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Abstract: For commercial applications, the durability and economy of the fuel cell hybrid system
have become obstacles to be overcome, which are not only affected by the performance of core
materials and components, but also closely related to the energy management strategy (EMS). This
paper takes the 7.9 t fuel cell logistics vehicle as the research object, and designed the EMS from
two levels of qualitative and quantitative analysis, which are the composite fuzzy control strategy
optimized by genetic algorithm and Pontryagin’s minimum principle (PMP) optimized by objective
function, respectively. The cost function was constructed and used as the optimization objective to
prolong the life of the power system as much as possible on the premise of ensuring the fuel economy.
The results indicate that the optimized PMP showed a comprehensive optimal performance, the
hydrogen consumption was 3.481 kg/100 km, and the cost was 13.042 $/h. The major contribution
lies in that this paper presents a method to evaluate the effect of different strategies on vehicle
performance including fuel economy and durability of the fuel cell and battery. The comparison
between the two totally different strategies helps to find a better and effective solution to reduce the
lifetime cost.

Keywords: proton exchange membrane fuel cell; energy management strategy; fuzzy control; Pon-
tryagin’s minimum principle; multi-objective optimization

1. Introduction

Fuel cells have the advantages of clean and high efficiency, which play important
roles in the new round of energy revolution [1]. Proton exchange membrane fuel cells
(PEMFCs) are considered as an effective variant to diesel distributed generations that can
back up electricity and balance grid power. The hydrogen-fueled cars on the global market
have been fed by PEMFCs [2]. However, a standalone fuel cell system cannot meet the
demands of the frequent changing load for construction vehicle applications. In addition,
the fuel cell system cannot store the regenerative energy. Therefore, there must be at least
an auxiliary power source (e.g., a battery) that is everywhere in all forms of transportation
and electronics to improve vehicle performance [3].

Although a lot of effort has been made in order to introduce fuel cell vehicles to
commercial applications, the main limitations are the cost and durability of the fuel cell
system [4]. A good EMS can improve the economy and durability of fuel cell vehicles, thus
reducing the lifetime cost of the fuel cell, which has great research and application value [5].
The function of the EMS of hybrid electric vehicles is to control and adjust the powertrain
and its components to work normally on the premise of meeting the requirements of vehicle
power performance [6]. Nowadays, the research on EMS is divided into rule-based and
optimization-based strategies. A review of the control algorithm is represented in Table 1.
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The rule-based strategies have strong practicability and high reliability [7–15]. How-
ever, most of them are based on the engineering experience, and the results are dependent
on the design of the rules. Optimization-based strategies are more effective in optimization.
This kind of strategy mainly includes instantaneous and global optimal strategies [16–18].
One of the most classic instantaneous strategies is the equivalent consumption minimiza-
tion strategy (ECMS). Garcia [17] argued that ECMS was the most appropriate control
strategy because it achieved a good balance between hydrogen consumption, efficiency,
adaptability, and calculation time. However, the adaptability of ECMS to working condi-
tions is poor, and there are many studies on the adaptive adjustment of equivalent factors.
Global optimization strategies mainly include dynamic programming (DP) [19,20] and
PMP [21]. Although DP can achieve global optimization, it is not commonly used in
engineering practice because of the large amount of calculation, the disaster of dimen-
sionality, and the need to predict the working condition information. Many studies have
changed to focus on the PMP strategy. Zheng [21] adopted the PMP to study the fuel cell
locomotive, and established the objective function of the minimum hydrogen consumption.
The strategies above-mentioned can achieve a satisfactory fuel economy. However, none of
them considered fuel cell durability.

Table 1. The summary of strategies.

Ref. Classification Control Algorithm

[7,10]

Rule-based

Operating mode control
[8,9] Thermostat control
[11] State machine control

[10,12–14] Fuzzy control

[16]

Optimization-based

Particle swarm optimization
[17,18] ECMS
[19,20] DP

[21] PMP

In addition to reducing fuel consumption, how to improve the durability of the fuel cell
and battery is very important. Based on frequency separation methods [22,23], strategies
have been adopted to avoid drastic power fluctuations of the fuel cell and thus extend
its life. However, this kind of strategy ignores fuel economy and might result in high
hydrogen consumption. Another approach was to construct a cost function that takes fuel
cell durability into account [24]. However, in this research, the weighting factor was hard to
decide because of the tradeoff between fuel economy and fuel cell durability. Most control
strategies considering degradation do not consider a direct way to include fuel cell and
battery degradation.

In light of the above, it is essential to build an effective EMS for improving fuel econ-
omy and prolonging the lifetime of the fuel cell. This paper conducted studies to optimize
the fuel economy and power system durability to reduce lifetime costs. Several strategies
focusing on fuzzy and PMP were compared while considering fuel consumption, fuel
cell degradation, and battery capacity decay to minimize lifetime cost under a connected
vehicle scenario. The contributions of this study lie in the comparison among these strate-
gies, taking the cost function as the evaluation index. Results showed that the hydrogen
consumption was lower, but the cost was higher under the optimized fuzzy strategy. In
contrast, under the PMP strategy, the hydrogen consumption was higher but the cost
was lower. These findings provide insights into the importance of including component
degradation within the energy management system to reduce lifetime cost.

The rest of this paper is organized as follows. First, the model of the powertrain
system and vehicle is introduced in Section 2. Then, in Section 3, two energy management
strategies are described from aspects of qualitative and quantitative analysis of power
system durability separately: the durability of the power system was qualitatively analyzed
by the degradation factors of the fuel cell and battery, and quantified by the multi-objective
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optimization function. Additionally, the simulation results are presented to contrast and
verify the value of the proposed strategy in Section 4. Finally, Section 5 summarizes the
conclusions of this paper.

2. Powertrain System Modeling

The fuel cell hybrid powertrain system includes fuel cell engine (FCE), DC/DC
converter, battery, and motor, as shown in Figure 1. The output voltage of the fuel cell is
controlled by adjusting the low voltage end of the DC/DC converter. Table 2 shows the
key parameters of the powertrain system and vehicle.
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Figure 1. Architecture diagram of the hybrid powertrain system.

Table 2. Main parameters of the powertrain system and vehicle.

Parameter Parameter Value

Fuel cell Cell number 380
Effective area of cell 227 cm2

Peak power of stack 80 kW
Battery Cell capacity 26.5 Ah

Parallel number 3
Serial number 85

Peak charge-discharge ratio 4C
Rated voltage 320 V

Motor Peak power 4000 kW
Peak speed 1600 r/min
Peak torque 80 Nm
Rated power 800 kW
Rated speed 1024 r/min
Rated torque 4000 Nm

Vehicle Curb Weight 5100 kg
Full Weight 7900 kg

Vehicle length 6438 mm
Rolling resistance coefficient 0.01

Face area 5.9 m2

Drag coefficient 0.7

2.1. Model of PEMFC

When the stack works at the peak power point, which is 80 kW, the power consump-
tion of the auxiliary system is 10 kW. Figure 2 shows the polarization curve of a fuel cell
obtained through tests.
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Figure 2. The polarization curve of the fuel cell stack.

According to the output current of the reaction process, the hydrogen consumption
rate of the fuel cell can be calculated as [25]:

Ist =
nF
t

(1)

.
m f c = Ncell ·

Ist MH
nFηH

(2)

where Ist (A) represents the output current of the fuel cell; n (which is the number 2) means
that for every mole of hydrogen that reacts, two moles of electrons are transferred; F is
the Faraday constant, 96,485 C/mol; t (s) is the time it takes for each mole of hydrogen to
react; Ncell (which is the number 380) represents the number of fuel cell units;

.
m f c (g/s)

represents the hydrogen consumption rate of fuel cell; Ncell (g/s) represents the hydrogen
consumption rate of fuel cell; MH represents the molar mass of hydrogen, 2.016 g/mol;
and ηH represents the utilization rate of hydrogen, 97%. The unreacted hydrogen on the
anode side, the inert gas, and water infiltrated from the cathode side will first flow through
the water separator. The water separator separates most of the liquid water, leaving a small
amount of liquid water, inert gas, and hydrogen in the atmosphere through the hydrogen
purge valve. From the above process, it can be seen that hydrogen cannot be completely
used in the reactor to participate in chemical reactions, and the utilization rate of hydrogen
in engineering can reach 97% [26].

Figure 3a shows the relationship between the hydrogen consumption rate and net
output power of the fuel cell system, which is obtained by curve fitting as follows:

.
m f c =

(
3× 10−4

)
× P2

f c + 0.0097× Pf c + 0.00374 (3)

The fuel cell system efficiency can be calculated based on the hydrogen consumption
rate of the fuel cell. It is defined as the ratio of the net output power of the fuel cell system
to the low calorific value energy generated by hydrogen. The equation is as follows:

η f c =
Pf c

.
m f cLHV

(4)

where η f c represents the efficiency of the fuel cell system; Pf c (kW) represents the output
power of the fuel cell system; and LHV represents the lower heat value of hydrogen,
119.64 MJ/kg.

Figure 3b shows the relationship between system efficiency and net output power of
fuel cell. The reason for the low efficiency of the fuel cell system at the low partial loads is
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that the power consumption of the auxiliary system accounts for a large proportion of the
power of the stack.
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Many studies on the fuel cell degradation model are mainly carried out from the
following four kinds of conditions as the starting point: dynamic load change, start-stop,
idling, and high-power [27–30]. The discrete equations are shown as follows:

D f c =
n

∑
1

(
dstart−stop + dload_change + dlow + dhigh

)
(5)

if Signal engine_on,n−1 = 0, Signal engine_on,n = 1, and tengine_o f f ≥ 180

dstart−stop = 1.96× 10−3; else dstart−stop = 0
(6)

dload_change = 5.93× 10−5 ×

∣∣∣Pf c,t=n − Pf c,t=n−1

∣∣∣(
Phigh − Plow

)
× 2

(7)

i f 0 < Pf c ≤ Plow , dlow = 1.26× 10−3 × ∆t
3600

, else dlow = 0 (8)

i f Pf c > Phigh, dhigh = 1.47× 10−3 × ∆t
3600

, else dhigh = 0 (9)

where D f c is the total degradation of fuel cell; dstart−stop, dload_change, dlow, dhigh are degra-
dation rates under start-stop, dynamic load change, idling, and high-power conditions,
respectively; Signalengine_on represents the on/off state of the fuel cell engine; tengine_o f f
(s) represents the duration time of the off state of fuel cell engine; Plow (kW) and Phigh
(kW) represent the low-power and high-power threshold of the fuel cell under idling and
high-power conditions, respectively. Referring to the recommended voltage operating
range of PEMFC [27], Plow is 5.9 kW and Phigh is 48.2 kW.

2.2. Model of Lithium-Ion Battery

The battery adopts the Rint equivalent circuit model because this kind of model is not
only simple and time-efficient, but also has almost the same results as the second-order RC
model. Based on the Rint model, the relationships between the battery power, resistance,
voltage, and current are shown as:
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Ub = Uoc − IbRb (10)

Pb = Uoc · Ib − Rb · I2
b (11)

Ib =
Uoc −

√
U2

oc − 4Rb · Pb
2Rb

(12)

where Ub (V) represents the output voltage of lithium-ion battery; Uoc (V) represents the
open circuit voltage; Rb (Ω) is the equivalent internal resistance; Pb (kW) represents the
output power; and Ib (A) represents the current, when Ib > 0, the battery is discharged,
when Ib < 0, the battery is charged. The rated voltage of the battery is 320 V.

The ampere hour integration method is used to calculate the state of charge (SOC) of
the lithium-ion battery:

SOCt = SOC0 −
∫ t

0 Ib·dt

3600·Q (13)

where SOCt represents the current state of charge of lithium-ion battery; SOC0 represents
the residual state of charge at the initial time; and Q (Ah) represents the capacity.

The energy Ebat (kWh) charged/discharged in the battery calculated at the DC bus is
as follows [20,31]:

Ebat =


−

Vbatavg·∆Qbat ·ηbatdisavg

ηDC·LHV
, ∆Qbat > 0, charging

−
Vbatavg·∆Qbat

ηDC·ηbatchgavg·LHV
, ∆Qbat ≤ 0, discharging

(14)

where ηbatchgavg and ηbatdisavg represent the average charge/discharge efficiency of the
battery; ∆Qbat (Ah) represents the charge/discharge capacity of the battery; Vbatavg (V)
represents the average voltage of the battery; and ηDC represents the efficiency of the
DC/DC converter, which was 97% in this paper.

The charge/discharge efficiency of the battery is related to the SOC, charge/discharge
internal resistance, and power. The calculation equations are as follows:

ηbatdisavg =

1 +

√
1− 4RdisPbatdis

U2
oc

2
(15)

ηbatchgavg =
2

1 +

√
1−

4RchgPbatchg

U2
oc

(16)

where Rchg (Ω) and Rdis (Ω) are the internal charge/discharge resistance, respectively; and
Pbatchg (kW) and Pbatdis (kW) are the charge/discharge power, respectively.

The open circuit voltage (OCV) and charge/discharge resistance of battery are not
fixed values; they fluctuate with SOC. Charge/discharge cycle experiments were carried
out on the selected batteries. Figure 4 shows the obtained OCV and internal resistance of
the battery system.

According to the National Renewable Energy Laboratory (NREL), the degradation of
the lithium-ion battery is divided into cycle and calendar degradation, and the expression
is as follows [32]:

Qdegradation = Qcycle + Qcalendar = (e0 + e1N) +
(

d0 + d1t
1
2

)
(17)

where N is the number of cycles; t is the running time; e0, e1, d0, d1 are expressions related
to discharge depth, temperature, and discharge rate. In order to obtain the values of these
four parameters, several groups of charge/discharge cycles were carried out in this paper.
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By analyzing the experimental results, their values were 0.115, 0.0649, 0.371, and 0.292
under 298.15 K, respectively.
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2.3. Model of the Vehicle

According to the longitudinal dynamics of the vehicle, the traction force is calculated
as follows:

Ft = mg f cosα +
CD Au2

21.15
+ mgsinα + δm

du
dt

(18)

where Ft (N) is the total traction force; m is the vehicle mass; g is the acceleration due to
gravity, 9.8 N/kg; f is the rolling resistance coefficient; u (km/h) is the vehicle velocity; α (◦)
is the road angle that may be uphill (α > 0) or downhill (α < 0); CD is the air drag coefficient;
and A (m2) is the front area. According to the traction force and vehicle speed, the torque
on the wheel TW (N·m) and the wheel rotation speed wW (rad/s) are then calculated by:

TW = r · Ft (19)

wW = u/3.6r (20)

where r (m) is the wheel radius. The relationship correlating the fuel cell net power Pf c,
battery power Pbat, and the total demanded power Preq (kW) is expressed as follows:

Preq = Pf c × ηDC + Pbat (21)

3. Energy Management Strategy Considering Power System Durability

The concept of generalized economy is proposed in this paper. Generalized econ-
omy refers to the comprehensive economy that takes durability into consideration. The
optimization objectives include two aspects: one is the fuel cell hydrogen consumption,
the other is the durability of the power system composed of the fuel cell and battery. The
EMS under a qualitative generalized economy adopts the comprehensive strategy of fuzzy
control, switch control, and sliding window filtering algorithm, which makes the fuel
cell work in the high efficiency area to improve its fuel economy, and slows down the
power fluctuation of the fuel cell and the capacity fluctuation of the battery to improve
the durability of the power system. The EMS under quantitative generalized economy
adopts the PMP, takes the hydrogen consumption of the fuel cell as the economic index,
and the power fluctuation of the fuel cell as the durability index. With the solution of
the multi-objective optimization function, the optimal power trajectory of the fuel cell
is obtained.
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3.1. Energy Management Strategy under Qualitative Generalized Economy
3.1.1. Composite Fuzzy Control Strategy

The influencing factors of fuel cell durability mainly come from dynamic load change,
start-stop, idling, and high-power conditions. In this section, a composite fuzzy control
strategy based on switch control and the sliding window filtering algorithm is proposed.
The qualitative strategy was formulated to effectively reduce the frequency of the above-
mentioned four bad conditions and other operating points that affect the durability of
the fuel cell. The switch control strategy can avoid a series of safety problems such as
over-charge and over-discharge of the battery. The sliding window filtering algorithm
can make the output power of the fuel cell as smooth as possible, which is conducive to
improving the durability of the fuel cell.

Figure 5 shows the flow chart of the composite fuzzy energy management strategy.
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The design principle of the fuzzy controller is as follows:

• Try to avoid the fuel cell working at idling condition;
• Try to reduce the number of fuel cell start-up and shut-down;
• Make the fuel cell work in a high efficiency area; and
• Keep the SOC of the battery in a reasonable range, which was 40~80% in this pa-

per [33].

The input of the fuzzy controller was set to the SOC of the battery and the difference
between the required power of the vehicle and the lower limit of the optimal working area
of the fuel cell. The output was proportional to the coefficient K of the fuel cell output
power, 0 ≤ K ≤ 1. In order to limit the output power of the fuel cell in the optimal working
area, the proportional coefficient is expanded proportionally, and the final output power of
the fuel cell is (8 K + 62) kW. Table 3 shows the fuzzy rules. The fuzzy subsets are “very
small (VS)”, “small (S)”, “middle (M)”, “big (B)”, and “very big (VB)”, respectively. The
first column represents the power change. The first row represents the SOC and the values
of the intersections represent the values of K. Figure 6 shows the membership function of
each variable.

Table 3. Fuzzy rules.

∆P

K SOC
VS S M B

VS M S VS VS
S B M S VS
M VB B M S
B VB B B M

VB VB VB B M
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Figure 7 shows the flow chart of the switch control strategy (Y means yes, N means
No). When the SOC of the battery is higher than the set upper limit, the fuel cell is shut
down to make the battery begin to discharge, thus ensuring its safety.

Energies 2021, 14, x FOR PEER REVIEW 9 of 24 
 

 

   
(a) (b) (c) 

Figure 6. Flow chart of the composite fuzzy energy management strategy. (a) Membership function of input power; (b) 
Membership function of SOC; (c) Membership function of proportional coefficient of fuel cell output power. 

Table 3. Fuzzy rules. 

SOC
K 

ΔP 

VS S M B 

VS M S VS VS 
S B M S VS 
M VB B M S 
B VB B B M 

VB VB VB B M 

Figure 7 shows the flow chart of the switch control strategy (Y means yes, N means 
No). When the SOC of the battery is higher than the set upper limit, the fuel cell is shut 
down to make the battery begin to discharge, thus ensuring its safety.  

 
Figure 7. Flow chart of the switch control strategy. 

In order to further improve the durability of the fuel cell, the sliding window filtering 
algorithm was adopted to make the output power smoother and the performance damage 
of the fuel cell caused by the dynamic load change condition was reduced. The expression 
of fuel cell power output by the sliding window filtering algorithm is as follows: 𝑃௙௖ = 1𝑁 × ෍ 𝑃ሾ𝑇 − 𝑘ሿேିଵ௞ୀ଴  (22) 

where N is the number of sampling points contained in the sliding window; t is the current 
sampling time; k is the time axis of the sliding window; and P[T − k] represents the fuel 
cell power at the k + 1 sampling point within the sliding window range. 

3.1.2. Improved Composite Fuzzy Control Strategy Using Genetic Algorithm (GA) 
Because the establishment of membership function and fuzzy rules depend on 

engineering experience, it is difficult to achieve the optimal control effect. Therefore, the 
genetic algorithm was adopted to optimize the design of the fuzzy controller.  

Figure 7. Flow chart of the switch control strategy.

In order to further improve the durability of the fuel cell, the sliding window filtering
algorithm was adopted to make the output power smoother and the performance damage
of the fuel cell caused by the dynamic load change condition was reduced. The expression
of fuel cell power output by the sliding window filtering algorithm is as follows:

Pf c =
1
N
×

N−1

∑
k=0

P[T − k] (22)

where N is the number of sampling points contained in the sliding window; t is the current
sampling time; k is the time axis of the sliding window; and P[T − k] represents the fuel
cell power at the k + 1 sampling point within the sliding window range.

3.1.2. Improved Composite Fuzzy Control Strategy Using Genetic Algorithm (GA)

Because the establishment of membership function and fuzzy rules depend on engi-
neering experience, it is difficult to achieve the optimal control effect. Therefore, the genetic
algorithm was adopted to optimize the design of the fuzzy controller.

The basic genetic algorithm consists of coding, fitness function, genetic operators
(selection, crossover, mutation), and operation parameters. Figure 8 shows the flow chart of
the genetic algorithm to solve the optimization problem. First, the population individuals
are initialized so that each individual has a potential optimal solution. Then, based on the
co-simulation of MATLAB/Simulink and AVL Cruise, the total hydrogen consumption
and the degradation of the power system are obtained to calculate the fitness value. When
all the individuals in the population have obtained the fitness calculation values, they
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enter genetic operations including selection, crossover, and variation. After that, the highly
fitted individuals are retained, and the less fitted individuals are eliminated to achieve
self-renewal, so that the population evolves toward a higher fitness. So repeatedly, when
the number of iterations is reached, the optimal solution among all the individuals is
obtained. At the same time, the optimal membership function has been achieved.

Energies 2021, 14, x FOR PEER REVIEW 10 of 24 
 

 

The basic genetic algorithm consists of coding, fitness function, genetic operators 
(selection, crossover, mutation), and operation parameters. Figure 8 shows the flow chart 
of the genetic algorithm to solve the optimization problem. First, the population 
individuals are initialized so that each individual has a potential optimal solution. Then, 
based on the co-simulation of MATLAB/Simulink and AVL Cruise, the total hydrogen 
consumption and the degradation of the power system are obtained to calculate the fitness 
value. When all the individuals in the population have obtained the fitness calculation 
values, they enter genetic operations including selection, crossover, and variation. After 
that, the highly fitted individuals are retained, and the less fitted individuals are 
eliminated to achieve self-renewal, so that the population evolves toward a higher fitness. 
So repeatedly, when the number of iterations is reached, the optimal solution among all 
the individuals is obtained. At the same time, the optimal membership function has been 
achieved. 

 
Figure 8. Genetic algorithm optimization process. 

Referring to [20,34], in order to consider both fuel economy and power system 
durability, the cost function related to fuel cell degradation, battery decay, and hydrogen 
consumption is introduced. 

cost = ൬𝐷௙௖10 × 𝐶௙௖ × 𝑃௙௖௠௔௫ + 𝐷bat20 × 𝐶bat × 𝐶batmax + 𝑀1000 × 𝐶ுଶ + 𝐸௕௔௧ × 𝐶௘௟௘൰𝑥  (23) 

where cost ($/h) is the total cost per hour; 𝐷௙௖ (%) and 𝐷bat (%) are the degradation of 
fuel cell and battery, respectively; 𝐶௙௖ ($/kW) and 𝐶bat ($/kWh) refer to the unit cost of 
the fuel cell and lithium-ion battery; 𝑃௙௖௠௔௫ (kW) is the peak power of the fuel cell system; 𝐶batmax (kWh) is the total energy of the battery; M (g) is the total hydrogen consumption; 𝐶ுଶ ($/kg) is the unit price of hydrogen;  𝐶௘௟௘  ($/kWh) is the unit price of the electric 
charge/discharge; 𝐸௕௔௧ (kWh) is the amount of charge/discharge in the working condition; 
and x (h) is the operation time. According to the investigation report of the U.S. 
Department of Energy (DOE), NREL and strategic analysis Inc., 𝐶௙௖ is taken as $150/kW, 𝐶bat  is taken as $200/kWh, and 𝐶ுଶ  is taken as $5/kg [35–37]. Based on the report of 
AMPLY, 𝐶௘௟௘ is taken as $0.3/kWh [38]. 

Due to the long coding length, and taking the reliability and computing speed of the 
genetic algorithm into account, the population size and the algebra were taken as 20 and 
10, respectively. The crossover probability and the mutation probability were taken as 0.7, 
respectively. 

3.2. Energy Management Strategy under Quantitative Generalized Economy 
Based on PMP, an EMS considering both fuel economy and power system durability 

was proposed. The hydrogen consumption and output power change rate of the fuel cell 

Figure 8. Genetic algorithm optimization process.

Referring to [20,34], in order to consider both fuel economy and power system dura-
bility, the cost function related to fuel cell degradation, battery decay, and hydrogen
consumption is introduced.

cost =

(D f c

10
× C f c × Pf cmax +

Dbat
20
× Cbat × Cbatmax +

M
1000

× CH2 + Ebat × Cele

)
x

(23)

where cost ($/h) is the total cost per hour; D f c (%) and Dbat (%) are the degradation of
fuel cell and battery, respectively; C f c ($/kW) and Cbat ($/kWh) refer to the unit cost of
the fuel cell and lithium-ion battery; Pf cmax (kW) is the peak power of the fuel cell system;
Cbatmax (kWh) is the total energy of the battery; M (g) is the total hydrogen consumption;
CH2 ($/kg) is the unit price of hydrogen; Cele ($/kWh) is the unit price of the electric
charge/discharge; Ebat (kWh) is the amount of charge/discharge in the working condition;
and x (h) is the operation time. According to the investigation report of the U.S. Department
of Energy (DOE), NREL and strategic analysis Inc., C f c is taken as $150/kW, Cbat is taken
as $200/kWh, and CH2 is taken as $5/kg [35–37]. Based on the report of AMPLY, Cele is
taken as $0.3/kWh [38].

Due to the long coding length, and taking the reliability and computing speed of the
genetic algorithm into account, the population size and the algebra were taken as 20 and
10, respectively. The crossover probability and the mutation probability were taken as 0.7,
respectively.

3.2. Energy Management Strategy under Quantitative Generalized Economy

Based on PMP, an EMS considering both fuel economy and power system durability
was proposed. The hydrogen consumption and output power change rate of the fuel
cell were integrated into the multi-objective function to be optimized, and the global
optimization was achieved.
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3.2.1. Optimization Problem Formation and Basic Optimization Goal Setting

According to Equation (13), the value of the SOC change rate of battery S
.

OC (s−1) is
calculated as follows:

S
.

OC(t) = − Ib(t)
Q

= −
Uoc(t)−

√
Uoc(t)

2 − 4RbPb(t)
2RbQ

(24)

Based on PMP, Pf c is defined as the control variable of the system; SOC is the state
variable; λ is the co-state; t0 (s) is the start time; and t f (s) is the end time. The control
problem is to find the optimal control variable P∗f c enabling the controlled system shown in
Equation (26) to transfer from the given initial state to the terminal state, and to minimize
the performance function, as defined in Equation (25). The performance function with the
hydrogen consumption as the optimization objective is:∫ t f

t0

.
m f c

(
Pf c(t)

)
dt (25)

The state equation is as follows:

.
SOC(t) = f

(
SOC(t), Pf c(t), t

)
(26)

The Hamiltonian equation is as follows:

H
(

SOC(t), Pf c(t), λ(t), t
)
=

.
m f c

(
Pf c(t)

)
− λ(t) ·

Ib

(
Pf c(t), SOC(t), t

)
Q

(27)

The co-state variables and state variables need to satisfy the regular equations:

.
λ = − ∂H

∂SOC
=

λ · ηbat
Q

(
∂Ib

∂Uoc

∂Uoc

∂SOC
+

∂Ib
∂Rb

∂Rb
∂SOC

)
(28)

SOC∗(t) =
∂H
(

SOC∗(t), P∗f c(t), λ∗(t), t
)

∂λ
= f

(
SOC∗(t), P∗f c(t), t

)
(29)

where ηbat represents the charge/discharge efficiency of battery; and * represents the
optimal trajectory.

The battery SOC changes in the range of [40%, 80%]. According to Figure 4, in this
region of SOC, the relationship between OCV and internal resistance with SOC is as follows:

Rb = costant (30)

Uoc =
(

4× 10−5
)
· SOC3 − 0.0036 · SOC2 + 0.5982·SOC + 288.15 (31)

Equation (28) can be simplified into:

.
λ = −ληbat Ib(−0.0072x + 0.5982x)

Q
√

U2
oc − 4PbRb

(32)

The state variable shall satisfy the boundary conditions:

SOC(t0) = SOC
(

t f

)
= SOCre f (33)

where SOCre f represents the reference value of the SOC of the battery, which is generally
taken to be 60%.
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PMP provides a set of necessary conditions that must be satisfied by the optimal
control trajectory. The conditions are as follows:

Pf c(t) ∈

 max
(

Pf clow, (
Preq(t) − Pbathigh(t))

ηDC

)
,

min
(

Pf chigh, (
Preq(t) − Pbatlow(t))

ηDC

)
 (34)


SOClow < SOC < SOChigh

| SOC
(

t f

)
− SOCre f |< ∆SOC

Pbatlow < Pb < Pbathigh

(35)

where Pf clow (kW), Pf chigh (kW) represent the low and high limit power of fuel cell respec-
tively; Pbatlow (kW), Pbathigh (kW) represent the low and high limit power of the battery,
respectively; SOClow, SOChigh represent the low and high limit state of charge of the battery,
respectively; and ∆SOC represents the allowable margin of error, which is generally taken
to be 0.0001 [19].

According to PMP, the optimal fuel cell system output power P∗f c at each time satisfies
the following equation:

P∗f c = argmin H (36)

PMP states that the optimal solution should minimize the Hamiltonian as follow:

H
(

SOC∗(t), P∗f c(t), λ∗(t)
)
= H

(
SOC∗(t), Pf c(t), λ∗(t)

)
(37)

The Hamiltonian can be solved at each instant. When an initial value of λ is set, the
co-state variable λ can be calculated based on Equation (32). Under the extreme conditions,
the optimal trajectory of the fuel cell output power can be obtained when the Hamiltonian
obtains the minimum value. At the same time, the optimal control variable is obtained.
By substituting the optimal control variable into the state equation, the change rate of
the battery SOC can be obtained, and the current SOC can be calculated according to the
ampere-hour integral method. According to the analysis, under the fixed λ, the final SOC
value at the end of the working condition is also fixed. There is a monotonic relationship
between the co-state variable and the final SOC value [39,40]. Therefore, the initial value of
the co-state variable can be obtained by dichotomy.

3.2.2. Improved Optimization Objective Based on Fuel Cell Power Change Rate

In the fuel cell hybrid system, the durability of the fuel cell is given priority because
of the relatively high cost compared with the lithium-ion battery. In the above section, the
performance function, which was established based on PMP, only considers the hydrogen
consumption without considering the durability of the fuel cell. In order to optimize
the EMS, the fuel cell power change rate was added into the performance function. The
improved performance function is as follows:

J =
N−1

∑
k=0

(Csys,k + kWtota1,k) (38)

where Csys,k (g) represents the hydrogen consumption; Wtota1,k (kW) represents the fuel cell
power fluctuation; k represents the weight factor of the power fluctuation of the fuel cell.

The improved Hamiltonian function is:

H = Csys,k + kWtota1,k + λ
.

SOC (39)

Under the CWTVC condition, the initial λ of the battery SOC is −1910 when the
fluctuation of the battery SOC is 0 by the dichotomy method.
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After the optimal λ is obtained by using dichotomy, a model based on the optimal λ
is built in Simulink to realize online simulation. The simulation step is 0.1 s, and the online
PMP strategy can be realized by co-simulation with the vehicle model.

4. Results and Discussion
4.1. Results of Energy Management Strategy under Qualitative Generalized Economy
4.1.1. Verification of Optimization Effect of Composite Fuzzy Control Strategy

In order to prove the optimization effect of the composite fuzzy control strategy, a
comparison between the switching control strategy, sliding window filtering strategy, and
composite fuzzy strategy was carried out, as shown in Table 4. The start value of SOC was
60% in all strategies. There are some conclusions about the composite fuzzy strategy:

1. Compared with the switch control strategy, the hydrogen consumption per 100 km
was increased by 5.250%, while the cost was reduced by 5.825%. This is because in
the switching control strategy, the fuel cell is in a constant power operating point
for a long time, and the frequency of the dynamic load change condition is almost
zero. In order to fill the power demand of the bus, the battery is in a state of deep
charge/discharge for a long time, which causes great damage to the battery. The com-
posite fuzzy strategy greatly alleviates the fluctuation of the battery and is beneficial
to the extension of the battery life; and

2. Compared with the sliding window filtering strategy, the hydrogen consumption per
100 km was significantly reduced, and the cost was decreased by 0.618%. At the same
time, the total degradation rate of the fuel cell was reduced.

Table 4. Comparison of economy and durability under different strategies.

Strategy SOC End Value/% Hydrogen Consumption/(kg/100 km) Cost/($/h)

1. Switch control 57.489 3.257 14.352
2. Sliding window filtering 59.314 3.561 13.600
3. Composite fuzzy strategy 58.929 3.428 13.516

3 vs. 1 - +5.250% −5.825%
3 vs. 2 - −3.735% −0.618%

4.1.2. Verification of Effect of the Improved Composite Fuzzy Control Strategy by Using
Genetic Algorithm

Figure 9 shows the simulation results of the composite fuzzy strategy before and after
the improvement of the genetic algorithm.
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Table 5 shows the comparison of the fuel economy and power system durability of
the composite fuzzy control strategy before and after improvement.

Table 5. Comparison of the economy and durability of the composite fuzzy control strategy before
and after improvement.

Strategy SOC End Value/% Hydrogen Consumption/
(kg/100 km) Cost/($/h)

1. Composite fuzzy 58.929 3.428 13.516
2. GA-Fuzzy 57.763 3.317 13.339

2 vs. 1 - −3.238% −1.310%

It can be seen that compared with before, the hydrogen consumption per 100 km
was reduced by 3.238%, and the cost was reduced by 1.310%. At the same time, the total
degradation of the fuel cell was reduced. This shows that after using the GA, the fuel
economy and fuel cell durability were improved.

4.2. Results of Energy Management Strategy under Quantitative Generalized Economy

According to the influence factors of the four conditions on the fuel cell degradation,
the dynamic load change condition had the greatest influence. It can be seen that the
selection of the weight factor k based on the improved PMP is particularly important. The
comparison of the fuel cell output power between the improved PMP (P-PMP, k = 1× 10−4)
and the PMP (PMP, k = 0) is shown in Figure 10. It can be seen that the power fluctuation of
the fuel cell was weakened under P-PMP, so the degradation of the fuel cell because of the
dynamic load change condition was reduced. The durability of the fuel cell was improved.
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Figure 11 shows the results of the fuel economy and power system durability between
PMP (k = 0) and the P-PMP when the k value is 8× 10−5, 1× 10−4, and 1.2× 10−4, respectively.
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Compared with the results before improvement, the P-PMP had the following charac-
teristics:

• The fuel economy was improved under the three k values;
• The difference between the peak and valley of SOC under three k values decreased,

but the degradation degree of the battery increased, which indicates that the small
fluctuation of SOC during working condition is relatively larger than that before
improvement, which is not conducive to the maintenance of battery life;

• The degradation of fuel cell under three k values was lower than that before im-
provement, which indicates that the improvement strategy has a significant effect on
improving the fuel cell durability; and

• It can be seen from Figure 11c,d that the larger the value of k, the less impact the
dynamic load change condition has on the degradation of the fuel cell, which is more
conducive to improving the fuel cell durability, despite the battery durability being
relatively poor. This reflects that different values of k have different effects on the
durability of thee fuel cell and battery, so the concept of total cost function is helpful
to further select the best value of k, which makes the fuel economy and power system
durability relatively better.

Figure 12 shows the relationship between the cost function and value of k under
different unit price gradients. When k is taken as 8 × 10−5, the cost function can keep the
lowest for a long time in a large range of power system unit price, which means that the
economy and durability of the vehicle reach the comprehensive optimum.
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Comparing the P-PMP strategy when k is 8 × 10−5 with the PMP strategy only
considering fuel economy, the simulation results under CWTVC condition are shown in
Figure 13.

Figure 13. Cont.



Energies 2021, 14, 3262 18 of 24

Figure 13. Comparison of the simulation results under P-PMP and PMP strategies. (a) Net output
power of fuel cell; (b) Output power of battery; (c) SOC fluctuation of battery.

Under the P-PMP strategy, the hydrogen consumption was 3.481 kg/100 km, while the
value was 3.540 kg/100 km under the PMP strategy. Combined with the other simulation
results, it can be seen that P-PMP strategy has the following characteristics compared with
the PMP strategy:

• The output power of the fuel cell was smoother, and the influence of the dynamic load
change condition on fuel cell degradation was reduced;

• The absolute value of the SOC fluctuation of the battery |Σ∆SOC| was smaller;
• The total hydrogen consumption was smaller and the fuel economy was better; and
• The total degradation of the fuel cell was smaller. Although the total degradation rate

of the battery was slightly larger, the lifetime cost was lower.

4.3. Comparison of Fuel Economy and Power System Durability under Different Strategies

This section compares the economic index, durability index, and lifetime cost under
different strategies. Among them, the economic index is represented by hydrogen consump-
tion per 100 km, the durability index is represented by fuel cell and battery degradation,
and the lifetime cost is represented by cost function.

Table 6 shows the comparison of the simulation results under the CWTVC condition.
Figure 14 shows the working efficiency distribution of the fuel cell. The blue bar chart
shows the frequency of the power corresponding to the bar in the whole working condition.
In this way, the efficiency distribution of the fuel cell can be easily seen.

According to the simulation results, we can get the following results:

• The hydrogen consumption per 100 km was the lowest under the P-PMP strategy,
which was 3.481 kg/100 km. At the same time, the lifetime cost was also the lowest
among all strategies, which was 13.042 $/h;

• The total fuel cell degradation was low under the switch control strategy, because
the fuel cell has been working at some fixed power point, so the frequency of the
dynamic load change condition was very small. According to the power distribution
diagram of the fuel cell, the frequency of fuel cell working in the high efficiency
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area was higher under this strategy, and the heat loss of hydrogen in the process of
energy conversion was less. Therefore, the hydrogen consumption per 100 km was
relatively low. However, it also led to frequent fluctuations and a high degradation
rate in the batteries. It ended with a relatively high lifetime cost compared with the
other strategies;

• Under the sliding window filtering strategy, the total degradation of the fuel cell and
battery were at the middle level. At the same time, the hydrogen consumption was
higher. According to the efficiency distribution of the fuel cell, the working point of the
fuel cell was more scattered under this strategy. Compared with the other strategies,
the fuel cell worked more frequently at low efficiency, so the energy loss of hydrogen
during energy conversion was larger;

• Compared with the GA-fuzzy strategy, the total fuel cell degradation was increased
by 5.79% in the P-PMP strategy. In addition, the battery degradation decreased,
the hydrogen consumption per 100 km was smaller, and the final cost was 2.23%
smaller; and

• Compared with the PMP strategy, the frequency of thee fuel cell working in the high
efficiency zone was higher and the hydrogen consumption per 100 km was lower
under the P-PMP strategy. In addition, the total degradation of the fuel cell was greatly
improved, and the cost was also 1.14% lower.

Table 6. Comparison of fuel economy and power system durability under different strategies.

Strategy
Degradation of Fuel Cell/

% × 10−5
Degradation of Battery/

% × 10−5
Hydrogen

Consumption/
(kg/100 km)

Cost/($/h)
Dynamic Load Change Total Cycle Total

1. Switch control 0.33 196.65 111.49 4319.55 3.257 14.352
2. Sliding window filtering 4.45 213.28 63.45 4271.51 3.561 13.600

3. Composite fuzzy 2.64 206.90 80.19 4288.25 3.428 13.516
4. GA-fuzzy 2.28 198.60 81.47 4289.53 3.317 13.339

5. PMP 26.78 223.26 46.33 4254.39 3.540 13.192
6. P-PMP 13.63 210.10 53.15 4261.21 3.481 13.042

6 vs. 1 - +6.84% - −1.35% +6.88% −7.73%
6 vs. 2 - −1.49% - −0.24% −2.25% −2.63%
6 vs. 3 - +1.55% - −0.63% +1.55% −2.03%
6 vs. 4 - +5.79% - −0.66% +4.94% −2.23%
6 vs. 5 - −5.89% - +0.16% −1.67% −1.14%
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5. Conclusions

This paper mainly studied the EMS under a generalized economy, which considers
both the fuel economy and the durability of power system. From two levels of qualitative
and quantitative analysis, the comprehensive optimization control of multi-objectives in
different scales was studied, aiming at the fuel economy and power system durability. First,
a method of optimized fuzzy rules by adopting GA was proposed to solve the problem that
traditional fuzzy control depends on engineering experience. Under the GA-fuzzy strategy,
both hydrogen consumption and cost were reduced. Second, based on the PMP strategy,
fuel economy and fuel cell durability were fitted into the objective function. Compared
with the strategy considering only fuel economy, the hydrogen consumption, fuel cell
durability, and lifetime cost under the P-PMP strategy were all reduced. Third, taking
hydrogen consumption, fuel cell degradation, battery decay, and energy consumption all
into account, the lifetime cost function was proposed as the ultimate evaluation index.
Finally, the simulation results showed that the P-PMP shows comprehensive optimal
performance. The hydrogen consumption per 100 km was 3.481 kg/100 km under the
CWTVC condition, and the unit time cost was 13.042 $/h. This indicates that the P-PMP
strategy is an effective solution to optimize fuel economy and power system durability.

In future research, the following work will be further carried out: (1) The conclusion
might only be valid for the vehicle configuration and drive cycle with the current market
costs, so a research method suitable for dynamic market cost is worth exploring; and
(2) hardware-in-the-loop and vehicle experiments can be carried out to further verify the
effectiveness of the strategies.

Author Contributions: Conceptualization, J.L., Y.L. and T.M.; Methodology, J.L.; Software, Y.L.;
Validation, J.L. and T.M.; Formal analysis, W.J. and W.L.; Investigation, Y.L.; Resources, T.M. and J.L.;
Data curation, W.J. and W.L.; Writing—original draft, J.L., W.J. and Y.L.; Writing—review & editing,
J.L., Y.L. and W.L.; Visualization, W.J. and W.L.; Supervision, T.M. and J.L.; Project administration,
T.M. and J.L.; Funding acquisition, T.M. and J.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by CRRC Qingdao Sifang Co., Ltd. (Next generation fuel cell air
conditioning power supply system for Metro).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
Acronyms
EMS Energy management strategy
PMP Pontryagin’s minimum principle
PEMFCs Proton exchange membrane fuel cells
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ECMS Equivalent consumption minimization strategy
DP Dynamic programming
FCE Fuel cell engine
OCV Open circuit voltage
NREL National Renewable Energy Laboratory
SOC State of charge
GA Genetic algorithm
P-PMP Improved Pontryagin’s minimum principle
Symbols
Ist Output current of fuel cell
n Moles of electrons
F Faraday constant
.

m f c Hydrogen consumption rate of fuel cell
Ncell Number of fuel cell units
MH Molar mass of hydrogen
ηH Utilization rate of hydrogen
Pf c Output power of fuel cell system
LHV Lower heat value of hydrogen
η f c Efficiency of fuel cell system
D f c Total degradation of fuel cell
dstart−stop Degradation rate under start-stop condition
dload_change Degradation rate under dynamic load change condition
dlow Degradation rates under idling condition
dhigh Degradation rates under high-power condition
Plow Low-power threshold of fuel cell under idling condition
Phigh High-power threshold of fuel cell under high-power condition
Signalengine_on On/off state of the fuel cell engine
tengine_o f f Duration time of the off state of fuel cell engine
Ub Output voltage of battery
Uoc Open circuit voltage of battery
Pb Output power of battery
Rb Equivalent internal resistance of battery
Ib Current of battery
SOCt Current state of charge of battery
SOC0 Residual state of charge of battery at the initial time
Q Capacity of battery
Ebat Charged/discharged in the battery calculated at the dc bus
∆Qbat Charge/discharge capacity of battery
Vbatavg Average voltage of battery
ηDC Efficiency of dc/dc converter
Rchg Internal charge resistance of battery
Rdis Internal discharge resistance of battery
Pbatchg Charge power of battery
Pbatdis Discharge power of battery
ηbatchgavg Average charge efficiency of battery
ηbatdisavg Average discharge efficiency of battery
Qdegration Total degradation of battery
Qcycle Cycle degradation of battery
Qcalendar Calendar degradation of battery
Ft Total traction force
m Vehicle mass
g Acceleration due to gravity
f Rolling resistance coefficient
u Vehicle velocity
A Front area
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α Road angle
CD Air drag coefficient
TW Torque on the wheel
wW Wheel rotation speed
Preq Total demanded power
Dbat Degradation of battery
C f c Unit cost of fuel cell
Cbat Unit cost of battery
Pf cmax Peak power of the fuel cell system
Cbatmax Total energy of the battery
M Total hydrogen consumption
CH2 Unit price of hydrogen
Cele Unit price of the electric charge/discharge
S

.
OC SOC change rate of battery

λ Co-state variable
t0 Start time
t f End time
ηbat Charge/discharge efficiency of battery
SOCre f Reference value of the SOC of battery
Pf clow Low limit power of fuel cell
Pf chigh High limit power of fuel cell
Pbatlow Low limit power of battery
Pbathigh High limit power of battery
SOClow Low limit state of charge of battery
SOChigh High limit state of charge of battery
∆SOC Allowable margin of error of the end SOC of battery
Csys,k Hydrogen consumption
Wtota1,k Fuel cell power fluctuation
k Weight factor of the power fluctuation of fuel cell
Subscripts
st Stable
fc Fuel cell
H Hydrogen
cell Fuel cell units
start-stop Start-stop condition
load-change Dynamic load change condition
low Idling condition
high High-power condition
engine_on On state of fuel cell engine
engine_off Off state of fuel cell engine
b Battery
oc Open circuit
t Current state
0 Initial state
bat Battery
DC DC/DC converter
chg Charge
dis Discharge
avg Average
D Drag
w Wheel
req Request
max Maximum
ele Electric
ref Reference



Energies 2021, 14, 3262 23 of 24

References
1. Ma, T.C.; Lin, W.K.; Yang, Y.B.; Wang, K.; Jia, W. Water content diagnosis for proton exchange membrane fuel cell based on

wavelet transformation. Int. J. Hydrogen Energy 2020, 45, 20339–20350. [CrossRef]
2. Abaza, A.; Elsehiemy, R.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M. Optimal Estimation of Proton Exchange Membrane Fuel

Cells Parameter Based on Coyote Optimization Algorithm. Appl. Sci. 2021, 11, 2052. [CrossRef]
3. Al-Gabalawy, M.; Mahmoud, K.; Darwish, M.M.F.; Dawson, J.; Lehtonen, M.; Hosny, N. Reliable and Robust Observer for

Simultaneously Estimating State-of-Charge and State-of-Health of LiFePO4 Batteries. Appl. Sci. 2021, 11, 3609. [CrossRef]
4. Jahromi, M.M.; Heidary, H. Durability and economics investigations on triple stack configuration and its power management

strategy for fuel cell vehicles. Int. J. Hydrogen Energy 2021, 46, 5740–5755. [CrossRef]
5. Ma, T.C.; Lin, W.K.; Yang, Y.B.; Cong, M.; Yu, Z.; Zhou, Q. Research on Control Algorithm of Proton Exchange Membrane Fuel

Cell Cooling System. Energies 2019, 12, 3692. [CrossRef]
6. Xu, L.F.; Li, J.Q.; Hua, J.; Yang, G. Multi-mode control strategy for fuel cell electric vehicles regarding fuel economy and durability.

Int. J. Hydrogen Energy 2014, 39, 2374–2389. [CrossRef]
7. Wang, Y.; Sun, Z.; Chen, Z. Rule-based energy management strategy of a lithium-ion battery, supercapacitor and PEM fuel cell

system. Energy Procedia 2019, 158, 2555–2560. [CrossRef]
8. Ji, R.H. Optimal Design and Energy Management of Power System for Full-power Fuel Cell Vehicle. Master’s Thesis, Jilin

University, Changchun, China, 2020.
9. Wang, Y.G.; Suresh, D.A.; Ajay, K.P. A comparison of rule-based and model predictive controller-based power management

strategies for fuel cell/battery hybrid vehicles considering degradation. Int. J. Hydrogen Energy 2020, 45, 33948–33956. [CrossRef]
10. Ahmadi, S.; Bathaee, S.M.T. Multi-objective genetic optimization of the fuel cell hybrid vehicle supervisory system: Fuzzy logic

and operating mode control strategies. Int. J. Hydrogen Energy 2015, 40, 12512–12521. [CrossRef]
11. Wang, Y.J.; Sun, Z.D.; Chen, Z.H. Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based

on finite state machine. Appl. Energy 2019, 254, 113707. [CrossRef]
12. Erdinc, O.; Vural, B.; Uzunoglu, M. A wavelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-

capacitor hybrid vehicular power system. J. Power Sources 2009, 194, 369–380. [CrossRef]
13. Fu, Z.; Zhu, L.; Si, P.; Sun, L. Optimization based energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle

considering fuel economy and fuel cell lifespan. Int. J. Hydrogen Energy 2020, 45, 8875–8886. [CrossRef]
14. Ali, A.; Mahmoud, K.; Lehtonen, M. Multi-objective Photovoltaic Sizing with Diverse Inverter Control Schemes in Distribution

Systems Hosting EVs. IEEE Trans. Ind. Inform. 2020. [CrossRef]
15. Ferrario, A.M.; Manzano, F.S.; Bocci, E.; Andújar, J.M.; Bocci, E.; Martirano, L. Hydrogen vs. Battery in the Long-term Operation.

A Comparative Between Energy Management Strategies for Hybrid Renewable Microgrids. IEEE Consum. Electron. Mag. 2020, 9,
1–128.

16. Koubaa, R.; Bacha, S.; Smaoui, M. Robust optimization based energy management of a fuel cell/ultra-capacitor hybrid electric
vehicle under uncertainty. Energy 2020, 200, 117530. [CrossRef]

17. García, P.; Torreglosa, J.P.; Fernández, L.M.; Jurado, F. Control strategies for high-power electric vehicles powered by hydrogen
fuel cell, battery and supercapacitor. Expert Syst. Appl. 2013, 40, 4791–4804. [CrossRef]

18. Geng, B.; Mills, J.K.; Sun, D. Two-Stage Energy Management Control of Fuel Cell Plug-In Hybrid Electric Vehicles Considering
Fuel Cell Longevity. IEEE Trans. Veh. Technol. 2012, 61, 498–508. [CrossRef]

19. Xu, L.F.; Mueller, C.D.; Li, J.; Ouyang, M.; Hu, Z. Multi-objective component sizing based on optimal energy management strategy
of fuel cell electric vehicles. Appl. Energy 2015, 157, 664–674. [CrossRef]

20. Hu, Z.Y.; Li, J.Q.; Xu, L.F.; Song, Z.; Fang, C.; Ouyang, M.; Dou, G.; Kou, G. Multi-objective energy management optimization and
parameter sizing for proton exchange membrane hybrid fuel cell vehicles. Energy Convers. Manag. 2016, 129, 108–121. [CrossRef]

21. Zheng, C.H.; Kim, N.M.; Cha, S.W. Optimal control in the power management of fuel cell hybrid vehicles. Int. J. Hydrogen Energy
2012, 37, 655–663. [CrossRef]

22. Li, Q.; Chen, W.; Liu, Z.; Li, M.; Ma, L. Development of energy management system based on a power sharing strategy for a fuel
cell-battery-supercapacitor hybrid tramway. J. Power Sources 2015, 279, 267–280. [CrossRef]

23. Florescu, A.; Bacha, S.; Munteanu, I.; Bratcu, A.I.; Rumeau, A. Adaptive frequency-separation-based Energy Management System
for electric vehicles. J. Power Sources 2015, 280, 410–421. [CrossRef]

24. Li, T.; Liu, H.; Zhao, D.; Wang, L. Design and analysis of a fuel cell supercapacitor hybrid construction vehicle. Int. J. Hydrogen
Energy 2016, 41, 12307–12319. [CrossRef]

25. Hou, Y.P.; Liu, Y.N.; Cai, Q.Z.; Sun, M. Study on efficiency characteristics of fuel cell engine during start-up. Chin. J. Automot. Eng.
2013, 3, 88–93.

26. Zhai, J.X.; He, G.L.; Xiong, Y.L. Experimental study on hydrogen utilization of proton exchange membrane fuel cell system.
Energy Storage Sci. Technol. 2020, 3, 684–687.

27. Pei, P.C.; Chang, Q.; Tian, T. A quick evaluating method for automotive fuel cell lifetime. Int. J. Hydrogen Energy 2008, 33,
3829–3836. [CrossRef]

28. Jiang, H.L.; Xu, L.F.; Li, J.Q.; Hu, Z.; Ouyang, M. Energy Management and Component Sizing for a Fuel Cell/Battery/Supercapacitor
Hybrid Powertrain based on Two-Dimensional Optimization Algorithms. Energy 2019, 177, 386–396. [CrossRef]

http://doi.org/10.1016/j.ijhydene.2019.11.068
http://doi.org/10.3390/app11052052
http://doi.org/10.3390/app11083609
http://doi.org/10.1016/j.ijhydene.2020.11.103
http://doi.org/10.3390/en12193692
http://doi.org/10.1016/j.ijhydene.2013.11.133
http://doi.org/10.1016/j.egypro.2019.02.003
http://doi.org/10.1016/j.ijhydene.2020.09.030
http://doi.org/10.1016/j.ijhydene.2015.06.160
http://doi.org/10.1016/j.apenergy.2019.113707
http://doi.org/10.1016/j.jpowsour.2009.04.072
http://doi.org/10.1016/j.ijhydene.2020.01.017
http://doi.org/10.1109/TII.2020.3039246
http://doi.org/10.1016/j.energy.2020.117530
http://doi.org/10.1016/j.eswa.2013.02.028
http://doi.org/10.1109/TVT.2011.2177483
http://doi.org/10.1016/j.apenergy.2015.02.017
http://doi.org/10.1016/j.enconman.2016.09.082
http://doi.org/10.1016/j.ijhydene.2011.09.091
http://doi.org/10.1016/j.jpowsour.2014.12.042
http://doi.org/10.1016/j.jpowsour.2015.01.117
http://doi.org/10.1016/j.ijhydene.2016.05.040
http://doi.org/10.1016/j.ijhydene.2008.04.048
http://doi.org/10.1016/j.energy.2019.04.110


Energies 2021, 14, 3262 24 of 24

29. Liu, Y.G.; Liu, J.J.; Zhang, Y.J.; Wu, Y.; Chen, Z.; Ye, M. Rule learning based energy management strategy of fuel cell hybrid
vehicles considering multi-objective optimization. Energy 2020, 207, 118212–118225. [CrossRef]

30. Song, K.; Chen, H.; Wen, P.M.; Zhang, T.; Zhang, B.; Zhang, T. A comprehensive evaluation framework to evaluate energy
management strategies of fuel cell electric vehicles. Electrochim. Acta 2018, 292, 960–973. [CrossRef]

31. Shi, Y.Q.; He, B.; Cao, G.J.; Li, J.Q.; Ouyang, M.G. A study on the energy management strategy for fuel cell electric vehicle based
on instantaneous optimization. Automot. Eng. 2008, 1, 30–35.

32. Shi, Y.Q.; He, B.; Cao, G.J.; Li, J.Q.; Ouyang, M.G. Overview of NREL Battery Lifetime Models & Health Management R&D Health
Management R&D for Electric Drive Vehicles; National Renewable Energy Laboratory: Golden, CO, USA, 2012.

33. Li, F.; Yang, Z.P.; Wang, Y.; An, X.K.; Ling, F. Energy management strategy of tram with hybrid energy storage system based on
pontryagin’s minimum principle. Trans. China Electrotech. Soc. 2019, 34, 752–759.

34. Xu, L.F.; Ouyang, M.G.; Li, J.Q.; Yang, F.; Lu, L.; Hua, J. Application of Pontryagin’s Minimal Principle to the energy management
strategy of plugin fuel cell electric vehicles. Int. J. Hydrogen Energy 2013, 38, 10104–10115. [CrossRef]

35. Eudy, L. Technology Acceleration: Fuel Cell Bus Evaluations; National Renewable Energy Laboratory: Golden, CO, USA, 2019.
36. Wilson, A.; Kleen, G.; Papageorgopoulos, D. Fuel Cell System Cost; Department of Energy: Washington, DC, USA, 2017.
37. James, B.D. 2019 DOE Hydrogen and Fuel Cells Program Review Presentation; Strategic Analysis Inc.: Reading, PA, USA, 2019.
38. AMPLY Power 2020. Unlocking the Cost-Saving Potential of Electric Fuel. Available online: https://amplypower.com/

whitepaper2020 (accessed on 31 May 2020).
39. Amwook, K.; Sukwon, C.; Huei, P. Optimal control of hybrid electric vehicles based on pontryagin’s minimum principle. IEEE

Trans. Control Syst. Technol. 2011, 19, 1279–1287.
40. Du, G.Q.; Xie, H.M.; Lu, Z.; Huang, Y. Analysis for the energy management problem of extended-range electric city buses based

on pontryagin’s minimum principle. J. Chongqing Inst. Technol. 2018, 32, 10–17.

http://doi.org/10.1016/j.energy.2020.118212
http://doi.org/10.1016/j.electacta.2018.09.166
http://doi.org/10.1016/j.ijhydene.2013.05.125
https://amplypower.com/whitepaper2020
https://amplypower.com/whitepaper2020

	Introduction 
	Powertrain System Modeling 
	Model of PEMFC 
	Model of Lithium-Ion Battery 
	Model of the Vehicle 

	Energy Management Strategy Considering Power System Durability 
	Energy Management Strategy under Qualitative Generalized Economy 
	Composite Fuzzy Control Strategy 
	Improved Composite Fuzzy Control Strategy Using Genetic Algorithm (GA) 

	Energy Management Strategy under Quantitative Generalized Economy 
	Optimization Problem Formation and Basic Optimization Goal Setting 
	Improved Optimization Objective Based on Fuel Cell Power Change Rate 


	Results and Discussion 
	Results of Energy Management Strategy under Qualitative Generalized Economy 
	Verification of Optimization Effect of Composite Fuzzy Control Strategy 
	Verification of Effect of the Improved Composite Fuzzy Control Strategy by Using Genetic Algorithm 

	Results of Energy Management Strategy under Quantitative Generalized Economy 
	Comparison of Fuel Economy and Power System Durability under Different Strategies 

	Conclusions 
	References

