP indicators for the test set for
these three networks are much higher than for the networks that were chosen based on the
highest b(%MP) values.

Networks with hyperbolic tangent or logistic activation functions in the hidden layer,
and logistic or softmax activation functions in the output layer are considered.

As shown in Figures 8 and 9, the highest values of %MP and pNEP indicators for
various parameters (activation functions in the hidden layer and the output layer, number
of neurons in the hidden layer) are correlated. This aspect is analysed in the next part of
the study.



Energies 2021, 14, 3308 15 of 26

4.1. Correlation Analysis

The correlation between %MP and pNEP indicators is shown in Table 4 and Figures 4–6.
Correlation coefficients were calculated for three different categories. In the first, the basis
for classification is the type of set for which the indicators were selected. In the second, it
was the type of indicator maximisation criterion used in the hidden layer. Category 3 is a
combination of categories 1 and 2.

Table 4. The values of linear correlation coefficients for neural network assessment indicators (%MP
and pNEP).

Number Category Correlation Coefficient

1
Training −0.392

Test 0.759

2
b(%MP) 0.694
b(pNEP) −0.293

3

Training b(%MP) 0.902
Test b(%MP) 0.391

Training b(pNEP) −0.572
Test b(pNEP) 0.809

Note: the bold values are statistically significant.

This shows that grouping the data by training and test sample as well as selecting the
‘best’ networks, as shown by b(%MP) and b(pNEP), gives the greatest indication of the
relationships between the observed results.

Following the data presented in Table 4, we conclude that there is a strong positive
correlation between %MP and pNEP indicators for the training sample as reflected in a
correlation coefficient of 0.902. Equally, there is no statistically significant relationship
between the indicators for the test set (0.391). However, as for the maximisation of the
pNEP coefficient, we notice completely different dependence, namely a moderate negative
correlation for the training set. This may be the result of the negative values for the
networks that use the sine as an activation function in the output layer. It is also worth
noting that there is a strong correlation between the indicators for the test set, which
appears to be an interesting and important phenomenon and is analysed in a further part
of the study.

Due to the disadvantage of the sine function, which as the only activation function in
the output layer returned negative %MP values, we decided to exclude this function in
further analysis. The results are presented in Table 5.

Table 5. The values of linear correlation coefficients for neural network assessment indicators (sine
function excluded).

Number Category Correlation Coefficient

1
Training 0.945

Test 0.546

2
b(%MP) 0.898
b(pNEP) 0.471

3

Training b(%MP) 0.899
Test b(%MP) 0.507

Training b(pNEP) 0.784
Test b(pNEP) 0.741

Note: the bold values are statistically significant.

Exclusion of the sine function resulted in obtaining positive correlation values for
both parameters selected for both the training and test sets. For b(%MP) indicator, the
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correlation for the training set is significantly higher than for the test set. Whereas, for
b(pNEP), the correlation between the training and test set is at a similar, high level.

Due to the discrepancy between the parameters of the best results, we decided to
analyse the overall results with the use of the objective function that considers different
weights of both parameters.

4.2. Network Assessment Using a Weighted Rating Function

In this part of the study, we present the results of using a weighted objective function
to assess the quality of a given solution. The objective (evaluation) function (RF) has the
following formula:

RF = a·%MP + b·pNEP, (20)

where coefficients a and b are weights of a given indicator.
The use of the presented objective function was possible due to the percentage nature

of both indicators. Additionally, the following condition was added:

a + b = 1 (21)

It was added to facilitate the comparison of the results obtained by the objective
function and the %MP and pNEP indicators.

Investor’s preferences were analysed based on the combinations of weights presented
in Table 6. In combination 1, an investor prefers profit maximisation over the share of the
number of days on which the options brought profit. Combination 3 is appropriate for
investors with opposite preferences, i.e., those who place more emphasis on the number of
days on which options were profitable. Whereas combination 2 puts equal weight on both
parameters.

Table 6. Analysed combinations of weight values.

Combination a b

1 0.75 0.25
2 0.5 0.5
3 0.25 0.75

For each combination (1, 2, 3), the five highest values of the objective function are
presented in Table 7.

Table 7. The best results obtained for a given combination of weight values.

Comb. nr Number of
Neurons

Activation Function Training Set Test Set

Hidden Layer Output Layer %MP pNEP RF %MP pNEP RF

1

5–30 Log Smax 71.4% 32.3% 61.6% 17.1% 18.2% 17.4%
5–30 Htan Log 69.0% 24.9% 57.9% 15.9% 24.1% 18.0%
5–30 Htan Smax 66.0% 33.1% 57.8% 24.2% 20.5% 23.2%
5–30 Log Log 65.9% 24.9% 55.6% 17.6% 28.5% 20.3%
31–55 Htan Smax 59.0% 29.1% 51.5% 17.3% 25.8% 19.4%

2

5–30 Log Smax 71.4% 32.3% 51.8% 17.1% 18.2% 17.7%
5–30 Htan Log 69.0% 24.9% 46.9% 15.9% 24.1% 20.0%
5–30 Htan Smax 66.0% 33.1% 49.6% 24.2% 20.5% 22.3%
5–30 Log Log 65.9% 24.9% 45.4% 17.6% 28.5% 23.0%
31–55 Tanh Smax 59.0% 29.1% 44.1% 17.3% 25.8% 21.5%

3

5–30 Exp Sin −22.3% 91.1% 62.8% 38.4% 40.8% 40.2%
31–55 Exp Sin −12.8% 76.7% 54.3% 46.5% 47.3% 47.1%
5–30 Log Smax 69.7% 33.1% 42.3% 12.1% 29.5% 25.2%
5–30 Htan Smax 66.0% 33.1% 41.3% 24.2% 20.5% 21.4%
31–55 Htan Smax 59.0% 29.1% 36.6% 17.3% 25.8% 23.6%
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For combinations 1 and 2, the same networks gave the highest results. Two of these five
networks were also included in the results for combination 3. This may be due to the high
level of correlation between the %MP and pNEP indicators (see Table 5). The comparison
also includes two networks with a sine activation function. They are noteworthy despite
the negative result of the %MP index obtained by these networks. The networks with the
sine activation function allowed us to obtain the highest RF values for both the training
and test sets.

In the last stage of the comparative analysis of the results, network performance
indicators for different ranges of returns from long position in call option are analysed.

4.3. Comparison of Networks Based on Effectiveness Indicators

Due to the discrepancy in the results obtained from the perspective of the %MP and
pNET indicators, the authors decided to analyse the level of returns generated by networks
in given value ranges (classes). For this purpose, the final results for the call option buyer
(payoff) were divided into the following six classes:

• ‘<−2’: the end result from taking a long position in the call option was less than −2
USD/barrel;

• ‘[−2; −1)’: the end result from taking a long position in the call option was not less
than −2 USD/barrel, but less than −1 USD/barrel;

• ‘[−1; 0)’: the end result from taking a long position in the call option was not less than
−1 USD/barrel, but less than 0 USD/barrel;

• ‘[0; 1)’: the end result from taking a long position in the call option was not less than 0
USD/barrel, but less than 1 USD/barrel;

• ‘[1; 2)’: The end result from taking a long position in the call option was not less than
1 USD/barrel but less than 2 USD/barrel;

• ‘>2’: the end result from taking a long position on a call option was greater than 2
USD/barrel.

For each class, the number of options that were included in it was determined, as
well as the sum of all results (payoffs) obtained from these options. Based on classes
defined in this way, the networks that generated the highest values of %MP or pNEP were
subjected to a detailed analysis. The confusion matrix (Figure 10) was also used to assess
these networks. It shows whether the classification made as a result of the prediction was
correct or incorrect (and if so what type of error was made). In the case of the problem
under consideration, the main emphasis was placed on the value of ‘True Positive’, which
shows the number of correctly predicted buy signals for call options, and the value of
‘False Positive’, which in turn represents the number of erroneous signals for taking a long
position in the aforementioned type of option.

Figure 10. Confusion matrix.

Among the networks, which made it possible to achieve the highest values of the
pNEP indicator for the training set, the network stands out, which used a sine function
as one of the activation functions (in the hidden layer or the output layer). The authors
compared this group of networks with networks for which the value of the %MP indicator
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for the training set was the highest. Figures 11 and 12 were constructed for the best
networks from each of the analysed groups (based on %MP and pNEP indicators). The
first one shows the ratio of the number of signals generated by a given network, which
were assigned to one of the six classes, to the total number of elements in a given class
(divided into training and test sets). Figure 12 shows analogous values, but in relation to
the sum of the results obtained from the options (payoffs) belonging to the given classes.
These values are expressed as percentage points.

Figure 11. Percentage share of the number of buy signals from the best networks (based %MP and pNEP indicators)
achieved for a given class of values. Note: S is the best network based on pNEP and L based on %MP indicator.

Figure 12. Percentage share of the sum of values obtained from buy signals of the best networks (for %MP and pNEP
indicators) achieved for a given value class. Note: S is the best network based on pNEP and L based on %MP indicator.

As can be seen in Figures 11 and 12, for both values being considered, the graphs
show very similar values.

The network with a sine activation function in the output layer is characterised by a
very large number of generated buy signals for the training set, both for options generating
losses (ranges with values <0) and for options generating profits (ranges with values >0).
This translates into very high pNEP indicators and negative %MP indicators (the vast
majority of long positions in call options in the training set generated losses). At the same
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time, for the test set, the values of the %MP indicator increased drastically, with a very
significant drop in the pNEP indicator (from 91.6% to 40.8%). This is largely due to the
marked decrease in the number of buy signals generated for options that result in losses.
The example of the analysed network shows the characteristic (repeating itself for the
network with a sine activation function) that the number of False Positive signals is very
high for the training set and it drops significantly for the test set. At the same time, the
True Positive signals show much lower drops, which allows the network to achieve a very
high %MP value for the test set.

In the case of the network which reached the highest value for the %MP indicator
(marked with the letter L in Figure 11), the network for the training set is characterised by
a very large number of profit-generating buy signals and a small number of signals that
bring losses. This very high level of signals-generating profits, combined with a moderate
level of signals-generating losses, translates into the highest %MP level achieved for the
training set (71.5%). At the same time, this network generates moderate results for the
test set (17.1%). It is worth noting that the drastic decline in this indicator is to a much
lesser extent the result of an increase in the number of loss signals (False Positive) and
to a much greater extent a decrease in the number of profit signals (True Positive). This
tendency repeats itself for the remaining networks generating the highest values of the
%MP indicator.

Based on the analyses that were conducted, it may be concluded that the main chal-
lenge for networks with sine activation functions is the excess number of buy signals
generated in the test set, which bring a loss (False Positive). In the case of other net-
works, the problem of the buy signals being generated takes on a completely different
dimension—the main challenge is the insufficient number of correct buy signals (True
Positive).

5. Conclusions and Future Research Directions

Analysis of indicators related to maximum profit (MP, pMP, pNMP), maximum loss
(ML, pML, pMNL) and overall results (AR, pAR) that were achieved for the period of time
being considered show that it is very difficult to generate profits by buying call options. The
tool proposed in the study guarantees a limited level of losses but oil prices must deviate
by values exceeding the option premiums that were paid for the options to generate profits.
This does diminish the effectiveness and popularity of options among the participants of
various markets, such as the WTI market that was analysed in this study, as a tool designed
primarily to hedge against the negative consequence of price fluctuations.

This study employs artificial neural networks to support the decision-making process
of taking long position in crude oil options on the WTI market. Using the Statistica software,
over 2.5 million artificial neural networks were trained for this purpose. Compared to
study [58], two new indicators were proposed to assess the quality of solutions returned
by the networks. The first one (pNEP) showed how often buy signals were generated in
our data set. The second one (pEP) was the ratio of expected profit to the price paid for the
options in a given period of time. Based on the pNEP and %MP indicators, a criterion for
selecting the best networks was formulated. The results for these networks were subjected
to a detailed analysis. Furthermore, the pEP index provided additional information on the
rate of return obtained from these networks in relation to the level of capital employed.

The best values of the %MP indicator were obtained for networks with the small-
est number of neurons (between 5 and 30) and hyperbolic tangent or logistic activation
functions. On the other hand, based on this indicator, the logistic and softmax activation
functions were the most effective in the output layer. For the pNEP index, ranges of 5 to
55 ([5; 30] and [31, 55]) neurons in the hidden layer of the network gave the best results.
Moreover, exponential activation functions for the hidden layer and sine for the output
layer were the most effective from this perspective. It is also worth noting that in the output
layer only the sine activation function resulted in negative %MP values for the training
set. The aforementioned indicators were used to select a network from the set of networks
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that were already trained. In this case, the selection criterion was the level of correctly
classified buying signals from the given network which may encourage market players to
take further actions or discourage them.

Excluding networks with the sine activation function resulted in a high level of
correlation between the %MP and pNEP indicators. An analysis based on a weighted
objective function (RF), based on %MP and pNEP indicators, confirmed a statistically
significant correlation between them. The last stage of the analyses that were conducted,
showed in turn, that networks with sine activation functions (in the hidden or output
layers) tended to generate a large number of buy signals that brought losses in the training
set. On the other hand, in the test set, the number of signals of this type showed a marked
decrease—as opposed to signals generating profits. As a result, some of the networks with
sine activation functions achieved very high %MP indicators of over 40% in the test set. In
turn, in the case of the best networks based on the %MP indicator in the training set, large
drops in %MP in the test set were caused by a significant decrease in the number of profits
generating buy signals. An important characteristic of these networks was the low level of
erroneously generated buy signals for both the training and test sets.

In further research, we plan to focus on improving the results from the neural networks
from the perspective of their use in hedging against price risk. For this purpose, we plan to
implement our own software in the field of neural networks, which will help to analyse
the neural networks in detail, with regard to the various evaluation functions that may
contribute to assess the network. We also plan to test different types of learning algorithms,
including genetic algorithms for weighting the connections between network neurons.
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Nomenclature

ANN artificial neural networks
AR average return
ATM at-the-money
BPNN backpropagation neural network
CL WTI Light Sweet Crude Oil future contract
EP expected profit
ERNN Elman recurrent neural networks
FR fuzzy regression
GA-NN genetic algorithm and neural network
MAPE mean absolute percentage error
ML maximum loss
MP maximum profit
NYMEX New York Mercantile Exchange
ST stochastic time effective function
WTI West Texas Intermediate
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Appendix A

Table A1. The best results for the %MP and pNEP indicators.

Function b()
Activation Function Number of

Neurons

Training Set Test Set

Hidden Layer Output Layer %MP pNEP pEP %MP pNEP pEP

%MP Exp Exp 5–30 17% 8% 84% 10% 3% 85%
%MP Exp Htan 5–30 18% 12% 75% 11% 2% 136%
%MP Exp Lin 5–30 15% 12% 62% 9% 3% 92%
%MP Exp Log 5–30 44% 18% 122% 18% 5% 117%
%MP Exp Sin 5–30 22% 14% 74% 10% 4% 74%
%MP Exp Smax 5–30 51% 22% 104% 12% 12% 33%
%MP Htan Exp 5–30 32% 17% 86% 11% 2% 124%
%MP Htan Htan 5–30 43% 14% 143% 21% 8% 103%
%MP Htan Lin 5–30 23% 14% 79% 12% 13% 48%
%MP Htan Log 5–30 69% 25% 128% 16% 24% 27%
%MP Htan Sin 5–30 32% 20% 79% 10% 25% 17%
%MP Htan Smax 5–30 66% 33% 98% 24% 20% 54%
%MP Lin Exp 5–30 2% 2% 32% 4% 1% 101%
%MP Lin Htan 5–30 1% 2% 29% 0% 0% 31%
%MP Lin Lin 5–30 2% 2% 25% 0% 1% 3%
%MP Lin Log 5–30 2% 2% 33% 0% 0% 31%
%MP Lin Sin 5–30 2% 2% 31% 0% 0% 31%
%MP Lin Smax 5–30 2% 5% 15% 4% 2% 50%
%MP Log Exp 5–30 23% 12% 83% 10% 2% 109%
%MP Log Htan 5–30 22% 12% 74% 8% 3% 71%
%MP Log Lin 5–30 22% 15% 71% 13% 7% 80%
%MP Log Log 5–30 66% 25% 129% 18% 28% 29%
%MP Log Sin 5–30 25% 15% 81% 18% 13% 57%
%MP Log Smax 5–30 71% 32% 104% 17% 18% 45%
%MP Sin Exp 5–30 10% 7% 60% 11% 3% 97%
%MP Sin Htan 5–30 13% 8% 69% 13% 3% 115%
%MP Sin Lin 5–30 9% 5% 70% 12% 3% 119%
%MP Sin Log 5–30 11% 7% 69% 12% 3% 101%
%MP Sin Sin 5–30 9% 5% 74% 10% 3% 88%
%MP Sin Smax 5–30 13% 5% 83% 6% 2% 70%
%MP Exp Exp 31–55 11% 10% 55% 8% 6% 38%
%MP Exp Htan 31–55 10% 11% 56% 11% 3% 111%
%MP Exp Lin 31–55 12% 10% 61% 14% 4% 127%
%MP Exp Log 31–55 32% 19% 79% 13% 2% 151%
%MP Exp Sin 31–55 11% 5% 81% 12% 2% 145%
%MP Exp Smax 31–55 42% 18% 115% 14% 4% 121%
%MP Htan Exp 31–55 23% 17% 60% 14% 3% 129%
%MP Htan Htan 31–55 10% 6% 78% 13% 2% 152%
%MP Htan Lin 31–55 20% 14% 61% 12% 10% 44%
%MP Htan Log 31–55 31% 18% 80% 10% 20% 21%
%MP Htan Sin 31–55 9% 7% 70% 14% 3% 136%
%MP Htan Smax 31–55 59% 29% 98% 17% 26% 27%
%MP Lin Exp 31–55 2% 2% 34% 4% 1% 141%
%MP Lin Htan 31–55 1% 2% 19% 0% 0% 31%
%MP Lin Lin 31–55 1% 2% 31% 0% 0% 31%
%MP Lin Log 31–55 1% 2% 24% 4% 1% 101%
%MP Lin Sin 31–55 2% 2% 27% 0% 1% 3%
%MP Lin Smax 31–55 2% 2% 29% 0% 1% 3%
%MP Log Exp 31–55 15% 10% 72% 11% 4% 108%
%MP Log Htan 31–55 11% 5% 80% 13% 2% 164%
%MP Log Lin 31–55 11% 8% 59% 14% 2% 163%
%MP Log Log 31–55 30% 20% 67% 8% 22% 18%
%MP Log Sin 31–55 11% 8% 68% 14% 2% 157%
%MP Log Smax 31–55 43% 25% 80% 11% 8% 56%
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Table A1. Cont.

Function b()
Activation Function Number of

Neurons

Training Set Test Set

Hidden Layer Output Layer %MP pNEP pEP %MP pNEP pEP

%MP Sin Exp 31–55 8% 3% 92% 12% 2% 132%
%MP Sin Htan 31–55 7% 4% 77% 10% 5% 68%
%MP Sin Lin 31–55 7% 3% 111% 12% 2% 151%
%MP Sin Log 31–55 11% 6% 77% 8% 2% 98%
%MP Sin Sin 31–55 5% 2% 97% 12% 2% 165%
%MP Sin Smax 31–55 13% 17% 33% 14% 3% 139%
%MP Exp Exp 56–80 9% 8% 62% 9% 2% 100%
%MP Exp Htan 56–80 8% 7% 67% 12% 2% 167%
%MP Exp Lin 56–80 11% 8% 71% 12% 3% 131%
%MP Exp Log 56–80 27% 14% 91% 12% 2% 145%
%MP Exp Sin 56–80 11% 7% 78% 11% 3% 124%
%MP Exp Smax 56–80 44% 20% 111% 14% 10% 50%
%MP Htan Exp 56–80 14% 11% 63% 13% 3% 135%
%MP Htan Htan 56–80 11% 6% 76% 13% 2% 164%
%MP Htan Lin 56–80 9% 5% 82% 13% 2% 182%
%MP Htan Log 56–80 38% 22% 81% 17% 27% 33%
%MP Htan Sin 56–80 10% 5% 85% 12% 2% 184%
%MP Htan Smax 56–80 37% 23% 70% 17% 30% 24%
%MP Lin Exp 56–80 2% 2% 32% 2% 0% 149%
%MP Lin Htan 56–80 2% 2% 28% 0% 0% −42%
%MP Lin Lin 56–80 1% 2% 29% 0% 0% 31%
%MP Lin Log 56–80 2% 2% 26% 4% 1% 101%
%MP Lin Sin 56–80 2% 2% 27% 0% 1% 3%
%MP Lin Smax 56–80 2% 2% 31% 0% 1% 3%
%MP Log Exp 56–80 8% 6% 68% 14% 4% 114%
%MP Log Htan 56–80 8% 5% 64% 13% 2% 181%
%MP Log Lin 56–80 9% 5% 70% 14% 2% 163%
%MP Log Log 56–80 14% 11% 63% 14% 2% 163%
%MP Log Sin 56–80 8% 5% 86% 14% 3% 128%
%MP Log Smax 56–80 36% 23% 73% 18% 25% 36%
%MP Sin Exp 56–80 3% 3% 62% 5% 2% 106%
%MP Sin Htan 56–80 4% 3% 66% 10% 6% 59%
%MP Sin Lin 56–80 4% 4% 43% 8% 3% 71%
%MP Sin Log 56–80 9% 4% 81% 10% 3% 88%
%MP Sin Sin 56–80 3% 2% 70% 8% 4% 70%
%MP Sin Smax 56–80 8% 4% 91% 9% 4% 68%
pNEP Exp Exp 5–30 6% 15% 19% 12% 2% 163%
pNEP Exp Htan 5–30 17% 16% 53% 12% 6% 75%
pNEP Exp Lin 5–30 10% 15% 32% 9% 7% 43%
pNEP Exp Log 5–30 25% 21% 56% 4% 5% 29%
pNEP Exp Sin 5–30 −22% 91% −12% 38% 41% 45%
pNEP Exp Smax 5–30 22% 29% 37% 11% 6% 65%
pNEP Htan Exp 5–30 27% 18% 63% 4% 6% 28%
pNEP Htan Htan 5–30 20% 17% 52% 13% 2% 134%
pNEP Htan Lin 5–30 15% 16% 43% 10% 19% 25%
pNEP Htan Log 5–30 43% 28% 69% 5% 24% 9%
pNEP Htan Sin 5–30 32% 20% 79% 10% 25% 17%
pNEP Htan Smax 5–30 66% 33% 98% 24% 20% 54%
pNEP Lin Exp 5–30 1% 3% 11% 1% 1% 37%
pNEP Lin Htan 5–30 0% 3% 2% 3% 1% 99%
pNEP Lin Lin 5–30 1% 3% 11% 0% 1% 3%
pNEP Lin Log 5–30 −1% 3% −12% 5% 1% 114%
pNEP Lin Sin 5–30 1% 3% 16% 0% 1% 3%
pNEP Lin Smax 5–30 2% 5% 15% 4% 2% 50%
pNEP Log Exp 5–30 14% 18% 35% 13% 2% 149%
pNEP Log Htan 5–30 13% 15% 35% 10% 2% 128%
pNEP Log Lin 5–30 14% 15% 37% 6% 1% 114%
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Table A1. Cont.

Function b()
Activation Function Number of

Neurons

Training Set Test Set

Hidden Layer Output Layer %MP pNEP pEP %MP pNEP pEP

pNEP Log Log 5–30 49% 28% 87% 19% 31% 29%
pNEP Log Sin 5–30 9% 16% 30% 5% 5% 40%
pNEP Log Smax 5–30 70% 33% 103% 12% 30% 18%
pNEP Sin Exp 5–30 10% 9% 47% 10% 3% 90%
pNEP Sin Htan 5–30 13% 8% 69% 13% 3% 115%
pNEP Sin Lin 5–30 6% 9% 38% 8% 4% 63%
pNEP Sin Log 5–30 11% 7% 69% 12% 3% 101%
pNEP Sin Sin 5–30 5% 9% 31% 11% 3% 92%
pNEP Sin Smax 5–30 7% 11% 34% 10% 5% 60%
pNEP Exp Exp 31–55 7% 11% 39% 9% 5% 58%
pNEP Exp Htan 31–55 10% 11% 56% 11% 3% 111%
pNEP Exp Lin 31–55 8% 12% 36% 12% 5% 73%
pNEP Exp Log 31–55 32% 19% 79% 13% 2% 151%
pNEP Exp Sin 31–55 −13% 77% −8% 46% 47% 43%
pNEP Exp Smax 31–55 25% 24% 52% 16% 6% 86%
pNEP Htan Exp 31–55 23% 17% 60% 14% 3% 129%
pNEP Htan Htan 31–55 6% 6% 54% 11% 5% 88%
pNEP Htan Lin 31–55 20% 14% 61% 12% 10% 44%
pNEP Htan Log 31–55 27% 20% 58% 10% 20% 19%
pNEP Htan Sin 31–55 5% 9% 30% 13% 4% 109%
pNEP Htan Smax 31–55 59% 29% 98% 17% 26% 27%
pNEP Lin Exp 31–55 2% 3% 20% 4% 1% 115%
pNEP Lin Htan 31–55 1% 2% 18% 0% 0% 31%
pNEP Lin Lin 31–55 1% 2% 15% 0% 1% 3%
pNEP Lin Log 31–55 1% 2% 24% 4% 1% 101%
pNEP Lin Sin 31–55 1% 3% 11% 0% 1% 3%
pNEP Lin Smax 31–55 0% 3% 5% 0% 1% 3%
pNEP Log Exp 31–55 14% 13% 42% 13% 2% 149%
pNEP Log Htan 31–55 8% 10% 44% 14% 2% 148%
pNEP Log Lin 31–55 10% 9% 55% 14% 2% 159%
pNEP Log Log 31–55 29% 21% 63% 3% 15% 9%
pNEP Log Sin 31–55 −2% 28% −4% 34% 42% 42%
pNEP Log Smax 31–55 43% 25% 80% 11% 8% 56%
pNEP Sin Exp 31–55 7% 5% 67% 12% 4% 100%
pNEP Sin Htan 31–55 7% 4% 77% 10% 5% 68%
pNEP Sin Lin 31–55 7% 3% 111% 12% 2% 151%
pNEP Sin Log 31–55 6% 7% 43% 11% 5% 74%
pNEP Sin Sin 31–55 4% 4% 52% 12% 5% 89%
pNEP Sin Smax 31–55 13% 17% 33% 14% 3% 139%
pNEP Exp Exp 56–80 −7% 15% −27% 20% 11% 98%
pNEP Exp Htan 56–80 8% 7% 67% 12% 2% 167%
pNEP Exp Lin 56–80 6% 10% 33% 8% 3% 89%
pNEP Exp Log 56–80 22% 17% 70% 11% 3% 150%
pNEP Exp Sin 56–80 −5% 31% −9% 38% 57% 30%
pNEP Exp Smax 56–80 37% 23% 72% 18% 4% 128%
pNEP Htan Exp 56–80 14% 11% 63% 13% 3% 135%
pNEP Htan Htan 56–80 11% 6% 76% 13% 2% 164%
pNEP Htan Lin 56–80 9% 5% 82% 13% 2% 182%
pNEP Htan Log 56–80 38% 22% 81% 17% 27% 33%
pNEP Htan Sin 56–80 6% 6% 53% 8% 3% 111%
pNEP Htan Smax 56–80 36% 24% 67% 19% 26% 33%
pNEP Lin Exp 56–80 1% 3% 9% 0% 0% −42%
pNEP Lin Htan 56–80 0% 3% 6% 0% 0% −42%
pNEP Lin Lin 56–80 1% 3% 17% 0% 1% 3%
pNEP Lin Log 56–80 2% 2% 26% 4% 1% 101%
pNEP Lin Sin 56–80 2% 2% 27% 0% 1% 3%
pNEP Lin Smax 56–80 1% 4% 9% 0% 1% 6%
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Table A1. Cont.

Function b()
Activation Function Number of

Neurons

Training Set Test Set

Hidden Layer Output Layer %MP pNEP pEP %MP pNEP pEP

pNEP Log Exp 56–80 8% 6% 68% 14% 4% 114%
pNEP Log Htan 56–80 8% 6% 65% 12% 2% 159%
pNEP Log Lin 56–80 8% 7% 59% 14% 3% 131%
pNEP Log Log 56–80 12% 12% 45% 13% 3% 123%
pNEP Log Sin 56–80 −5% 31% −9% 35% 59% 27%
pNEP Log Smax 56–80 36% 23% 73% 18% 25% 36%
pNEP Sin Exp 56–80 3% 3% 62% 5% 2% 106%
pNEP Sin Htan 56–80 4% 3% 66% 10% 6% 59%
pNEP Sin Lin 56–80 4% 4% 43% 8% 3% 71%
pNEP Sin Log 56–80 5% 6% 42% 11% 5% 84%
pNEP Sin Sin 56–80 3% 3% 60% 10% 3% 106%
pNEP Sin Smax 56–80 6% 6% 54% 9% 3% 109%
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