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Abstract: For integrating large batteries in the medium voltage grid, current fed solid-state trans-
formers offer galvanic isolation and a significant weight and size reduction. While the power losses
increase with frequency and flux density, the core volume is contrariwise. Therefore, a design op-
timisation to achieve minimum losses and/or a minimum volume is essential. An optimisation
strategy is proposed in this paper to find the optimum operating frequency and core flux density
under certain practical constraints such as winding voltage per turn, clearance between transformer
windings, saturation flux density and minimum efficiency. Differently from previous works, the
proposed strategy provides a holistic approach for the design considering all main power losses from
all main components using nonsinusoidal voltage waveforms and different operating conditions.
Analytical equations for the power losses calculation and the cores design are derived and validated
using ANSYS and MATLAB Simulink software packages. Simulation results of the power loss calcu-
lation under different operating frequencies and duty cycles are presented and compared with the
analytical results. A case study for designing a 1.0 MW, 0.6/18 kV current fed solid-state transformer
is presented. The results of two optimisation objectives, minimum power losses or minimum total
cores housing volume are also shown.

Keywords: optimisation; solid state transformer; power losses; grid connected

1. Introduction

The Energy Storage System (ESS) is becoming a crucial element in smart grids. ESS
can smooth Renewable Energy Source output power, and provide grid support such as
frequency balancing and voltage control. Traditionally, BESS is connected to the medium
voltage (MV) grid (1–35 kV) via a bidirectional DC/DC converter, DC/AC converter and
line frequency step-up transformer. Due to the limited voltage and current capabilities of
the power electronic devices (up to 6.5 kV/25 A [1]), different power electronics topologies
have been proposed. In general, these topologies can be divided into two main categories:
transformer and transformerless [2]. In the transformer topology, a two- or three-level con-
verter is connected to a step-up line frequency transformer [3,4]. The main disadvantages of
this topology are the large size/weight of the line transformer and relatively lower overall
system efficiency compared to other transformerless topologies [2]. In the transformerless
topologies, there are two main subcategories: a series connection of semiconductors; and
series connection of converter modules. In the series connection of semiconductors, the
power electronics switches are connected in series. This requires a special design of the gate
driver to ensure synchronous switching. In series-connected converter modules topologies,
cascaded modules such as half-bridge or full-bridge are connected in series to increase volt-
age capability, or in parallel to increase current capability. There are diverse configurations
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such as Cascaded H-bridge [5] and Modular Multilevel Converter [6]. In these topologies,
there is no gaelvanic isolation between the battery and the grid. Furthermore, they require
a large number of battery cells to achieve a high dc voltage.

To realise the advantages of galvanic isolation, weight reduction and low battery
voltage, SST can be employed [7]. An SST offers some advantages over the traditional
line frequency transformer such as power flow control, voltage sag compensation, fault
current limitation, reduced size and weight and improved power quality [1]. SST has
mainly emerged from DAB technology. There are two main topologies for DAB, VF-
DAB and CF-DAB [8]. In general, the term current-fed refers to an isolated converter
where the filter inductor is on the primary side and the output filter consists of a single
component capacitor [9,10]. Current-fed converters are boost-derived topologies. The term
of current-fed converter first appeared in the early seventies, mainly on push-pull and
flyback converters [11,12]. The voltage phase shift technique is employed to control power
flow in VF-DAB. There are different control techniques to achieve the phase shift such
as single-phase shift, dual-phase shift and triple-phase shift [13,14]. The dual-phase shift
seems to be the most suitable control technique, according to [15]. VF-DAB suffers from
several limitations of high input pulsating current, high circulating current through power
electronic devices and magnetic components [4]. CF-SST topology, however, has been
demonstrated to be meritorious over VF-SST, due to its lower input current ripple, lower
transformer turns ratio and easier current control [16]. Moreover, not all H-bridges on both
sides of the transformer are active as in the case of VF-SST. Only one H-bridge is acting as a
boost/buck converter, and the other H-bridge is acting as a rectifier or passive rectifier (to
reduce the current spike). Therefore, CF-DAB (also be referred to as Current Fed Solid State
Transformer, CF-SST) is considered in this paper for grid-connected battery applications.
In CF-SST, a choke coil is employed as intermediate energy storage [17]. The turn-off
voltage spike is the main problem in CF-SST, due to the transformer leakage inductance.
RCD snubber circuits, active clamp, zero current switching and secondary modulation
can be employed to overcome this problem [16,18–20]. Despite the merits of CF-SST, flux
saturation, core losses, thermal design and high voltages across power electronics switches
are the main design challenges.

Therefore, achieving the optimum design goals is vital to obtain the benefits of CF-
SST. A key parameter in the transformer design is the flux density. The optimum flux
density value for the lowest power losses is normally found at the point where the copper
losses and the iron losses are equal [21]. However, this method considers only sinusoidal
waveforms, and hence ignores other harmonics.

The design optimisation of SST has been discussed extensively in the literature. Main
objective functions are typically minimum losses [22–25] and or maximum power density
(minimum volume) [26–29]. Other objectives include minimum dc-link capacitance [30]
and minimum heatsink volume [31]. Typical optimisation parameters are flux density,
current density, switching frequency, number of converter cells [22,25,26,28–31] and types
of semiconductor devices [23,27]. In [22], the flux density is used as the main optimisation
parameter, and the switching frequency is kept constant. In [25–31], however, switching
frequency is used as the main optimisation parameter while the flux density is kept
constant. Different methods are used for core power losses, including the General Steinmetz
Equation, where sinusoidal waveforms are assumed [32], and the improved General
Steinmetz Equation (iGSE) [33,34]. The Stiementz equation fails to give accurate results
in the SST applications, as it mainly depends only on magnetic materials data provided
by manufacturers, which are based on sinusoidal excitation. Moreover, the nonlinear
nature of ferromagnetic materials means that adding the individual frequency components
of a Fourier series is not possible to calculate the core losses. On the other hand, iGSE
employing instantaneous flux density to calculate the core losses has proven to give good
results for nonsinusoidal waveforms [35]. It is important to consider the effect of varying the
switching frequency not only on the transformer losses but also on the power electronics,
i.e., to consider the total losses of the system rather than the transformer losses on its
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own. Power electronic losses can be determined analytically [25,27,31], numerically [23] or
experimentally [26]. While the experimental method is the most accurate, it cannot be used
during the design optimisation stage, and is only useful for design validation. Numerical
methods are more accurate than analytical ones, but their long execution time makes them
less attractive if they are to be used by an optimiser that will need to call the loss calculation
process a high number of times. However, none of the above papers uses a holistic design
approach, considering power losses from all main components assuming nonsinusoidal
excitation waveforms, while concurrently using both switching frequency and flux density
as the optimisation parameters. Furthermore, all previously reported papers considered
VF-SST topology for design optimization, and none have considered CF-SST where the
choke coil becomes an integral part of the overall system.

This paper presents a design optimisation procedure for a DC/DC CF-SST for a battery
to MV grid applications. All the main losses in the conversion stage are considered, which
include power electronics and core and copper losses in the transformer and the choke coil.
Non-sinusoidal voltage waveforms in the transformer are used for loss calculations. Stray
loss is not considered in this paper due to the complexity of calculation, which depends on
the transformer tank and steel construction. Typically, the stray loss is around 10–15% of
the total transformer losses and requires 3-D Finite Element Analysis (FEA) for accurate
calculation [36]. Analytical equations for the power losses calculation are derived and
validated using the ANSYS and MATLAB Simulink software packages. The optimisation
objectives can be chosen by the user as maximum efficiency or minimum volume, and the
design parameters are flux density and operating frequency. The total volume includes the
cores of the transformer and choke coil, in addition to that of the heat sink. The constraints
are maximum winding voltage per turn, the width of the winding allowing for clearances,
saturation flux density and minimum efficiency (in the case of minimum volume objective).
The proposed method will determine the core dimensions of the transformer and choke
coil, as well as the operating frequency and flux density. Therefore, the proposed method
will serve as a useful tool for designing a DC/DC CF-SST, while ensuring that the core
dimensions and operating frequency are optimised to achieve the required aim of either
minimum losses or volume.

The main merits of the proposed method can be summarised as follows: firstly, it
optimises the switching frequency and flux density at the same time, taking into account a
holistic approach for calculating the system’s overall losses; and secondly, it provides the
core dimensions of the transformer and coil choke.

2. CF-SST System Configuration

A CF-SST system consisting of a medium frequency transformer, choke coil and
H-bridge converters connected in parallel at the low voltage side and series at the high
voltage side is shown in Figure 1. The low voltage side is connected to the dc supply,
and the high voltage side will be connected to a DC/AC Modular Multilevel Converter
(MMC) (not shown in the figure) to interface the system to the MV grid. Figure 2 shows a
circuit diagram for a simple CF-SST proposed in [16]. To transform the power from the
dc supply to the grid, the choke coil and H-bridge 1 operate as a boost converter while in
charging mode, H-bridge 2 operates as a buck converter regulating power and H-bridge 1
operates as a controlled rectifier. The inductance of the choke coil is assumed high enough
to maintain a constant current through it. The switching events, currents and voltage
waveforms are shown in Figure 3 [16,37] which will be used in the power loss calculations
in the next sections.
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D1 and D2 are the duty ratios to generate the gate signals for H-bridge 1 and of H-
bridge 2, respectively. The reader is referred to [16] for more information on the converter
operation.
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3. CF-SST Power Losses Calculations

The CF-SST total losses include those of the transformer (core and copper), choke coil
(core and copper) and power electronics (switching and conduction). More details about
these losses and how they can be calculated are presented in the following subsections.

3.1. Transformer Core and Copper Losses

Core losses are normally calculated using empirical equations based on measured data,
such as the Original Steinmetz Equation, which is applicable for sinusoidal excitation [32].
When the transformer is excited by non-sinusoidal waveforms, iGSE is used for square
wave excitation, and it was shown that it gives accurate results compared to those obtained
experimentally [38]. Iron losses by iGSE for square voltages can be shown to be given
by [38]:

Pv =
1
T

ki(∆B)β−α|2∆B|α(DT)1−α, (1)

ki =
K

(2)β−1(π)α−1
(

1.1044 + 6.8244
α+1.354

) (2)

∆B can be calculated as [36,39]:

∆B = 2Bm =
VmaxDT

2NAi
, (3)
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The core losses in (1) are calculated per unit volume. To find the total core losses, the
transformer core volume needs to be determined. This core volume is designed based on
the operating frequency and core flux density, and can be calculated by [39–41]:

Volc = 2Ai

(√
Aw

rw
(rw + 1) +

dc√
Kc

)
(4)

dc is given by:

dc =
√

4Ai/(πKc) (5)

The core dimensions Ai and Aw can be determined using the basic equations relating
the design parameters such as Bm, f

(
= 1

T

)
and S, to the core dimensions as follows [40]

Ai =
Et

4.44 f BmKs
(6)

Aw =
S

2.22JAiKsKwBm f
(7)

where Et can be calculated as
Et = Kt

√
S/1000 (8)

where:
Kt =

√
4.44 f r (9)

PTco can now be calculated by multiplying the power per unit volume using (1) by the
core volume using (4), as shown in (10).

PTco = PvVolc (10)

PTcu, can be calculated as in (11), based on the leakage inductance and winding ac
resistances.

PTcu = Ilk
2Rp +

Ilk
2

N2
a

Rs (11)

Ilk can be calculated as [16]:

Ilk = IB

√
5− 4D1

3
(12)

Rp and Rs can be calculated as in (13)and (14) [42]:

Rp = ρc
lpp

Acup

[
1 +

( (
rop/δ

)4

48 + 0.8
(
rop/δ

)4

)]
(13)

Rs = ρc
lps

Acus

[
1 +

(
(ros/δ)4

48 + 0.8(ros/δ)4

)]
(14)

lpp and lps can be calculated as in (15) and (16):

lpp = π
Vp

Et

(
dc + 0.5

√
Ai/Kc

)
(15)

lps = π
Vs

Et

(
dc + 0.5

√
Ai/Kc

)
(16)
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3.2. Choke Core and Copper Losses

The fluctuation of the flux density of the choke is very small due to the low ripple
in the choke coil current. Therefore, the core losses per unit volume of the choke coil can
simply be calculated using the Steinmetz empirical equation (assuming the same core
material as that of the transformer) as [32]:

Pvc = K f ∝Bβ
mc (17)

Based on (17) and the volume of the core, the choke coil core losses can be calculated
as in (18):

PCco = MPL.Acuc K f ∝Bβ
mc (18)

Acuc can be calculated as in (19) (see Figure 4). MPL can be calculated as in (20):

Acuc = Wc Hc (19)

MPL = 2(Ww + Hw + Hc) (20)

Ww, Hw, Wc and Hc are shown in Figure 4. Normally, core dimensions have their
values related to each other by known constants such as:

KwH = Hw/Ww (21)

Kwc = Awc/Acuc (22)

Apc = Awc × Acuc (23)

Awc equals Ww × Hw, and Apc can be calculated as in (24) [43]:

Apc =
2En× 10−4

Bmc JKu
(24)

En can be calculated as
En = 0.5LB IB

2 (25)

where LB can be determined based on the D1 (see Figure 3 [37]), f , VB and ∆IB as shown in
(26) for the boost operation of the SST [16].

LB =
(D1 − 0.5)VB

f ∆IB
(26)

Ww Hw can be calculated based on (21). Based on (22) and (23), Awc and Acuc can be
found. To find Hc, Acuc is assumed as a square cross-section.

The choke coil copper losses can be calculated as in (27):

PCcu = IB
2Rc (27)

IB can be calculated as in (28), and Rc can be calculated as in (29):

IB = IB

√
(1− 0.5ϑ)2 + (1 + 0.5ϑ)2

2
(28)

Rc = ρ
Nc ×MLT

Acuc
(29)

MLT is calculated as in (30) and Nc can be calculated by (31) [34].

MLT ∼= π
[√

Hc2 + Wc2 + Ww

]
(30)
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Nc =
KucK f IB−rms

J
√

ApcKcc
(31)Energies 2021, 14, x FOR PEER REVIEW 8 of 21 
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3.3. Power Electronics Losses

Power electronics losses have two main parts, conduction and switching. These losses
can be calculated as [44,45]:

Pcond_T =
1
T

∫ ts

0
iT(t).Vce(t)dt (32)

Psw_T = f Eon+o f f
(
Vsw, iT , Tj

)
(33)

Pcond_D =
1
T

∫ td

0
iD(t).Vf (t)dt (34)

Psw_D = f Err(Vd, iD) (35)

Based on the switching frequency, power electronics switches datasheets, average
and RMS values of the current and voltage of the power electronics switches, the power
electronics losses can be calculated as in [37]. The total power electronics losses can be
calculated as in [37].

PPE = Pcond_T + Psw_T + Pcond_D + Psw_D (36)

4. CF-SST Design Optimisation Strategy

To find the optimum combination of the flux density and operating frequency, a
design procedure is proposed. Two objective functions can be used: maximum efficiency,
or minimum volume. The volume here is the combined volume of the transformer VolT ,
chock coil VolCc and converters’ heat sink VolHs.

VolT and VolCc are given in (36) and (37), based on the core dimensions of the trans-
former and chock coil calculated in Sections 3.1 and 3.2.

VolT = 2(2ww + dc + l)(Hw + 2dc + 2l)(2wc + dc + 2l) (37)

VolCc = 2(2wwc + dcc)(Hwc + 2dcc)(2wc + dcc) (38)

VolHs depending on the power electronic losses can be calculated as [46]:

VolHs= Volr/Rth, (39)
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Rth can be calculated as [46]:

Rth =
Tj − TA

PPE
(40)

The optimisation constraints for both objective functions are voltage per turn (Et < σ),
clearance between two coils (l > ξ), transformer core flux (Bmin < B < Bmax) and the
operating frequency ( fmin < f < fmax). When the minimum volume objective function is
used, a minimum efficiency constraint can be set. The flowchart of the design procedure is
shown in Figure 5.
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Initially, CF-SST rated power, input and output voltages are entered into the algorithm.
In addition, all constants used in the design are entered. The design constraints σ, ξ are
set, as well as the initial flux density and operating frequency Bo and f0. Using these initial
values, the dimensions of the transformer core are calculated. If Et is more than σ, Et is set
to equal σ. If l is less than ξ, the transformer window width is increased until l > ξ. The
core dimensions of the transformer and choke coil are then calculated according to (19) to
(24), (43) and (44). Using these dimensions, the core and copper losses are calculated as
in (10), (11), (18) and (27). The power electronics losses are calculated using (54) to (57).
Based on the power electronics losses and (45), the heat sink volume is then calculated.
Now all the volumes and losses have been determined. Depending on the optimisation
target (minimum losses or minimum volume), the optimisation is carried out until the end
criteria are met. The end criteria are the value difference between successive iterations,
number of iterations and constraints tolerance.

5. Simulation Results

Simulation work contains two parts; the first part is a validation of the analytical
power losses calculation. The second part is a case study for designing a 1.0 MW DC/DC
CF-SST using the proposed method.

5.1. Validation of Power Losses

A 1.0 MW DC/DC is considered with a low voltage (supply side) of 600 V and a
high voltage of 18 kV. Due to the high supply current (1.7 kA), four parallel H-bridges are
employed to reduce the switches currents to 417 A. For the high voltage side, six series
H-bridges are employed to reduce the voltage stress on the switches. The transformer
dimensions are shown in Table 1, and the choke coil dimensions are shown in Table 2.

Table 1. Transformer Dimensions.

Parameter Value

Iron core cross-section 0.0147 m2

Diameter of the core circumscribing circle 0.158 m
Width of winding window 0.216 m
Height of winding window 0.541 m
Number of primary turns 21 Turns

Number of secondary winding turns 325 Turns
Width of the winding allowing for clearance 0.004 m

Distance between windings 0.05 m
Height of winding 0.441 m

Table 2. Choke Coil Dimensions.

Parameter Value

Iron core cross-section 0.0375 m2

Diameter of the core circumscribing circle 0.25 m
Width of winding window 0.178 m
Height of winding window 0.265 m

Number turns 36 Turns
Area product 23.48 m4

5.1.1. Transformer Core Losses

Core material SURA No18 [47] is used. Operating frequency and flux density values
are set to 1.0 kHz and 0.96 T, respectively. Finite element analysis (FEA) is carried out
using ANSYS Workbench to compare core losses against those calculated analytically. All
the power losses curves at different frequencies from the core material datasheet are fed
to ANSYS. ANSYS is employed to generate the constant of the power losses empirical
Equations (1) and (17)) (K, α and β). Figure 6 shows ANSYS transformer core model.
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The high voltage and low voltage windings are divided into two parts. The low voltage
windings are placed near the core limb and the high voltage windings are placed over the
low voltage windings to reduce the windings to ground voltage. A 1200 V input voltage
waveform, as shown in Figure 7, is injected to the transformer primary winding. This
voltage is the output of H-bridge 1 under discharging mode and 60% duty cycle. The
FEA eddy current and hysteresis losses are shown in Figure 8 The average core losses of
the transformer are determined by ANSYS for different duty cycles at the low voltage
side and compared to those calculated analytically using (10); the results are presented in
Figure 9. The difference between the analytical and numerical results is up to 18%. This is
mainly due to the fact the parameters of the iGSE equation (K, β and α) are estimated by
curves fitting of the materials losses curves under sinusoidal excitation, Equation (1). The
difference decreases when the shape of the excitation voltage becomes closer to sinusoidal
waveform.

It can be seen from Figure 9 that the core losses increase with the decreases in the duty
cycle. This is due to the increase in the width of the injected voltage to the transformer.
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5.1.2. Power Electronics Losses

A Simulink model for the CF-SST is built in the Matlab Simulink platform. The IGBT
module 5SNG 0450X330300 [48] is used. The main parameters of this module are shown in
Table 3. The IGBT junction temperature is assumed to be 125 ◦C. The on-state resistances
for the IGBT (rCE) and the diode (r f ) are calculated from the typical on-state characteristic
relationship between VCE and IC . They are rCE = 3.2 mΩ and r f = 2 mΩ at 125 ◦C junction
temperature. Matlab Simulink calculates the power electronics losses using a 3-D lookup
table from the manufacturer datasheets [49], as shown in Figure 10 the switching instances,
switch voltage, switch current and junction temperature are fed into a 3-D lookup table to
obtain the instant switching losses. This table is based on the curves of the turn ON and
OFF energy from the switches datasheet at different junction temperatures. The instant
switching losses are averaged to obtain the switching losses. Similarly, for the conduction
losses, the switch voltage, switch current and junction temperature are fed into another
3-D lookup table to obtain the instant conduction losses. This lockup table is based on the
switch current and switch drop voltage at different junction temperatures Figure 11 shows
the mismatch in power electronics losses calculated analytically, and by Matlab simulation
at different switching frequencies and full load. The error is less than 11%. This error is
due to the fact that in the analytical equations the switch current is assumed constant and
equal to the supply or the load current while in simulation the switching transient current
peaks are taken into account. Figure 12 shows the analytical results for the transformer
copper and core losses, choke coil copper and core losses and power electronics losses
at different operating frequencies and a fixed flux density of 1.0 T. At low frequencies,
copper losses are dominant, while at frequencies higher than 200 Hz, power electronics
losses become dominant. These curves depend on the core materials and power electronic
devices technology. The core losses of the choke coil are small because the change of the
flux density of the choke coil core is very small. The analytical equations are now validated,
and can be used to design the SST.
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Table 3. IGBT Main Parameters (125 ◦C).

Parameter Value Parameter Value

VCE0 3.1 V Eon+o f f 1.43 J
Ire f 450 A Vf 0 2.25 V
Vre f 1800 V Err 0.58 J
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5.2. CF-SST Design, Case Study

In this section, a case study for designing a new 1.0 MW CF-SST using the proposed
optimisation strategy is presented. Before the design procedure is presented, however, the
losses of the 1.0 MW CF-SST described in Table 2 under different operating frequencies
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and a fixed flux density (1.0 T) are discussed first, in order to highlight the importance
of considering all losses when searching for the optimum values of the flux density and
frequency. The total transformer losses (copper & core), power electronics losses and the
total CF-SST losses (total transformer, choke coil and power electronics losses) are shown
in Figure 13. If the transformer losses, on their own, and are considered as the main
factor to find the optimum operating frequency, it will lead to operating the CF-SST at a
suboptimal frequency in terms of overall losses. For example, if only the transformer losses
are considered, the optimum frequency is 240 Hz and the total CF-SST power losses, at this
frequency, is 34.94 kW (96.51% efficiency). If the power electronics losses are added and
ignoring the choke coil losses, the optimum frequency is 150 Hz and the total losses are
37.93 kW (96.2% efficiency). However, if the total CF-SST power losses are considered, the
optimum frequency is 280 Hz and the total power losses are 34.72 kW (96.52% efficiency),
which is about 3% less (0.1% efficiency higher) if the transformer losses only are considered
and about 10.4% less (0.4% efficiency higher) if the choke coil losses are ignored. This shows
the importance of considering all losses when designing the CF-SST. The total CF-SST
losses under different operating frequencies and core flux densities are shown in Figure 14.
An operating frequency of about 350 Hz seems to be the optimum value for minimum
power losses over a range of flux density from 0.1 T to 1.2 T. The optimisation algorithm
presented in Section 4 is employed under constraints shown in (41). The unconstrained
nonlinear optimisation algorithm is employed as the optimisation solver. The optimum
operating frequency for minimum losses (maximum efficiency) is 372 Hz and flux density
is 0.249 T. At these values, the CF-SST system efficiency is 96.7%. In some applications, the
volume/weight is the key parameter for the design. Figure 15 shows the total volume of
the cores housing (transformer and the choke coil) under different frequencies and flux
density values.

Et < 100
Vl > 0.5 mm

0.1 T < Bm < 1.2 T
40 Hz < f < 12 kHz

 (41)
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(Analytical).

The color of the surface represents the percentage of the total losses. The higher the
operating frequency, the lesser the core volume, but at the expense of increased losses.
Table 4 shows the design results when the objective function is selected as a minimum
volume for different minimum efficiency constraints. Additionally, Figure 16 shows the
volume for each core and heatsink at the minimum efficiency constraints. The volume of
the cores increases with the increase of the minimum efficiency due to the decrease in the
frequency, while the heat sink volume decrease due to the power electronics losses decrease
with the decrease of the frequency. If the power losses are not the key factors in the design,
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the lowest volume of the CF-SST cores can be achieved. If the system efficiency is the key
factor, a tradeoff between the efficiency and the volume of the core can be considered. To
gain a minimum core volume for maximum possible efficiency, the optimum operating
frequency is 372 Hz and the flux density of 0.249 T. In this case, CF-SST efficiency is greater
than 97.5%.
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Table 4. Transformer Dimensions.

Efficiency Optimum Flux [T] Optimum Frequency [Hz] Total Cores Volume [m3]

>80 1.2 3613 1.142
>90 1.2 3275 1.144
>92 1.2 2318 1.199
>93 1.2 1840 1.274
>94 1.2 1359 1.419
>95 1.18 962 1.684

>95.5 1.056 809 1.8988
>96 0.903 647 2.245

>96.5 0.651 470 3.001
>97.5 0.249 372 5.245
>98 Not achievable
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6. Conclusions

The current source solid-state transformer (CF-SST) optimisation strategy for MV
grid-connected systems is presented. Based on the manufacturer datasheets, core and
power electronic losses equations are derived. The nonlinear nature of the transformer
voltage waveforms is considered when calculating the core losses. Analytical equations
are verified numerically using ANSYS and MATLAB. A design optimisation strategy has
been presented, with the objective function being minimum power losses or minimum core
housing volume.

The constraints are the voltage per turn for the transformer, the clearance between the
transformer windings, the minimum and the maximum operating frequency and the flux
density and the minimum efficiency. A 1.0 MW, 0.6/18 kV CS-SST is considered as a case
study. Comparing the results in the last section, for fixed flux density 1.0 T, the optimum
frequency is 284 Hz, which has 34.72 kW losses (96.53% efficiency) when employing the
optimiser, which gives 0.01% higher than the value in the previous section.

For minimum losses, the optimum operating frequency is 372 Hz and the flux density
is 0.249 T. In this case, the CF-SST efficiency is 96.7%. For a minimum total cores housing
volume and converters heat sink volume, the minimum possible volume is 1.142 m3 at
operating frequency 3613 kHz and the flux density 1.2 T to achieve CF-SST minimum
efficiency of 80%. For minimum possible volume for maximum possible efficiency (97.5%)
is 5.245 m3. The operating frequency, in this case, is 372 Hz and the flux density is 0.249 T.

The merit of the proposed method lies in its simplicity as it enables the designer to
optimise the system parameters, including operating frequency, flux density and core
dimensions fairly quickly using an algorithm that is based solely on analytical equations.
This fast design procedure, however, produces less accurate results, mainly in terms of
core losses, as compared to numerical methods. This is because the analytical equations
used in the optimiser are based on empirical equations or some assumption for simplicity.
Nevertheless, the proposed method would be very useful for practicing engineers as an
initial fast optimisation step, enabling them to take design decisions before building a
detailed numerical model. The numerical model can then be used for design verification
and tuning.

This paper did not consider stray inductance and capacitance, and these will therefore
be considered in future work. Furthermore, future work includes employing different core
materials, power electronics parameters, converters configuration and cooling systems for
the transformer and converters.
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Nomenclature

Notation Nomenclature
Acuc Cross-sectional area of the choke coil core
Acup Transformer cross-sectional areas of the primary winding conductors
Acus Transformer cross-sectional areas of the secondary winding conductors
Ai Transformer core cross-sectional area
Apc Area product of the choke coil core
Aw Transformer core window area
Awc Choke coil core window area
Bm Transformer maximum flux density
Bmax Maximum transformer core flux
Bmc Choke coil maximum flux density.
Bmin Minimum transformer core flux
Bo Initial flux density
CF-DAB Current-fed Dual Active Bridge
D Duty cycle of the transformer voltage
D1 Duty cycle of the H-bridge 1
DAB Dual Active Bridge
dc Effective core diameter of the transformer
dcc Choke coil circumscribing circle
Et Transformer’s voltage per turn
En Energy in watt-seconds
ESS Energy Storage System
f Transformer operating frequency
fmin Minimum operating frequency
fmax Maximum operating frequency
f0 Initial frequency
Hc High of the choke coil core cross-section
Hw, Height of the choke coil core window
IB RMS value of the supply current
Ilk RMS value of the leakage inductance current (primary current)
iT Switch current when the switch is ON
IB Average supply current
J Current density
Kc Ratio of the net core cross-sectional area to the circumscribing circle of the transformer
Kcc Choke coil ratio of the winding area to the core cross-section area.
K f Choke coil filling factor
Ks Transformer core staking factor
Ku Choke coil window utilization factor
Kuc Effective window factor for the choke coil core
Kw Transformer winding fill factor.
K, α, β Core material power losses constants
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l Clearance distance between the transformer windings
LB Choke coil inductance
lpp Total length of the primary winding of the transformer
lps Total length of the secondary winding of the transformer
MLT Choke coil mean length of the winding turn
N Number of turns
Na Transformer turns ratio
Nc Choke coil total number of turns
PTco Transformer core losses
PTcu Transformer copper losses
Pcond_D Conduction losses of the diode
Pcond_T Conduction losses of the switch
Psw_D Switching losses of the diode
Psw_T Switching losses of the switch
Pv Transformer time-average power losses per unit volume
r Constant depending on the flux and ampere-turn of the transformer.
RES Renewable Energy Source
rCE On-state resistances for the IGBT
Rc Choke coil resistance
r f On-state resistances for diode
rop Radii of the transformer primary winding conductors, respectively
ros Radii of the transformer secondary winding conductors, respectively
Rp Transformer ac primary winding resistance
Rs Transformer ac secondary winding resistance
Rth Thermal resistance
rw Ratio of the winding window height to the width for transformer core
SST Solid State Transformers
T Switching period
TA Ambient temperature.
td Time when the diode is OFF
TJ Junction temperature
ts Time when the switch is OFF
Vce Collector to emitter voltage, when the switch is ON
Vmax Maximum voltage.
VolCc Chock coilvolume
VolHs Converters’ heat sink volume
VolT , Total volume of the transformer
Volr Volumetric resistance
VF-DAB Voltage-fed Dual Active Bridge
Vp Primary voltage of the transformer
Vs Secondary voltages of the transformer
Wc Width of the choke coil core cross-section
Ww, Width of the choke coil core window
∆IB Maximum allowed ripple in the dc supply current
∆B Transformer peak-to-peak flux density
ρc Resistivity of the winding material
δ Skin depth.
ξ Clearance between two coils constraint
σ Voltage per turn constraint
ϑ Ratio of the supply ripple current over the average supply current
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