
energies

Article

Short-Term Load Forecasting Using Neural Networks with
Pattern Similarity-Based Error Weights

Grzegorz Dudek

����������
�������

Citation: Dudek, G. Short-Term

Load Forecasting Using Neural

Networks with Pattern

Similarity-Based Error Weights.

Energies 2021, 14, 3224.

https://doi.org/10.3390/en14113224

Academic Editors: Antonio Gabaldón,

María Carmen Ruiz-Abellón and Luis

Alfredo Fernández-Jiménez

Received: 25 April 2021

Accepted: 26 May 2021

Published: 31 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering, Częstochowa University of Technology, Al. Armii Krajowej 17,
42-200 Częstochowa, Poland; grzegorz.dudek@pcz.pl

Abstract: Forecasting time series with multiple seasonal cycles such as short-term load forecasting is
a challenging problem due to the complicated relationship between input and output data. In this
work, we use a pattern representation of the time series to simplify this relationship. A neural
network trained on patterns is an easier task to solve. Thus, its architecture does not have to be
either complex and deep or equipped with mechanisms to deal with various time-series components.
To improve the learning performance, we propose weighting individual errors of training samples in
the loss function. The error weights correspond to the similarity between the training pattern and the
test query pattern. This approach makes the learning process more sensitive to the neighborhood
of the test pattern. This means that more distant patterns have less impact on the learned function
around the test pattern and lead to improved forecasting accuracy. The proposed framework is useful
for a wide range of complex time-series forecasting problems. Its performance is illustrated in several
short-term load-forecasting empirical studies in this work. In most cases, error weighting leads to a
significant improvement in accuracy.

Keywords: multiple seasonality; neural networks; pattern representation of time series; short-term
load forecasting; time-series forecasting

1. Introduction

Time series (TS) often exhibit complex seasonal patterns. For example, hourly data
may have a daily periodicity, a weekly periodicity, and a yearly periodicity. Sometimes,
it also exhibits a monthly periodicity. Typical examples of this type of TS can be found
in the energy sector: energy consumption TS, electricity load TS, wind and solar power
production TS, and electricity prices TS in wholesale markets. Accurate forecasts of the
load, energy production, and electricity prices are essential for power system planning,
control, and scheduling and for energy markets. In this study, our focus is on short-term
load forecasting (STLF), which uses hourly, half-hourly, or quarterly TS with daily, weekly,
and yearly seasonalities. Figure 1 shows periodograms of such TS for four European
countries, which we use in the experimental part of this work. As can be see from this
figure, the daily seasonality dominates significantly over the other ones for PL, GB, and
DE data. For FR data, the yearly seasonality is much stronger than others. Note that 12 h
seasonality is also revealed and is related to the characteristic shape of the daily profile
(see the lower panel of Figure 2). This seasonality is even stronger than the weekly one
for PL and FR data. Due to multiple seasonality, nonlinear trend, daily shape changing
significantly during the week and during the year, and random fluctuations, the STLF
problem is challenging and requires the forecasting model to be highly flexible.

In addition to the energy sector, the demand variations in the transportation, telecom-
munications, tourist, and healthcare sectors can also be greatly influenced by multiple
seasonal cycles [1–4]. In order to deal with TS expressing multiple seasonality, the fore-
casting model should be equipped with appropriate mechanisms. Over the years, many
methods of performing this have been proposed.

Energies 2021, 14, 3224. https://doi.org/10.3390/en14113224 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-2285-0327
https://doi.org/10.3390/en14113224
https://doi.org/10.3390/en14113224
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14113224
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14113224?type=check_update&version=2

Energies 2021, 14, 3224 2 of 18

101 102 103 104 105

Hours

0

1

2

3

4

5

6

7

P
o
w

e
r

106(a)

101 102 103 104 105

Hours

0

1

2

3

4

5

6

P
o
w

e
r

107(b)

101 102 103 104 105

Hours

0

0.5

1

1.5

2

P
o
w

e
r

108(c)

101 102 103 104 105

Hours

0

2

4

6

8

10

P
o
w

e
r

107(d)

Figure 1. Periodograms of the hourly load TS for PL (a), GB (b), FR (c), and DE (d). Dashed lines
indicate 12 h, daily, weekly, and annual periodicity.

0 0.876 1.752 2.628 3.504

Time, hours 10
4

1

1.5

2

2.5

E
,
G

W
h

10
4 Hourly electricity demand(a)

0 24 48 72 96 120 144 168

Time, hours

1

1.2

1.4

1.6

1.8

2

2.2

2.4

E
,

G
W

h

10
4 Weekly sequences

Summer

Winter

(b)

Autumn

Spring

Figure 2. Hourly electricity demand TS for Poland, (a) 4-year period, (b) weekly periods.

1.1. Forecasting Models for TS with Multiple Seasonality

A standard autoregressive moving average (ARMA) model for single seasonality can
be extended to multiple seasonal cycles [5]. In the double seasonal formulation, two new
terms need to be introduced to the ARMA model. These terms are polynomial functions,
involving backshifts of the seasonal period. Similarly, to include a third seasonal cycle, two
new terms need to be introduced. ARMA models for triple seasonality contain 21 adjustable
parameters. A drawback of the seasonal ARMA model is the assumption that the cycle
shapes are all the same. In practice, the seasonal patterns can greatly differ from each other.
For example, in STLF, daily cycles for workdays can be significantly different from those
for weekends.

Another popular and widely used statistical forecasting procedure, the Holt–Winters
method, which belongs to the class of exponential smoothing methods (ETS), was extended
to incorporate a second seasonal component in [6] and a third seasonal component in [7].
The adaptation involves the inclusion of second and third seasonal indexes and two
additional smoothing equations for these indexes. The triple seasonal Holt–Winters model
is composed of five interdependent equations that express a smoothed level, three seasonal
indexes, and an additive combination of them. It requires the selection of five smoothing
parameters and initial values for the level and seasonal cycles. As with ARMA, the seasonal
Holt–Winters model suffers from an important weakness. It requires the same cyclical
behavior for each period. To incorporate distinct seasonal patterns into the model, first, they
should be identified in some way and, then, the model formulation should be developed [7].

To deal with changing seasonal patterns, innovation state-space models for ETS were
employed in [8]. They can forecast TS with either additive (linear) or multiplicative
(nonlinear) seasonal patterns. Their fundamental goal for multiple seasonal processes is to

Energies 2021, 14, 3224 3 of 18

allow for the seasonal terms that represent a seasonal cycle to be updated more than once
during the period of the cycle. This goal may be achieved by dividing the basic cycle into
several shorter subcycles and by updating the seasonal terms of one sub-cycle during the
time for another subcycle. Thus, for each day of the week, a separate subcycle can be used.
Having too many subcycles complicates the model and increases the number of parameters
to adjust. To reduce complexity, Gould et al. [8] proposed introducing common seasonal
patterns for different subcycles. The limitation of the model is that it can only be used for
double seasonality, where one seasonal length is a multiple of the other.

An interesting extension of the innovation state-space modeling framework for fore-
casting complex seasonal TS, such as those with multiple seasonal periods, high-frequency
seasonality, non-integer seasonality, and dual-calendar effects was proposed in [9]. It com-
bines an ETS state space model with Fourier terms, a Box–Cox transformation, and ARMA
error correction. The seasonal components in this framework are represented by trigono-
metric functions based on Fourier series. The Fourier trigonometric representation with
time-varying coefficients enables both linear and nonlinear TS with non-integer seasonal
frequencies to be modeled. The Box–Cox transformation helps to transform the data into
normality and to handle nonlinearities.

Among the newer statistical models for forecasting TS with multiple seasonality, it
is worth mentioning the Prophet [10]. This model is optimized for business forecasting
tasks, which typically have any of the following characteristics: hourly, daily, or weekly
observations; strong multiple “human-scale” seasonalities, such as day of week and time
of year; important holidays that occur at irregular intervals; historical trend changes,
for instance due to product launches or logging changes; and trends that are nonlinear
growth curves, where a trend hits a natural limit or saturates. The Prophet procedure is
an additive regression model with four main components: a piecewise linear or logistic
growth curve trend, a yearly seasonal component modeled using Fourier series, a weekly
seasonal component using dummy variables, and a user-provided list of important holidays.
According to the authors, due to its flexible formulation, Prophet can easily accommodate
seasonality with multiple periods.

Machine learning (ML) methods offer an alternative to classical statistical forecast-
ing methods. They provide forecasting models with the ability to learn about historical
patterns and anomalies and to improve prediction accuracy. Among the ML methods,
neural networks (NN) are most often used for forecasting. There are numerous forecasting
model solutions based on different NN architectures [11]. The way to deal with multiple
seasonality varies depending on the base model, the mechanisms used, and the authors’
creativity. For example, the winning submission to the most reputable forecasting compe-
tition, M4 Makridakis, in a version for hourly double seasonal TS combines ETS to deal
with seasonality and recurrent NN [12]. An ETS module, in the form of a double seasonal
Holt–Winters model, produces two seasonal components. These are used for TS deseason-
alization and adaptive normalization during on-the-fly preprocessing. The preprocessed
TS is forecasted by a long short-term memory (LSTM) network that is composed of two
blocks of two dilated LSTM layers. A dilation mechanism allows for the LSTM cells to take
into account the earlier hidden states, which in this case, are shifted back in time by 1, 4, 24,
and 168 h. This improves long-term memory performance and can be especially useful for
seasonal TS, as it expresses a cyclical relationship between the series elements.

Another LSTM-based model (LSTM-MSNet) for TS with multiple seasonal patterns
was proposed recently in [13]. It is a globally trained LSTM network, where a single
prediction model is built across all of the available TS to exploit the cross-series knowl-
edge. According to the authors, this enables the model to untap the common seasonality
structures and behaviors available in a collection of TS. To deal with multiple seasonal
cycles, LSTM-MSNet initially uses a deseasonalization strategy to detach the multisea-
sonal components from a TS. For deseasonalization, different statistical decomposition
techniques were utilized including Fourier transformation. LSTM was trained on the sea-
sonally adjusted TS or, in the second variant, on the original TS together with the seasonal

Energies 2021, 14, 3224 4 of 18

components as exogenous variables. The choice of the learning variant was determined by
the characteristics of the TS.

Although recurrent NNs, such as LSTM, gated recurrent units, and DeepAR [14],
dominate today as NN architectures applied to TS forecasting, other solutions for multiple
seasonal TS are also used. For example, in [15], a deep NN architecture based on backward
and forward residual links and a very deep stack of fully connected layers was proposed.
In this model, each stack is composed of basic building blocks. In the generic architecture,
each block learns the predictive decomposition of the partial forecast in the basis matrix.
This matrix expresses waveforms in the time domain, which composes, together with the
learnable expansion coefficients, the partial forecast. In the interpretable architecture, each
block can model a trend or a seasonal component. In the latter case, the basis function has
the form of Fourier series with learnable Fourier coefficients. Thus, the partial forecast
produced by each block is a periodic function mimicking typical seasonal patterns. The final
forecast is the sum of partial forecasts produced by all the blocks. Thus, complex seasonal
pattern can be decomposed and modeled by many blocks. Another deep architectures
useful for forecasting multiple seasonal TS was proposed in [16]. It extends the canonical
transformer architecture [17] by introducing a convolutional self-attention mechanism,
which allows the model to better incorporate the local context of the TS. An experimental
study performed on the TS exhibiting both hourly and daily seasonal patterns showed that
the proposed approach achieved state-of-the-art performance in comparison with recent
RNN-based methods.

The approaches presented above for multiple seasonal TS forecasting rely on incor-
poration into the model mechanisms, which allow it to deal with seasonal components.
An alternative approach is to simplify the problem by TS decomposition. The components
expressing less complexity than the original TS can be modeled independently using sim-
pler models. The most popular methods of decomposition are additive decomposition,
multiplicative decomposition, seasonal-trend decomposition using LOESS, discrete Fourier
and wavelet transforms, and empirical mode decomposition [18–21].

Another method of dealing with TS with multiple seasonal periods was proposed for
STLF in [22] and described further in the context of neural models in [23]. This pattern-based
approach uses TS representation expressing the shapes of basic seasonal cycles. A trend
and seasonal cycles longer than the basic cycle are filtered out from the TS. Thus, the
relationship between TS elements is simplified and can be modeled using simple models
such as nonparametric regression models based on similarity [24] or shallow NNs [25].
After forecasting the preprocessed TS, the trend and seasonal components are determined
from the most recent TS history and combined with the forecasted seasonal pattern. It is
worth emphasizing that this approach needs neither a complex forecasting model for
multiple seasonal TS nor TS decomposition and forecasting of each component individually.
Experimental research has confirmed that these models can compete in terms of accuracy
with state-of-the-art deep learning models, such as the winning M4 submission [26].

1.2. Neural Networks for STLF

Due to their very attractive properties, useful for solving forecasting problems, NNs
are widely used in STLF [27]. They are competitive with the state-of-the-art ML models
such as support vector regression, random forest, and gradient boosting decision trees [28].
A survey of the classical NN architectures for STLF can be found in [29,30], and a compari-
son of their performances can be found in [25]. New NN architectures are quickly applied
in STLF. Some examples are given below.

• A hybrid model based on a deep convolutional NN is introduced for short-term photo-
voltaic power forecasting in [31]. In this approach, different frequency components of
the TS are first decomposed using variational mode decomposition, and then, they are
constructed into a two-dimensional data, which can be better learned by convolution
kernels, leading to a higher prediction accuracy.

Energies 2021, 14, 3224 5 of 18

• LSTM NN was proposed in [32] for STLF for individual residential households.
Forecasting an electric load of a single energy user is fairly challenging due to the
high volatility and uncertainty involved. LSTM can capture the subtle temporal
consumption pattern persisting in single-meter load profile and can produce the
accurate forecasts.

• Deep residual networks were proposed for STLF in [33]. The proposed model is able
to integrate domain knowledge and researchers’ understanding of the task by virtue
of different NN building blocks. Specifically, a modified deep residual network was
formulated to improve the forecast results and a two-stage ensemble strategy was
used to enhance the generalization capability of the proposed model. The model can
be applied to probabilistic load forecasting using Monte Carlo dropout.

• Stacked denoising autoencoders were used in [34] for forecasting the hourly electricity
price. The model was equipped with a unsupervised pre-training process to prevent
overfitting. It incorporates concepts of the random sample consensus and stochastic
neighbor embedding to further improve the forecasting performance.

• Pooling-based deep recurrent NN was applied in [35] for household load forecast-
ing. A novel pooling-based deep learning was proposed, which batches a group of
customers’ load profiles into a pool of inputs. The model aims to directly learn the
uncertainty of load profiles by applying deep learning.

• A hybrid model based on randomized NN for probabilistic electricity load forecasting
was proposed in [36]. This model includes generalized extreme learning machine
for training an improved wavelet NN, wavelet preprocessing, and bootstrapping.
It takes into account data noise uncertainties while the output of the model is the load
probabilistic interval.

• Second-order gray NN using wavelet decomposition was proposed in [37] to improve
the accuracy of load forecasting. In this approach, the load TS is decomposed by
wavelet decomposition to reduce the nonstationary load sequence. Then, a second-
order gray forecasting model is used to forecast each component of the TS. To obtain
the optimal parameters, the NN mapping approach is used to build the second-order
gray forecasting model.

• A wavelet echo state network was applied to both STLF and short-term tempera-
ture forecasting in [38]. A wavelet transform was used as the front stage for multi-
resolution decomposition of the TS. Echo state networks function as forecasters for
decomposed components. A modified shuffled frog leaping algorithm is used for
optimizing the model.

• A spiking NN for STLF was proposed in [39]. This model employs spike train models
that are close to their biological counterparts. An implementation of the proposed
model is divided into two phases. In the first phase, spike NN predicts a day-ahead
hourly temperature profile. In the second phase, another spike NN predicts a day-
ahead load profile based on actual and forecasted temperatures, historical loads, day
of the week, and holiday effect.

• Convolutional NNs are combined with fuzzy TS for STLF in [40]. In this approach,
multivariate TS data, which include hourly load data, hourly temperature TS, and
fuzzified version of load TS, were converted into multi-channel images to be fed to a
proposed convolutional NN model.

• Deep residual network with a convolution structure was proposed to STLF in [41].
The authors analyzed and discussed the effectiveness of the convolutional residual
network with different hyperparameters and architectures that include depths, widths,
block structures, and shortcut connections, with/without dropout.

• Convolutional NNs combined with a data-augmentation technique, which can arti-
ficially enlarge the training data, were applied for STLF a single household in [42].
This method can address issues caused by a lack of historical data and improves the
accuracy of residential load forecasting, which is a fairly challenging topic because of
the high volatility and uncertainty of the electric demand of households.

Energies 2021, 14, 3224 6 of 18

1.3. Summary of Contributions

In this work, we propose an innovation to the pattern-based neural model for forecast-
ing TS with multiple seasonality such as STLF. To improve the NN learning performance,
we introduce error weights to the mean square error loss function. The weights assigned to
the training patterns are dependent on the similarity between the training patterns and the
query test pattern. This modification makes the learned mapping function more accurate in
the neighborhood of the query test pattern and leads to improved forecasting performance.

The weighted loss function in NNs was used in many different formulations and
contexts. In [43], to address the class distribution imbalance in deep learning, a class
re-balancing strategy based on a class-balanced dynamically weighted loss function was
proposed. In this approach, the weights are assigned based on class frequency and pre-
dicted probability of ground truth class. A similar problem, data imbalance problem, was
considered in [44]. In this study, the weighted loss function has two types of weights, i.e., a
class balanced weight and a sample importance weight. The sample importance weights
discriminate between samples of different importance considering the sample difficulty
(the performance of the classifier on the sample). A dynamically weighted loss function
for convolutional and recurrent deep architectures was proposed in [45]. This approach is
expected to modify the learning process by augmenting the loss function with a weight
value corresponding to the learning error of each data instance. The objective is to force
deep learning models to focus on those instances where larger learning errors occur in
order to improve their performance.

In contrast to the approaches described above, our method proposed in this work as-
signs weights to the training patterns depending on their similarity to the query test pattern.
The goal is to model the target function around the query pattern with greater accuracy.

The contribution of this study includes the following two points:

1. We propose a new univariate multi-step forecasting neural model with pattern
similarity-based error weighting for TS with multiple seasonality.

2. We empirically demonstrate using challenging STLF problems the statistically signifi-
cant accuracy improvement and forecasting bias reduction of the proposed approach
with respect to the standard approach without error weighting.

The rest of the work is organized as follows. Section 2 describes the pattern represen-
tation of the TS. Section 3 presents the forecasting neural model with error weighting. The
experimental framework used to evaluate the performance of the proposed approach is
described in Section 4. Finally, Section 5 concludes the work.

Table 1 lists the main symbols used in this study.

Table 1. List of the main symbols.

Symbol Meaning

{Ek}K
k=1 time series of length K

ei = [Ei,1Ei,2. . . Ei,n]
T vector expressing a daily TS sequence of day i

ei, ẽi mean value and dispersion of sequence ei, respectively
êi+τ forecasted daily sequence

n length of the daily sequence; length of the input and output patterns
N number of training samples
m number of hidden nodes

ri, r′i rank and normalized rank of i-th training sample, respectively
xi = [xi,1xi,2. . . xi,n]

T input pattern
yi = [yi,1yi,2. . . yi,n]

T output pattern
γ parameter controlling the weighting function shape

τ ≥ 1 forecast horizon in days
Ψ = {(xi, yi)}N

i=1 training set
ωi error weight for ith training sample

Energies 2021, 14, 3224 7 of 18

2. Multiple Seasonal Time Series and Their Representation

Let us consider the hourly electricity demand TS for Poland as an example of TS with
multiple seasonality. This TS is shown in Figure 2 for the 4-year period 2012–2015. As can
be seen from this figure, it exhibits a trend and three seasonal cycles: annual, weekly, and
daily. Note that the daily shape changes significantly during the week and during the year.

To estimate the magnitudes of the seasonal components, we calculate the standard
deviations as follows. For annual seasonality, we calculate the weekly means and their
standard deviations in each yearly period. For weekly seasonality, we calculate the daily
means and their standard deviations in each weekly period. Finally, for daily seasonal-
ity, we calculate the standard deviations of hourly demand in each daily period. These
standard deviations correspond to the magnitudes of the seasonal components. Their
values, averaged over the yearly periods, are shown in Figure 3. For annual variations, we
can observe a steady fall in the variability of the weekly mean demands over the years.
The weekly and daily components rise slightly over the years. The strongest seasonal
component in this TS is the daily one.

2012 2013 2014 2015

Year

0

500

1000

1500

2000

2500

S
e
a
s
o
n
a
l
c
o
m

p
o
n
e
n
t
m

a
g
n
it
u
d
e
 (

s
td

(E
))

Annual component

Weekly component

Daily component

Figure 3. Magnitudes of the seasonal components in the hourly electricity demand TS for Poland.

The TS representation used in this study produces input and output patterns. The
input patterns represent predictors as transformed sequences of the daily period, while the
output patterns represent the forecasted daily sequences. The transformations that turn the
TS into patterns are aimed at normalizing daily sequences by unifying the variance and
by removing the trend as well as longer seasonal cycles (weekly and annual cycles in our
case). The resulting patterns express normalized shapes of the daily sequences.

Let {Ek}K
k=1 be a TS and ei = [Ei,1Ei,2. . . Ei,n]

T be a vector expressing a daily TS
sequence of day i. This sequence of length n (24 for the hourly TS) is represented by input
pattern xi = [xi,1xi,2. . . xi,n]

T , which is determined as follows:

xi =
ei − ei

ẽi
(1)

where ei is a mean value of sequence ei and ẽi =
√

∑n
t=1(Ei,t − ei)2 is a measure of sequence

ei dispersion.
The x-pattern defined by this equation is a normalized version of centered vector ei.

Due to the pattern representation, the TS daily sequences, which have a different mean
value and dispersion, are unified. All x-patterns, representing successive daily sequences,
have zero mean, the same variance, and the same unity length. However, they differ
in shape.

The output pattern yi = [yi,1yi,2. . . yi,n]
T represents the forecasted daily sequence

ei+τ = [Ei+τ,1Ei+τ,2. . . Ei+τ,n]
T , where τ ≥ 1 is a forecast horizon in days. The y-pattern is

defined as follows:

yi =
ei+τ − ei

ẽi
(2)

where ei and ẽi are the same as in Equation (1).

Energies 2021, 14, 3224 8 of 18

Note that, in Equation (2), we use the same coding variables ei and ẽi as that for
the input patterns. This is because the decoding operation needs the coding variables to
determine the forecast:

êi+τ = ŷi ẽi + ei (3)

If we used the coding variables ei+τ and ẽi+τ in Equation (2), their values necessary
for decoding would not be known because they describe the future sequence, which has
just been forecasted.

From Equation (2), it follows that, to determine forecasted sequence ei+τ , we should
use the forecasted y-pattern, ŷi, which is produced by the model in response to the query
x-pattern, and the known coding variables, which are determined on the basis of historical
sequence ei. The paired x- and y-patterns express two daily sequences: the sequence
preceding the forecast (for day i) and the forecasted sequence (for day i + τ), respectively.

Figure 4 depicts the real hourly electricity demand TS and its x- and y-patterns for
τ = 1. The upper panel shows two 9-day fragments of the original TS from June and
December, respectively. These fragments differ in level due to annual seasonality. The daily
sequences within these fragments differ in level as well due to the weekly seasonality. The
pattern representation allows the model to deal with differences in level as well as variance
in TS. Note that the x-patterns are all normalized and differ only in shape. The y-patterns,
due to the use of coding variables from the previous periods, reveal the weekly seasonality.
The y-patterns of Mondays are much higher than the patterns of other days of the week
because the Monday sequences are coded with the means of Sunday sequences, which
are much lower than the means of Monday sequences. For similar reasons, y-patterns for
Saturdays and Sundays are lower than y-patterns for the other days of the week. Thus, the
y-patterns are not unified globally but are unified in groups composed of the same days of
the week. For this reason, we construct forecasting models that learn from data representing
the same days of the week. For example, when we train the model for forecasting daily
sequence for Monday, a training set for it is composed of the y-patterns representing all
Mondays from history and the corresponding x-patterns representing the previous days
(depending on the forecast horizon; Sundays for τ = 1).

4056 4104 4152 4200 4248 8256 8304 8352 8400 8448 8496

Time, h

1

1.2

1.4

1.6

1.8

2

2.2

2.4

E
,

G
W

h

10
4 Real time series

...

(a)

...

...

4056 4104 4152 4200 4248 8256 8304 8352 8400 8448 8496

Time, h

0

0.2

0.4

x

Patterns x

...

...

...

(b)

Figure 4. Cont.

Energies 2021, 14, 3224 9 of 18

4056 4104 4152 4200 4248 8256 8304 8352 8400 8448 8496

Time, h

0

0.2

0.4

0.6

0.8

1

y

Patterns y

...
...

...

(c)

Figure 4. Real hourly electricity demand TS (a) and its x- (b) and y-patterns (c).

3. Forecasting Model

The separate forecasting neural model is constructed for each day of the test period
(e.g., one-year period). It learns on a training set composed of pairs of corresponding x-
and y-patterns, where the x-patterns represent the same day of the week as the query test
pattern: Ψ = {(xi, yi)}N

i=1, xi, yi ∈ Rn. To obtain the forecasted y-pattern for the given
day of the test period, the x-pattern representing previous day is presented to the trained
network. We call this x-pattern a query test pattern. Query test pattern x is also used for
weighting the training x-patterns, i.e., the training x-patterns that are the most similar to
the query pattern have higher error weights and thus larger impacts on the loss function
value. This is explained below in detail.

Note that, in our approach, we only use historical load values as inputs, i.e., vectors x,
which encode the daily TS sequences (24 values that encode loads in consecutive hours
of the day). We do not use exogenous variables such as weather variables (temperature,
wind speed, cloud cover, humidity, and precipitation) as their values are unknown for the
forecast period (day i + τ). Due to the pattern representation of TS and local approach
(a specific training set and a separate model for each forecasting task), our proposed method
does not require additional input variables indicating the day of the week, hour of the day,
or period of the year. Thus, the model maps n-dimensional input vector space, X = Rn,
into n-dimensional output vector space, Y = Rn.

To model the relationship between n-dimensional input and output patterns, we use
a feedforward NN with a single hidden layer. The hidden layer consists of m hyperbolic
tangent sigmoid nodes while the output layer consists of n linear nodes. To prevent
overfitting, we use an early stopping. The number of hidden layers and nodes correspond
to the target function complexity. In our case, we simplify the forecasting problem using
pattern representation, which means we can limit NN architecture to a shallow, narrow
one. This implies fast and more efficient training.

To improve the learning performance of NN, we introduce error weights to the mean
square error loss function. The weights are assigned to the training samples. The weight
value is dependent on the similarity between the training x-pattern and the query test
pattern. More specifically, the weight value is proportional to the rank of the training
x-pattern in the similarity ranking.

The weighted loss function is of the following form:

MSEw =
1

Nn

N

∑
i=1

ωi

n

∑
t=1

(yi,t − ŷi,t)
2 (4)

where yi,t and ŷi,t are the real and forecasted values, respectively, and ωi is an error weight
for ith training sample calculated as follows:

ωi =
1− r′i

1 + γr′i
(5)

Energies 2021, 14, 3224 10 of 18

where r′i =
ri−1
N−1 is a normalized rank; ri = 1, ..., N is an ith training sample position in

the distance from the test sample ranking; and γ is a parameter controlling the weighting
function shape.

The normalized rank takes the values r′1 = 0 for the nearest training sample to the
query test sample, r′2 = 1

N−1 for the second nearest training sample, and r′N = 1 for the
furthest training sample. The distance between samples is calculated as an Euclidean
distance between query test pattern x and training pattern xi (as x-patterns are normalized
vectors, a dot product xTxi can be used instead of the Euclidean metric).

Figure 5 shows the weighting function (5) with different values of γ. For γ = 15, the
weights decrease rapidly with rank. In this case, only 20% of training samples have error
weights over 0.2. For γ = 4.4, 30% of training samples have error weights over 0.3. For
γ = 0, the error weighting function is linear. For γ = −0.94, 80% of training samples have
error weights over 0.8. When we assume γ = −1 in Equation (2), the error weights for
all training samples are the same, i.e., equal to one. The γ hyperparameter controls the
weighting of the training samples. In the experimental part of this work, we adjust its
value to the test samples.

0 0.2 0.4 0.6 0.8 1

Normalized rank r'

0

0.2

0.4

0.6

0.8

1

E
rr

o
r

w
e
ig

h
t 15

 4.4

 1.2

 0

 =

Figure 5. An error weighting function.

A block diagram of the proposed model is presented in Figure 6. From the raw TS,
{Ek}, the preprocessing module produces a training set composed of x- and y-patterns.
It also produces the query test pattern and coding variables for the forecasted y-pattern.
The weighting function calculates the distances between training samples and the query
test pattern, ranks the training samples, and calculates error weights for them. The NN
learns on the training set using weights ω for weighting the individual training sample
errors. It produces the forecast for the query test pattern. This forecast is decoded using
Equation (3) into the real TS forecast using coding variables, e and ẽ, determined from the
most recent historical seasonal period (the period represented by the query test pattern).

Figure 6. Block diagram of the proposed NN forecasting model.

Energies 2021, 14, 3224 11 of 18

4. Simulation Study

In this section, we present our experimental results for STLF. We use real-world data
collected from www.entsoe.eu, (accessed on 6 April 2016), which details the hourly power
system load in the period 2012–2015 for four countries: Poland (PL), Great Britain (GB),
France (FR), and Germany (DE). We exclude atypical days such as public holidays (between
10 and 20 days a year) from these data. A one day-ahead forecasting problem is considered.
We forecast the daily load profile for each day of 2015, training NN on previous data. For
each forecasted day, a new NN is trained. The quality of forecasts was measured using
metrics shown in Table 2.

Table 2. Quality metrics of the forecasts.

Metric Equation

Percentage Error PE = 100 (E−Ê)
E

Mean Percentage Error MPE = 1
K ∑K

k=1 PEk
Absolute Percentage Error APE = |PE |
Mean Absolute Percentage Error MAPE = 1

K ∑K
k=1 APEk

Standard deviation of Percentage Error Std(PE) =
√

1
K ∑K

k=1(PEk−MPE)2

Root Mean Square Error RMSE =
√

1
K ∑K

k=1(Ek − Êk)2

where E and Ê are the real and forecasted hourly loads, respectively.

4.1. Tuning of the Error Weights

In the first study, we assumed a fixed NN architecture: 24 inputs, 24 hidden nodes,
and 24 outputs. We used a hyperbolic tangent sigmoid transfer function in the hidden
layer and a linear transfer function in the output layer. Early stopping was used to improve
generalization: 20% of the training data was treated as a validation set for error monitoring
during the learning process and halting when no reduction in validation error was observed.
The network was trained using a Levenberg–Marquardt optimizer for 100 epochs.

To assess the impact of the error weighting on the forecasting errors, for each
γ ∈ Γ = {15, 4.44, 1.25, 0,−0.56,−0.82,−0.94,−1}, where the last value corresponds to
the learning variant without weighting, we train NNs and record test absolute percentage
errors (APE). Distributions of these errors expressed by boxplots are depicted in Figure 7.
The dashed horizontal lines express medians of APE for the baseline variants without
weighting (γ = −1). As can be seen from the figure, weighting of errors in almost all cases
leads to lower median of APE. The highest reduction in errors is for DE and PL. The lowest
is for GB.

In the next experiment, we select the γ-value for each test pattern on the training sets.
Four variants of learning mode were considered:

V1 learning without error weighting as a baseline for other variants;

V2 learning with error weighting, where γ was selected on the training set, i.e., NN was
trained for each γ ∈ Γ, and the minimal training error indicated the selected γ value.
NN with this γ value was used to produce the forecast for the test pattern;

V3 similar to V2, but γ was selected on the five training patterns most similar to the query
test pattern. First, the subset Φ of five training patterns closest (Euclidean distance)
to the test pattern was selected. After NN training with γ ∈ Γ, average errors for Φ
were calculated. The lowest error indicated the selected γ value. Then, NN with this
γ was used to produce the forecast for the query test pattern; and

V4 learning with fixed γ = 0.

In variants V2 and V3, the value of γ was searched individually for each test pattern.
Set Φ in V3 represents the neighborhood of the test pattern. We expect that the γ value

www.entsoe.eu

Energies 2021, 14, 3224 12 of 18

selected as optimal for this neighborhood brings better results for the test pattern than the
γ value selected as optimal for all training patterns. V4 represents linear error weighting.

The forecasting quality metrics for the test data are presented in Tables 3–6. They
include the mean absolute percentage error (MAPE), median of APE, root mean square
error (RMSE), mean percentage error (MPE), and standard deviation of percentage error
(Std(PE)) as a measure of the forecast dispersion.

15.00 4.44 1.25 0.00
0

1

2

3

4

5

A
P

E

(a)

15.00 4.44 1.25 0.00
0

2

4

6

8

10

A
P

E

(b)

15.00 4.44 1.25 0.00
0

1

2

3

4

5

6

A
P

E

(c)

15.00 4.44 1.25 0.00
0

1

2

3

4

5

A
P

E

(d)

Figure 7. Distribution of APE depending on γ for PL (a), GB (b), FR (c), and DE (d). The red lines in
the boxes are the medians, and the green dashed line is the median for the baseline variant.

Table 3. Results for PL data.

V1 without
Error Weighting

V2 with γ
Selected on
Training Set

V3 with γ
Selected on Φ Set

V4 with Linear
Weighting

γ = 0

MAPE 1.48 1.35 1.35 1.28
Median (APE) 1.00 0.90 0.90 0.88
RMSE 471 397 378 357
MPE 0.33 0.28 0.29 0.29
Std (PE) 2.51 2.20 2.06 2.00

Energies 2021, 14, 3224 13 of 18

Table 4. Results for GB data.

V1 without
Error Weighting

V2 with γ
Selected on
Training Set

V3 with γ
Selected on Φ Set

V4 with Linear
Weighting

γ = 0

MAPE 3.02 3.14 3.15 2.95
Median (APE) 2.25 2.19 2.19 2.16
RMSE 1354 1472 1488 1330
MPE −0.57 −0.46 −0.41 −0.43
Std (PE) 4.13 4.46 4.51 4.08

Table 5. Results for FR data.

V1 without
Error Weighting

V2 with γ
Selected on
Training Set

V3 with γ
Selected on Φ Set

V4 with Linear
Weighting

γ = 0

MAPE 1.87 1.82 1.80 1.81
Median (APE) 1.28 1.19 1.15 1.21
RMSE 1582 1659 1603 1582
MPE −0.42 −0.26 −0.39 −0.31
Std (PE) 2.89 2.95 2.89 2.86

Table 6. Results for DE data.

V1 without
Error Weighting

V2 with γ
Selected on
Training Set

V3 with γ
Selected on Φ Set

V4 with Linear
Weighting

γ = 0

MAPE 1.64 1.50 1.54 1.50
Median (APE) 1.10 0.95 0.95 0.99
RMSE 1503 1574 1647 1474
MPE −0.02 0.07 −0.04 0.05
Std (PE) 2.54 2.73 2.84 2.55

To confirm that the results from the four learning variants are significantly different,
we performed a Wilcoxon signed-rank test with α = 0.05 for APE. The diagrams in Figure 8
depict pairwise comparisons of the learning variants. The arrow lying at the intersection of
the two variants indicates which of them gave the significantly lower error. A lack of an
arrow means that both variants gave statistically indistinguishable errors.

From Tables 3–6 and Figure 8, we can conclude the following:

1. The baseline variant V1 gave significantly higher errors than other variants in 10 out
of 12 cases.

2. V4 gave significantly lower errors than the baseline variant V1 for all data sets. It also
beat its competitors, V2 and V3, for PL and GB data.

3. V2 and V3 gave lower errors than the baseline variant for PL, FR, and DE.
4. V3 gave the significantly lowest APE for FR data.

Figure 8. Results of the Wilcoxon signed-rank test for APE.

MPE shown in Tables 3–6 allows us to compare the bias of the forecasts produced by
the different model variants. A positive value of MPE indicates underprediction, while

Energies 2021, 14, 3224 14 of 18

a negative value indicates overprediction. As can be seen from the tables, for PL data,
the bias was positive, whilst for GB and FR data, it was negative. For these three data
sets, error weighting yielded a positive effect on the bias reduction: by up to 15% for PL,
28% for GB, and 35% for FR. For DE data, we can observe very low bias regardless of the
model variant.

4.2. Tuning of the Number of Hidden Nodes

In a further experiment, we change the NN architecture. We consider a variable
number of hidden nodes from 2 to 48. Based on the results of previous experiments, we
restrict this study to NN with the linear error weighting function (γ = 0). For each test
sample, we select the number of the hidden nodes in two ways: (1) on the training set and
(2) on the Φ set of five training patterns closest to the test pattern. The results for both cases
are shown in Table 7 (due to the different training sessions, the results for m = n = 24
differ from those presented in Tables 3–6). As can be seen from this table, the selection of
the optimal number of hidden nodes on the training set or on the Φ set does not improve
significantly the results for the baseline variant with fixed m = n = 24.

Table 7. Results for a variable number of hidden nodes.

PL GB FR DE

MAPE for m selected on training set 1.44 3.28 1.97 1.56
MAPE for m selected on Φ set 1.33 3.26 1.87 1.49
MAPE for m = n = 24 1.34 3.11 1.77 1.45
MAPE for m = n/2 = 12 1.29 2.91 1.73 1.43

Figure 9 shows the mean test errors depending on the number of hidden nodes m. As
can be seen from this figure, for all countries, the error initially decreases with m and then
begins to increase. This increase in error is due to overfitting, i.e., the complexity of the
model is greater than the complexity of the relationship it approximates. The lowest mean
test errors for each country were achieved for m = 16 for PL, m = 14 for GB, m = 8 for FR,
and m = 10 for DE. Thus, assuming m = n = 24 is not the best choice.

0 10 20 30 40 50

Number of hidden nodes

1

1.5

2

2.5

3

3.5

M
A

P
E

PL

GB

FR

DE

Figure 9. Test error depending on the number of hidden nodes.

When deciding on the optimal number of hidden nodes for a given TS, we can consider
the results for similar TS. Doing so, we can assume the hidden nodes for PL as the mean
best m value for other countries, i.e., (14 + 8 + 10)/3 ≈ 11. Using this approach for other
countries, we obtain m ≈ 11 for GB and m ≈ 13 for FR and DE. Thus, the number of hidden
nodes is near m = n/2 = 12. Let us assume such a value of m for simplicity. The errors for
m = n/2 = 12 are presented in the last row of Table 7. As you can see, this case turned out
to be slightly better than the baseline variant.

Energies 2021, 14, 3224 15 of 18

Figure 10 shows examples of forecasts of the daily load profiles produced by proposed
model with m = 12 hidden nodes and linear error weighting. Note that the proposed
model produces a multi-output response, maintaining the relationships between the output
variables (y-pattern components). In the case of single-output models, these relationships
are ignored because the variables are predicted independently. This may cause a lack of
smoothness in the forecasted curve (zigzag effect).

0 5 10 15 20 25

Hour

1.2

1.4

1.6

1.8

2

E
,
G

W
h

10
4

Real

Forecast

(a)

0 5 10 15 20 25

Hour

2

2.5

3

3.5

4

E
,

G
W

h

10
4(b)

0 5 10 15 20 25

Hour

3.5

4

4.5

5

5.5

6

E
,

G
W

h

10
4(c)

0 5 10 15 20 25

Hour

4

5

6

7

E
,

G
W

h

10
4(d)

Figure 10. Examples of forecasts for PL (a), GB (b), FR (c), and DE (d).

4.3. Discussion

From the experimental part of this work, we can conclude that linear error weighting
and m = n/2 can be considered the default settings for the multi-output pattern-based NN
forecasting models. With respect to the model without weighting, such settings provide a
relative gain in terms of MAPE of 13% for PL, 4% for GB, 7% for FR, and 13% for DE.

In our earlier work [25], we compared different NN architectures for STLF: multilayer
perceptron (MLP), radial basis function NN, generalized regression NN (GRNN), two
variants of fuzzy counterpropagation NNs, and three variants of self-organizing maps.
Among them, MLP (architecture used also in this study) turned out to be one of the
most accurate. It outperformed all other models except GRNN. The forecasting errors
(MAPE) averaged over four STLF tasks were 1.92 for MLP, 1.85 for GRNN, and over 2.00
for other neural models (for comparison, the naive forecast error was MAPE = 4.14). MLP
outperformed also classical statistical models such as ARIMA (MAPE = 2.46) and ETS
(MAPE = 2.28).

In [23], the local and global variants of MLP were compared with other state-of-the-art
STLF models such as principal components regression, partial least-squares regression
(PLSR), Nadaraya–Watson estimator (N–WE), fuzzy neighborhood model (FNM), two
models based on k-means clustering, and three models using artificial immune systems.
The local variant of MLP (corresponding to the model used in this study) turned out to
be one of the most accurate. It was beaten only by three models: PLSR (MAPE = 1.82),
N–WE (MAPE = 1.83), and FNM (MAPE = 1.89). The empirical comparison of MLP with
classical statistical models as well as state-of-the-art ML models reported in [23,25] shows
its high performance in STLF. This performance can be further improved by using the
pattern similarity-based error weighting, as shown in this study.

The proposed forecasting framework can be useful not only for STLF but also for a
broad range of complex TS forecasting problems. To capture many seasonal cycles, the

Energies 2021, 14, 3224 16 of 18

nonlinear trend, and long-term dependencies, our approach does not require a complex,
deep architecture equipped with sophisticated mechanisms such as dilation, attention,
dropout, and residual connections (in fact, some of these mechanisms are used not to
improve the forecast accuracy but to enable effective learning of the deep NN). Unlike deep
learning, which is very computationally intensive, our approach does not require powerful
hardware for learning its single-hidden layer model. Moreover, our approach has a more
transparent architecture than deep NNs, its working principle is more understandable, and
it has far fewer parameters to fine-tune than its deep competitors. By using patterns for
data representation, our approach solves many problems related to complex forecasting
tasks. Note also that, in our approach, we avoid TS decomposition and forecasting each TS
component separately. Thus, the construction, optimization, and learning of the forecasting
model are faster. Producing a vector output, the proposed model is able to multi-step
forecast without a recursive approach. The components of the output pattern are the
forecasts for the successive time periods. The model is also able to produce forecasts for
further horizons. In such a case, we define output patterns in an appropriate way (with
τ > 1).

The forecasting model using a pattern-based representation of TS described in this
study was developed for seasonal TS. An application of this model to forecasting non-
seasonal series requires further research. The proposed approach with weighted loss
function (4) is based on the assumption that, if pattern xa is similar to pattern xb, then
pattern ya is similar to pattern yb. This assumption can be verified for a given TS using
appropriate statistical tests, i.e., the chi-squared test (see [24]). If the test does not confirm
this assumption, the weighted loss function may not improve the results. In such a case,
we can look for another method of TS representation or coding. For example, in [46],
to improve the performance of the models with pattern-based representation, the coding
variables for y-patterns, e and ẽ in Equation (2), were not determined from preceding
period i but were predicted for period i + τ. This resulted in a significant reduction in
forecast errors.

The proposed model is a univariate forecasting model, but exogenous variables can be
easily introduced as additional NN inputs. As with endogenous variables, a key problem
with exogenous variables is their appropriate representation.

5. Conclusions

Forecasting TS with multiple seasonality such as STLF is a challenging problem
requiring the forecasting model to be equipped with appropriate mechanisms to deal with
multiple seasonal cycles. In this study, we use an alternative approach to deal with multiple
seasonality. It involves TS preprocessing to filter out the trend and seasonal cycles longer
that the basic cycle. This simplifies the relationship between input and output variables.
To model this relationship, we use multi-output shallow NN architecture. To improve the
learning performance of the model, we propose using the loss function with error weights.
The error weights are assigned to the training samples and express their similarity to the
query test pattern. This approach leads to more accurate modeling of the target function in
the neighborhood of the test pattern. The empirical study, including a challenging STLF
problem for four European countries, showed the improvement in performance for our
proposed approach over standard NN learning without error weighting.

The proposed approach using a simple single-hidden layer NN is an alternative to
deep NN solutions, which have been developed rapidly for forecasting problems in recent
years. Unlike deep architectures, it is simple, transparent, easily tuned, and fast trained.
To further simplify the model and learning process, in our future work, we plan to employ
randomization-based NNs to complex forecasting problems.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Energies 2021, 14, 3224 17 of 18

Data Availability Statement: We use real-world data collected from www.entsoe.eu (accessed on 6
April 2016).

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

APE Absolute Percentage Error
ARMA Autoregressive Moving Average
ETS Exponential Smoothing
LSTM Long Short-Term Memory Neural Network
MAPE Mean Absolute Percentage Error
ML Machine Learning
MLP Multilayer Perceptron
MPE Mean Percentage Error
NN Neural Network
PE Percentage Error
RMSE Root Mean Square Error
STLF Short-Term Load Forecasting
TS Time Series

References
1. Sowinski, J. The Impact of the Selection of Exogenous Variables in the ANFIS Model on the Results of the Daily Load Forecast in

the Power Company. Energies 2021, 14, 345. [CrossRef]
2. Parol, M.; Piotrowski, P.; Kapler, P.; Piotrowski, M. Forecasting of 10-Second Power Demand of Highly Variable Loads for

Microgrid Operation Control. Energies 2021, 14, 1290. [CrossRef]
3. Popławski, T.; Szeląg, P.; Bartnik, R. Adaptation of models from determined chaos theory to short-term power forecasts for wind

farms. Bull. Pol. Acad. Sci. Tech. Sci. 2020, 68, 1491–1501. [CrossRef]
4. Trull, O.; García-Díaz, J.C.; Peiró-Signes, A. Forecasting Irregular Seasonal Power Consumption. An Application to a Hot-Dip

Galvanizing Process. Appl. Sci. 2021, 11, 75. [CrossRef]
5. Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control, 3rd ed.; Prentice Hall: Englewood Cliff, NJ,

USA, 1994.
6. Taylor, J.W. Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper. Res. Soc. 2003,

54, 799–805. [CrossRef]
7. Taylor, J.W. Triple seasonal methods for short-term load forecasting. Eur. J. Oper. Res. 2010, 204, 139–152. [CrossRef]
8. Gould, P.G.; Koehler, A.B.; Ord, J.K.; Snyder, R.D.; Hyndman, R.J.; Vahid-Araghi, F. Forecasting time-series with multiple seasonal

patterns. Eur. J. Oper. Res. 2008, 191, 207–222. [CrossRef]
9. De Livera, A.M.; Hyndman, R.J.; Snyder, R.D. Forecasting time series with complex seasonal patterns using exponential smoothing.

J. Am. Stat. Assoc. 2011, 106, 1513–1527. [CrossRef]
10. Taylor, S.J.; Letham, B. Forecasting at scale. Am. Stat. 2018, 72, 37–45. [CrossRef]
11. Benidis, K.; Rangapuram, S.S.; Flunkert, V.; Wang, B.; Maddix, D.; Turkmen, C.; Gasthaus, J.; Bohlke-Schneider, M.; Salinas, D.;

Stella, L.; et al. Neural forecasting: Introduction and literature overview. arXiv 2020, arXiv:2004.10240.
12. Smyl, S. A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. Int. J. Forecast.

2020, 36, 75–85. [CrossRef]
13. Bandara, K.; Bergmeir, C.; Hewamalage, H. LSTM-MSNet: Leveraging forecasts on sets of related time series with multiple

seasonal patterns. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 1586–1599. [CrossRef]
14. Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. DeepAR: Probabilistic forecasting with autoregressive recurrent networks.

Int. J. Forecast. 2020, 36, 1181–1191. [CrossRef]
15. Oreshkin, B.N.; Carpov, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural basis expansion analysis for interpretable time series

forecasting. In Proceedings of the 8th International Conference on Learning Representations, ICLR, Addis Ababa, Ethiopia, 26–30
April 2020.

16. Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.-X.; Yan, X. Enhancing the locality and breaking the memory bottleneck of
transformer on time series forecasting. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS),
Vancouver, BC, Canada, 8–14 December 2019.

17. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

www.entsoe.eu
http://doi.org/10.3390/en14020345
http://dx.doi.org/10.3390/en14051290
http://dx.doi.org/10.24425/bpasts.2020.135400
http://dx.doi.org/10.3390/app11010075
http://dx.doi.org/10.1057/palgrave.jors.2601589
http://dx.doi.org/10.1016/j.ejor.2009.10.003
http://dx.doi.org/10.1016/j.ejor.2007.08.024
http://dx.doi.org/10.1198/jasa.2011.tm09771
http://dx.doi.org/10.1080/00031305.2017.1380080
http://dx.doi.org/10.1016/j.ijforecast.2019.03.017
http://dx.doi.org/10.1109/TNNLS.2020.2985720
http://dx.doi.org/10.1016/j.ijforecast.2019.07.001

Energies 2021, 14, 3224 18 of 18

18. Ghaderpour, E.; Vujadinovic, T. Change Detection within Remotely Sensed Satellite Image Time Series via Spectral Analysis.
Remote Sens. 2020, 12, 4001. [CrossRef]

19. Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [CrossRef]
20. Chen, D.; Zhang, J.; Jiang, S. Forecasting the Short-Term Metro Ridership With Seasonal and Trend Decomposition Using Loess

and LSTM Neural Networks. IEEE Access 2020, 8, 91181–91187. [CrossRef]
21. Zhang, Z.; Hong, WC. Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and support

vector regression with quantum-based dragonfly algorithm. Nonlinear Dyn. 2019, 98, 1107–1136. [CrossRef]
22. Dudek, G. Forecasting daily load curves of power system using radial basis function neural networks. In Proceedings of the 10th

Conference Present-Day Problems in Power Engineering, APE 2001; Gdansk–Jurata, Poland, 6–8 June 2001, Volume 3, pp. 93–100.
(In Polish)

23. Dudek, G. Multilayer perceptron for short-term load forecasting: From global to local approach. Neural Comput. Appl. 2019,
32, 3695–3707. [CrossRef]

24. Dudek, G. Pattern Similarity-based Methods for Short-term Load Forecasting—Part 1: Principles. Appl. Soft Comput. 2015,
37, 277–287. [CrossRef]

25. Dudek, G. Neural networks for pattern-based short-term load forecasting: A comparative study. Neurocomputing 2016, 205, 64–74.
[CrossRef]

26. Dudek, G.; Pełka, P.; Smyl, S. A hybrid residual dilated LSTM and exponential smoothing model for mid-term electric load
forecasting. IEEE Trans. Neural Netw. Learn. Syst. 2021. [CrossRef]

27. Kuster, C.; Rezgui, Y.; Mourshed, M. Electrical load forecasting models: A critical systematic review. Sustain. Cities Soc. 2017,
35, 257–270. [CrossRef]

28. Sidorov, D.; Tao, Q.; Muftahov, I.; Zhukov, A.; Karamov, D.; Dreglea, A.; Liu, F. Energy balancing using charge/discharge storages
control and load forecasts in a renewable-energy-based grids. In Proceedings of the 38th Chinese Control Conference, Guangzhou,
China, 27–30 July 2019; pp. 6865–6870.

29. Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans.
Power Syst. 2001, 16, 44–55. [CrossRef]

30. Kodogiannis, V.S.; Anagnostakis, E.M. Soft computing based techniques for short-term load forecasting. Fuzzy Sets Syst. 2002,
128, 413–442. [CrossRef]

31. Zang, H.; Cheng, L.; Ding, T.; Cheung, K.; Liang, Z.; Wei, Z.; Sun, G. Hybrid method for short-term photovoltaic power forecasting
based on deep convolutional neural network. IET Gener. Transm. Distrib. 2018, 12, 4557–4567. [CrossRef]

32. Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short term residential load forecasting based on LSTM recurrent neural
network. IEEE Trans. Smart Grid 2019, 10, 841–851. [CrossRef]

33. Chen, K.; Chen, K.; Wang, Q.; He, Z.; Hu, J.; He, J. Short-Term Load Forecasting With Deep Residual Networks. IEEE Trans. Smart
Grid 2019, 10, 3943–3952. [CrossRef]

34. Wang, L.; Zhang, Z.; Chen, J. Short-term electricity price forecasting with stacked denoising autoencoders. IEEE Trans. Power Syst.
2017, 32, 2673–2681. [CrossRef]

35. Shi, H.; Xu, M.; Li, R. Deep learning for household load forecasting—A novel pooling deep RNN. IEEE Trans. Smart Grid 2018,
9, 5271–5280. [CrossRef]

36. Rafiei, M.; Niknam, T.; Aghaei, J.; Shafie-Khah, M.; Catalao, J.P.S. Probabilistic load forecasting using an improved wavelet neural
network trained by generalized extreme learning machine. IEEE Trans. Smart Grid 2018, 9, 6961–6971. [CrossRef]

37. Li, B.; Zhang, J.; He, Y.; Wang, Y. Short-term load-forecasting method based on wavelet decomposition with second-order gray
neural network model combined with ADF test. IEEE Access 2017, 5, 16324–16331. [CrossRef]

38. Deihimi, A.; Orang, O.; Showkati, H. Short-term electric load and temperature forecasting using wavelet echo state networks
with neural reconstruction. Energy 2013, 57, 382–401. [CrossRef]

39. Kulkarni, S.; Simon, S.P.; Sundareswaran, K. A spiking neural network (SNN) forecast engine for short-term electrical load
forecasting. Appl. Soft Comput. 2013, 13, 3628–3635. [CrossRef]

40. Sadaei, H.J.; e Silva, P.C.d.L.; Guimaraes, F.G.; Lee, M.H. Short-term load forecasting by using a combined method of convolutional
neural networks and fuzzy time series. Energy 2019, 175, 365–377. [CrossRef]

41. Sheng, Z.; Wang, H.; Chen, G.; Zhou, B.; Sun, J. Convolutional residual network to short-term load forecasting. Appl. Intell. 2021,
51, 2485–2499. [CrossRef]

42. Acharya, S.K.; Wi, Y.-M.; Lee, J. Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks
Using Data Augmentation. Energies 2019, 12, 3560. [CrossRef]

43. Fernando, K.R.M.; Tsokos, C.P. Dynamically Weighted Balanced Loss: Class Imbalanced Learning and Confidence Calibration of
Deep Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2021. [CrossRef]

44. Zhang, K.; Wu, Z.; Yuan, D.; Luan, J.; Jia, J.; Meng, H.; Song, B. Re-Weighted Interval Loss for Handling Data Imbalance Problem
of End-to-End Keyword Spotting. Proc. Interspeech 2020, 2567–2571. [CrossRef]

45. Rengasamy, D.; Jafari, M.; Rothwell, B.; Chen, X.; Figueredo, G.P. Deep Learning with Dynamically Weighted Loss Function for
Sensor-Based Prognostics and Health Management. Sensors 2020, 20, 723. [CrossRef]

46. Dudek, G.; Pełka, P. Pattern similarity-based machine learning methods for mid-term load forecasting: A comparative study.
Appl. Soft Comput. 2021, 104, 107223. [CrossRef]

http://dx.doi.org/10.3390/rs12234001
http://dx.doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
http://dx.doi.org/10.1109/ACCESS.2020.2995044
http://dx.doi.org/10.1007/s11071-019-05252-7
http://dx.doi.org/10.1007/s00521-019-04130-y
http://dx.doi.org/10.1016/j.asoc.2015.08.040
http://dx.doi.org/10.1016/j.neucom.2016.04.021
http://dx.doi.org/10.1109/TNNLS.2020.3046629
http://dx.doi.org/10.1016/j.scs.2017.08.009
http://dx.doi.org/10.1109/59.910780
http://dx.doi.org/10.1016/S0165-0114(01)00076-8
http://dx.doi.org/10.1049/iet-gtd.2018.5847
http://dx.doi.org/10.1109/TSG.2017.2753802
http://dx.doi.org/10.1109/TSG.2018.2844307
http://dx.doi.org/10.1109/TPWRS.2016.2628873
http://dx.doi.org/10.1109/TSG.2017.2686012
http://dx.doi.org/10.1109/TSG.2018.2807845
http://dx.doi.org/10.1109/ACCESS.2017.2738029
http://dx.doi.org/10.1016/j.energy.2013.06.007
http://dx.doi.org/10.1016/j.asoc.2013.04.007
http://dx.doi.org/10.1016/j.energy.2019.03.081
http://dx.doi.org/10.1007/s10489-020-01932-9
http://dx.doi.org/10.3390/en12183560
http://dx.doi.org/10.1109/TNNLS.2020.3047335
http://dx.doi.org/10.21437/Interspeech.2020-1644
http://dx.doi.org/10.3390/s20030723
http://dx.doi.org/10.1016/j.asoc.2021.107223

	Introduction
	Forecasting Models for TS with Multiple Seasonality
	Neural Networks for STLF
	Summary of Contributions

	Multiple Seasonal Time Series and Their Representation
	Forecasting Model
	Simulation Study
	Tuning of the Error Weights
	Tuning of the Number of Hidden Nodes
	Discussion

	Conclusions
	References

