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Abstract: Commercial-vehicle manufacturers design vehicles to operate over a wide range of trans-
portation tasks and driving cycles. However, certain possibilities of reducing emissions, manufactur-
ing and operational costs from end vehicles are neglected if the target range of transportation tasks
is narrow and known in advance, especially in case of electrified propulsion. Apart from real-time
energy optimization, vehicle hardware can be meticulously tailored to best fit a known transportation
task. As proposed in this study, a heterogeneous fleet of heavy-vehicles can be designed in a more
cost- and energy-efficient manner, if the coupling between vehicle hardware, transportation mission,
and infrastructure is considered during initial conceptual-design stages. To this end, a rather large
optimization problem was defined and solved to minimize the total cost of fleet ownership in an
integrated manner for a real-world case study. In the said case-study, design variables of optimization
problem included mission, recharging infrastructure, loading–unloading scheme, number of vehicles
of each type, number of trips, vehicle-loading capacity, selection between conventional, fully electric,
and hybrid powertrains, size of internal-combustion engines and electric motors, number of axles
being powered, and type and size of battery packs. This study demonstrated that by means of
integrated fleet customization, battery-electric heavy-vehicles could strongly compete against their
conventional combustion-powered counterparts. The primary focus has been put on optimizing
vehicle propulsion, transport mission, infrastructure and fleet size rather than routing.

Keywords: freight transportation; heterogeneous heavy-vehicle fleet; logistics and electromobility;
hybrid and electric vehicles; propulsion tailoring; fleet sizing

1. Introduction

Commercial vehicles are, traditionally, designed to perform a wide range of trans-
portation tasks. However, vehicle optimality is often compromised depending on how
the vehicle is desired to be used. Although consumers partly recognize what vehicle type
they need to purchase, corresponding operational costs cannot be easily foreseen, and the
selected vehicle, therefore, might not be best-suited to perform the assigned task. A major
challenge faced by commercial-vehicle manufacturers concerns prediction of transportation
needs and corresponding delivery of optimized vehicles.

Normally, a transportation company selects a set of vehicles and plans routes to meet
present transportation demands. As [1] argues, a single transportation-related problem
formulation cannot reflect all real-life applications, and that it does not make sense to
include detailed vehicle and routing aspects in strategic fleet-management decisions owing
to the inherent high level of uncertainty. However, if a detailed description of repetitive
transportation assignments and operational environment can be obtained via communica-
tion with future customers, detailed design of vehicle and transportation aspects could be
undertaken in an integrated manner by vehicle manufacturers.
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Environmental, technical, logistic, and financial factors as well as energy supply and
infrastructure have especially a major impact on electromobility, as reported by [2–4]. As
concluded by [5], profitability is the primary reason for major transportation companies to
consider the switch-over to electrification. They suggest measures to increase profitability
by pointing out that further research is needed to investigate development of a systematic
approach.

Vehicle customization can be a part of the solution, nevertheless, it is not a new objec-
tive of commercial-vehicle manufacturers. For example, the Global Truck Application [6] or
Global Transport Application (GTA) [7] has already been developed to provide descriptions
of vehicle utilization and operational environment. The tool could be used for vehicle
customization and tailoring/optimization of hardware components to suit the operational
environment and transportation assignments. Furthermore, such a tool can be incorporated
along with a more detailed description of the distribution network characterized by nodes,
demands, and available routes, to design even better customized vehicles. Based on such a
description, this study proposes design of a heterogeneous fleet of commercial vehicles,
trucks, and long combination heavy-vehicles together with infrastructure to facilitate zero
emission and achievement of a profitable business by minimization of the total cost of own-
ership (TCO). As regards the environmental, technical, logistic, financial, energy supply
and infrastructure factors, in this study, it is proposed that they are interconnected, and
for successful deployment of new transportation technologies, all relevant factors must be
considered together in a vehicle-transportation optimization/customization process.

In the proposed optimization problem, vehicle-design variables include vehicle size; type
of propulsion system—a choice between conventional, plug-in hybrid, and fully electric
vehicles; size of internal combustion engine (ICE); size and type of electric motors and
battery packs; etc. Since integrated design of vehicle-transportation systems is considered
in this study, boundaries within which vehicle design can be affected were carefully
set. Therefore, route selection (among a small set of available routes), fleet size and
composition, loading–unloading scheme, recharging strategy, position of charging stations,
and number of trips have also been considered as transportation design variables. The
suggested strategy can be employed as a systematic approach to increase the profitability
of electric freight vehicles.

Another important area of development is logistics and routing management sys-
tems. They typically suffer from lack of proper data supply [8]. For this, telematics can
play an significant role in the future development [9]. This study assumes that proper
data is supplied so that the sets of transportation design variables are known prior to
the optimization.

The major contribution of this study to the literature lies in demonstration of coupling
between logistics, routing, vehicle-hardware design, and infrastructure design. Such opti-
mization has a strong essence of multi-criteria decisions [10], for which, this study utilizes
the fleet TCO as a cost function considering the service life of vehicles. TCO is usually
used for measuring competitiveness between different vehicle powertrain solutions, for
example in works done by [4,11]. TCO reflects differences between fixed and operational
costs of different vehicle-hardware setups. Here, TCO includes the driver wage, fuel costs,
electrical energy costs, maintenance, tax, insurance, battery degradation and replacements,
loading–unloading costs, recharging-station installation, and depreciation of vehicle com-
ponents. For calculating energy consumption, an on-road dynamic vehicle model has been
solved considering road topography, and vehicle starts and stops. In addition, TCO was
observed to be nonlinear depending on number of vehicles, since battery recharging and
loading–unloading infrastructures could be shared among vehicles. This study especially
demonstrates the competitiveness between optimized conventional, fully electric, and plug-
in hybrid commercial heavy-vehicle combinations assigned to transportation missions
of different characteristics, and discusses different contributing factors such as payload,
battery size, charging power, battery quality, number of vehicles, and vehicle utilization
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level. In addition, sensitivity analyses have been performed to demonstrate the effects of
different vehicle hardware setup on TCO and its cost indicators.

Moreover, long heavy-vehicle combinations are included in the list of vehicle-size
candidates, since they demonstrate roughly 15–20% reduction in emissions compared to
conventional tractor semi-trailer combinations as reported by [12]. In this study, it has been
demonstrated that using long heavy-vehicle combinations in a heterogeneous fleet results
in an approximate 53% reduction in TCO compared to a homogeneous fleet comprising
rigid trucks.

This paper is organized as follows. Section 2 provides a background on existing
literature. Section 3 demonstrates a general description of the optimization problem.
Section 4 outlines the methodology employed for solving the problem by dividing it into
small optimization subproblems. In Section 5, a case-study problem has been solved using
the proposed methodology and the related results have been presented. This section is
followed by sections on associated discussions, and conclusions drawn from this study.
Appendices provide more information about the method, case study, vehicle models and
used data.

2. Background
2.1. Research Question

In this study, the vehicle design search space is very large and the route search space
is small. On the contrary, a class of problems, where the route search space is very large
and the vehicle design search space is very small, relates to vehicle routing problems (VRPs).
Numerous researches aimed at determining the optimum route and size of a fleet have been
performed, wherein the vehicle hardware setup (e.g., powertrain) is already known [1,13–15];
therefore, the possibility of further reduction in costs or emissions via combined hardware-
design and fleet optimization has not been considered. Likewise, several studies have been
performed concerning VRP and heterogeneous VRP (HVRP), wherein differently sized and
powered vehicles are dealt with. These include works by [16–21]. In all these extant studies,
six or less vehicle types have been tested and about three route–vehicle aspects have been
simultaneously investigated, such as vehicle capacity, source of power—electrical or thermal,
battery size, charging-station location, and charging power.

The same argument holds for the study reported by [22], wherein VRPs concerning
electric and hybrid vehicles have been tackled considering the availability of charging
stations. The determined shortest energy-efficient routes may differ depending on battery
usage, hybrid-powertrain control, and location of charging stations, thereby motivating
simultaneous design optimization of vehicles, charging stations, battery size, and routing.
Utilization of charging stations at depots or consumer locations is motivated by the fact that
it saves cost and time compared to using public-scarce charging stations [17]. Moreover,
more cost and time can be saved if charging can be accomplished during the same time
as performing service operations, such as loading and unloading [23]. Therefore, this
study included the cost of infrastructure , i.e., the cost of LU and charging stations, in the
calculation of the TCO for the given transportation network.

In the classical VRPs, each customer is visited by only a single vehicle. Split pick-ups
and deliveries, wherein a node can be visited by several vehicles of the same or different
types to fulfil consumer demand has been investigated by [24]. Demand of each node is
defined by the pick-up/delivery of freight from/to that node. Moreover, the demand may
exceed vehicle capacity [25], as the case of this study.

Another class of related optimization problems refer to the fleet-vehicle replacement
optimization framework, wherein routes, number, and loading capacities of vehicles are
initially known [26]. Such a framework replaces the existing conventional old fleet of
vehicles with new and electric vehicles neglecting the interconnection between fleet size,
route, infrastructure, battery size, and vehicle powertrain.

Electrification of road freight transport is a path towards green transportation. How-
ever, the profitability and feasibility of deploying battery electric heavy vehicles remains
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a concern. The weight and volume of goods, operating range, payload, utilization level,
purchase cost, charging infrastructure, battery life, energy consumption, available routes,
average speed, and logistics are among the factors that affect the profitability of battery
electric heavy vehicles, according to [2,3,5,11,20,23,26–32]. TCO provides a good means of
estimating profitability and is used for comparative analysis of the competitive technolo-
gies [3,5,20,23,26–29,33–39]. Literature suggests that vehicle customization based on the
use case helps profitability of the battery electric heavy vehicles. However, the influence
of such a customization on TCO is not studied in the literature. Moreover, the driver
cost is neglected in TCO calculation of the electric freight vehicles in the literature, and
thus additional cost related to the waiting time for charging during operation is omitted.
Similarly, the trade-offs between the driver cost and charging time, charging power and
cost, battery degradation, and loading–unloading time and cost are neglected in TCO
calculations of freight vehicles. In addition, TCO analysis of battery electric trucks in the
literature is limited to trucks weighing less than 12 tons.

This study tried to fill the above gaps and is the extension of the work done by [11]
to include a transportation network rather than a single mission comprising two nodes.
The vehicle-infrastructure optimization was studied in [11], where it was shown that
such an optimization helps competitiveness of battery electric heavy vehicles against
conventional counterparts, while transportation task included only one vehicle type and
two pickup and delivery nodes. TCO comparison of different battery electric vehicles by
itself does not reflect the profitability, due to the performance constraint imposed by the
range and power of batteries. Therefore, this problem can be overcome by optimizing
vehicle-infrastructure, e.g., by sizing the batteries for a given transportation scenario. The
problem of vehicle-infrastructure design of a vehicle fleet, including route selection coupled
with powertrain-component tailoring was first defined in [40]. In such an optimization
problem, numbers of each designed-vehicle type on each route were selected as design
variables. That study showed that the design of electrified propulsion was influenced by
the fleet composition.

2.2. Methodology

Among different formulations of a route set in HVRP [15], the route set defined
using the set partitioning method, as reported in [41–43], best suited the objectives of
the proposed study, since cyclic routes defined using the set partitioning formulation
demonstrate great relevance to mission definitions or driving cycles used in the tailoring of
vehicle powertrain components.

Another class of problems are fleet-size and mix-vehicle routing problem (FSMVRP),
extensively studied in the literature. A heterogeneous or mixed fleet refers to vehicles with
different payload capacities [15,44]. Moreover, there exists rich literature [1,15] concerning
HVRP solutions obtained through use of heuristic and exact methods. An exact method
for solving HVRPs of different classes, based on set partitioning formulation, is presented
in [43].

In this study, vehicles are different in the powertrain design in addition to the vehicle
capacity. Depending on vehicle-design parameters and their corresponding range, i.e., con-
tinuous or discrete, the total number of different vehicle types might amount to billions or
be infinite. The resulting FSMVRP can, therefore, be very large. Furthermore, addition of
every single decision variable (for example, charging-station location, loading–unloading
scheme at each node and number of trips) to the routing problem adds a layer of complexity
making the structure of the problem different from FSMVRP. Therefore, the applicability of
the above methods on very large or infinite number of vehicle types and many layers of
complexity needs further investigation. However, for the presented case study comprising
a small transportation network, the proposed method in this study yields sufficiently a
good solution within the objectives of this study.

To our knowledge, there is no similar work in the literature where many aspects of
vehicle design and transportation network, including charging-station-location problem
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and loading–unloading schemes, were optimized simultaneously. However, the literature
reports an extensive work in vehicle routing problems where the vehicle type search space
is small and the route search space is very large, in contrast to the problem presented in this
paper, where vehicle type search space is very large and the route search space is small. For
example, for a small number of vehicle types, in [45], the Benders decomposition approach
was employed for solving the charging-station-location problem. Benders decomposition,
introduced by [46], has also been demonstrated to be useful in solving heterogeneous
vehicle routing problems, wherein relatively a large set of vehicle types are allowed in
the fleet [47], the idea being to initialize the optimization problem with a small set of
added decision variables whilst fixing all others. Subsequently, the set of fixed decision
variables is iteratively improved along with major routing decision variables by solving
each optimization subproblem. In case of a rather large set of vehicle types, ref. [47] suggest
restricting the number of vehicle types allowed in a given fleet. Benders decomposition
subproblems could then be formulated using a small set of vehicles solved iteratively based
on column generation. During each iteration, the best-found routes are projected onto the
next subproblem iteration, and the set of used vehicles is updated. It was observed that
solving subproblems containing vehicles with identical loading capacities, at times, yielded
the same routes. The approach was tested on a set of 200 different vehicles types. However,
different solutions were obtained for load-dependent costs. In this study, many vehicle
types, e.g., about 83,000 in the case study, are considered with a nonlinear cost function
together with a small transportation network including charging-station-location problem
and loading–unloading; thus, the method described above is not applicable.

3. Problem Definition

Fleet TCO is the objective of the optimization problem that needs to be minimized.
TCO includes operational and depreciation of purchase cost and its detailed definition
comes later in this section. The decision (design) variables that influence the TCO comprise
the missions, routes within missions, types and numbers of vehicles utilized in each
mission, number of trips performed by each vehicle in each mission, charging power of
each vehicle at each node, loading–unloading scheme of each vehicle at each node. Finally,
the constraints of the optimization problem include vehicle dynamic model constraints,
performance constraints and transportation task constraints, described later in this section.
Table 1 describes the general vehicle-transportation optimization problem.

Table 1. General vehicle-transportation optimization problem, which includes both transportation- and vehicle-design variables.

Decision (Design) Variables Objective Function Constraints

Missions, routes within missions, types and numbers of vehicles
utilized in each mission, number of trips performed by each

vehicle in each mission, charging power of each vehicle at each
node, loading–unloading scheme of each vehicle at each node

Fleet total cost of
ownership

Vehicle dynamic model,
performance constraints,

transportation task

Furthermore, the following terms clarify the definition of the optimization problem.

• “Node” is a place where pickup or delivery of goods together with the maintenance
or recharging of the batteries are performed. During a mission, a vehicle must pass
through all the specified nodes of the mission. See Figure 1 for example of nodes.

• “Transportation network” is defined as an overall requirements on freight delivery
and pick-up that must be met by the fleet. It is defined by a set of all nodes with
respective known daily requests for the freight pick-up and delivery together with the
available routes between them. See Figure 1 for an example of transportation network.

• “Fleet” is a group of vehicle-combinations working together to meet requirements of
a transportation network. Vehicles in a fleet are heterogeneous, i.e., their types might
differ from each other. A type of a vehicle is characterized in terms of its loading
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capacity and powertrain design. There can be several vehicles with the same type in
the fleet. See Figure 1.

• “Mission” is a part of a transportation network in which nodes belong to a subset of
all nodes that are defined in the transportation network. For example, the freight flow
between two nodes could be seen as a mission. The number of nodes in a mission
must be more than one. It is required that a vehicle visits all the nodes of a mission.
Routes of a mission are defined either by a single cyclic route, or by multiple cyclic
routes corresponding to multiple-trips or by a district with several possible cyclic
routes. These routes and nodes together with demands on pick-up and delivery form a
mission. A vehicle works in a single mission during its service life on a repetitive basis.

• “Trip” is an act of driving and visiting all the nodes of a cyclic route, by a vehicle, to
meet the entire or a part of requests for pick-up and delivery. A trip is finished when
the vehicle is returned to the starting node.

All design variables presented in Table 1 are selected from corresponding given ranges.
It must be noted that the range of the missions, i.e., the set of all possible missions, works
as an input to the problem, that includes all possible sequences of meeting the nodes of the
transportation network, starting/ending from/to the depot.

1

2

0

3

Figure 1. Schematic of transportation network and vehicle fleet. Mission comprising nodes 0, 2, and
3 is depicted with different routes connecting the nodes marked in bold red color.

The resulting optimization problem presented in Table 1 is very large, regardless of
the size of the transportation network; especially, because there exists many different types
of the vehicles. Let us define XV as a set of vehicles containing different vehicle types, and
nv as the total number of vehicle types. An example of XV is depicted in Figure 2. The set
of vehicle types XV can be constructed using vehicle design space SV. A “design space” is
a set containing all design sets of the problem (Figure 3). A “design set” is a set containing
all possible choices of a design parameter. A “search space” is a space of optimization
design variables. Design space turns to a search space if design sets are treated as ranges of
the design variables within an optimization problem.

The vehicle design space, SV can be generalized to a greater extent, thereby cover-
ing more aspects of transportation planning and design by not letting design sets SV,k,
k = 1 . . . ns be limited to vehicle-design; but, letting SV to include sets concerning trans-
portation tasks, such as the loading–unloading scheme and recharging infrastructure at
each network node, as depicted in Figure 3. Therefore, XV can be defined as an ns-fold
Cartesian product, without order, of design sets SV,k, k = 1 . . . ns belonging to the vehicle
design space SV. Hereinafter, a bold symbol denotes either a set or a matrix.

XV = SV,1 × SV,2 × . . .× SV,ns =

{XV,j = (a1, a2, . . . , ans) | ak ∈ SV,k ∈ SV} (1)

where, j = 1, . . . , nv.
A design set (e.g., SV,k) denotes a set comprising all possible choices of ak. The total

number nv of all possible vehicle types can be calculated as follows.

nv =
ns

∏
k=1

nSV,k (2)
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In the above equation, nSV,k denotes the total number of elements in the design set
SV,k. As can be realized, by increasing ns and nSV,k , the number of vehicle types increases
quadratically. Moreover, if any of SVks has a continuous range there would exist infinite
number of vehicle types, e.g., if the battery size can be selected from a continuous range.
The next section presents a method to solve such a problem by redefining and splitting the
general optimization problem shown in Table 1 into several optimization subproblems that
help determining a close-to-optimum fleet even for large values of nv.

, ,XV,1= ( , . . . )

, ,XV,2= ( , . . . )

, ,XV,3= ( , . . . )

, ,XV,4= ( , . . . )

, ,XV,5= ( , . . . )

, ,XV,6=( , . . . )

, ,XV,7=( , . . . )

, ,XV,nv
=( , . . . )

XV

Figure 2. Example of XV—set of nv vehicle types. XV denotes the set of vehicle types and XV,i

denotes ith vehicle type.

SV,2: Electric motorSV,1: Loading capacity SV,i: Battery pack

SV

SV,i+1: Loading-unloading SV,ns : Recharging
power

Figure 3. Example of design space SV together with vehicle and infrastructure design sets. ns denotes total number of
design sets. SV,k denotes kth design set (or the range of kth design variable).

The annual fleet TCO is the sum of the annual TCO of each vehicle of the fleet. The
annual TCO of each vehicle, denoted as C, can be expressed as

C = copr + cdep (3)

where cdep indicates the depreciation or yearly cost of investment defined based on the
annuity formula (Equation (5)); and copr denotes the yearly operational cost given by

copr = celec + cfuel + cdriver + cmaint + ctax + cinsu (4)

where variables celec, cfuel, cdriver, cmaint, ctax, and cinsu, denote annual costs of electricity;
fuel; driver labor; vehicle maintenance, including tire, taxes, and insurance, respectively.
The annuity formula for calculating depreciation could be defined as

cdep = [p− R
[1 + r]ny

]
r

1− [1 + r]−ny
(5)

where r denotes the interest or discount rate; ny denotes the economic life span or planning
horizon in years; R denotes the rest value, i.e., the price of a product after completion of its
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stipulated service life; and p denotes the price of products, such as vehicle hardware or
loading, unloading, and recharging infrastructure, when being used for the first time. The
price of products can be calculated using the following equation.

p = pchass + pem + ptrans + [nrep + 1] pbatt + pice + plu + prech (6)

where, pchass denotes price of the vehicle chassis, such as that of a truck, dolly, or semi-
trailer, without the associated powertrain and propulsion systems; pem, ptrans, pbatt, pice,
plu, and prech denote the cost of electric motors, transmission systems, battery packs, in-
ternal combustion engine, loading–unloading components, and recharging infrastructure,
respectively; and nrep denotes the number of battery replacements performed during the
service life of a vehicle (Equation (A44)), which in this case, has been considered as an
investment cost. The battery’s operational life is separated from other vehicle’s component
life and it was calculated using vehicle models described in Appendix E according to [48].

It must be noted that plu and prech are non-linear functions of the number of vehicles
since components of the loading–unloading and recharging infrastructure could be shared
among many vehicles. Consequently, in Equation (3), C is not a linear function of number
of vehicles. For example, a straddle carrier can be shared between many vehicles; whilst
an “on-board lift” cannot, refer Figures 4 and 5, according to [11]. Thus, design of the
loading–unloading scheme depends on the number of vehicles in the fleet and vice versa.
Furthermore, the cost of setting up a charging station is high for a single vehicle; however,
when many vehicles use the same station, the per-vehicle cost of charging gets reduced.
Thus, infrastructure design is affected by the number of vehicles and vice versa.

Figure 4. On-board lift.

Figure 5. Example of straddle carrier.

The said relations have been observed to affect optimum vehicle design as well.
Suppose for a single vehicle, by solving the optimization problem shown in Table 1, it is
observed that installation of a large battery pack results in lower cost compared to installing
a fast-charging power source. However, sharing of the recharging infrastructure between
multiple vehicles makes installation of the fast-charging alternative more feasible compared
to installation of the larger battery on each vehicle. This dependence can be eliminated if
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the infrastructure belongs to a third-party company with a fixed cost of electricity usage.
Such a case, however, is not considered in this study.

Constraints of the optimization problem shown in Table 1 are categorized into several
groups, each representing a different aspect of the problem. Vehicle dynamic model
constraints pertaining to the dynamic, recharging, and powertrain models, inclusive of all
equations and inequalities, are described in in Appendix E and inspired by [11,40,49–54].

Performance constraints refer to performance-based standards (PBS) that guarantee
proper functionality of the vehicles along with on-road safety [55–58]. In this paper,
performance-based standards related exclusively to the longitudinal motion of the vehicle
have been considered in terms of gradeability, startability, acceleration, and down-grade
holding capability. Gradeability refers to the maximum grade on which a loaded vehicle
can maintain forward motion at a certain speed (e.g., 80 km/h). Startability refers to the
maximum grade on which a loaded vehicle can start forward motion and travel 10 m
in less than 10 s. Acceleration capability denotes time taken by a loaded vehicle to start
motion form rest and travel 100 m on a road with zero grade. Finally, down-grade holding
capability is defined as the maximum downhill grade on which a loaded vehicle can
maintain constant forward speed using auxiliary brakes, such as the engine and/or electric
motors. It must be noted that performance-based standards are only affected by vehicle
hardware parameters.

Another type of constraints is the one related to transportation tasks and ensures
adequate performance of all missions. These constraints, for example, relate to vehicle-
loading capacity, pick-up, and delivery during a single trip, the working time, recharging
infrastructure powers, and rules prescribed for loading–unloading operations.

Loading–unloading of goods can be performed in four different ways: using an
on-board lift (OBL), a straddle carrier (SC) for lifting 20-foot and 40-foot containers, an
additional semitrailer (AST) at a node for vehicles with at least one semitrailer, and on-
board vehicle waiting (OBW) at a node while all pallets of goods are loaded or unloaded,
according to [11].

The selection of a feasible loading–unloading scheme does not include tactical deci-
sion variables. Therefore, some rules or constraints need to be set to be able to ensure
loading–unloading accessibility and evaluate the corresponding cost. A list of concerned
rules is explained in Appendix C and ensures accessibility and feasibility of the loading–
unloading scheme.

It should be noted that design of a loading–unloading scheme is coupled with the
vehicle-design problem. Having an on-board lift on the vehicle adds to the overall vehicle
weight, and thus, energy consumption. Additional semitrailers with propelled axles result
in an increase in TCO. Furthermore, the loading–unloading duration time can have an
influence on vehicle design to compensate for delays. Loading–unloading schemes could
be distinguished in terms of the time required for loading–unloading along with the
corresponding investment cost.

4. Method

In this study, it is proposed to split the rather large optimization problem into smaller
subproblems or stages. In stage A, a look-up space (i.e., a memory block) of possible best
vehicle-infrastructure designs is built by minimizing the unit transportation cost for a
given vehicle capacity, mission, and number of vehicles. Here, the vehicle refers to vehicle
propulsion hardware, and infrastructure refers to loading–unloading and charging stations
positions and powers. In stage B, the look-up space is used in an allocation optimization
problem to minimize the fleet TCO, which yields an optimum fleet. The above-defined two
stages can be visualized in Figure 6.

The proposed approach for integrated optimization of vehicle-transportation can be
used as a solution method for real-world transportation problems involving fleet vehicles
powertrain design based on the transportation assignments.
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Figure 6. Schematic of algorithm for determining optimum fleet in two stages—(A,B). Vehicle-
infrastructure optimization was repeated for each combination of mission, loading capacity and
quantity of vehicle in the look-up space.

The optimization problem described in Table 1 is rather general, wherein the goal
is to determine a group of vehicles with different designs and numbers, the best routes
on which they are employed, and corresponding infrastructure. Such a definition helps
understanding the complexity of the problem. However, solving such a problem directly
might be considered impossible owing to the large number of parameters being sought.
The following intuitively obvious postulate was used to split the general optimization
problem to several subproblems.

Postulate: for a given mission, loading capacity, and number of vehicles, there ex-
ists only one optimum vehicle type with a corresponding mission infrastructure
(i.e., loading–unloading and charging stations) that yields lowest unit transportation
cost. It seldom occurs that for a fixed loading capacity, several vehicles with different
powertrain designs are found optimum to perform similar tasks. If it happens then
any of powertrain designs is equally good and can be selected as an optimum solution.

Using above postulate, the large optimization problem presented in Table 1 can be
converted into much smaller nm× nlc×Nv optimization subproblems, wherein nm denotes
number of missions in set Xm, which contains all missions, and nlc denotes number of
available loading capacities. The number of vehicles used in the fleet is unknown; moreover,
optimum vehicle hardware and infrastructure depend on the number of vehicles employed
in a mission; there, therefore, exists a third dimension for number of vehicles Nv. To bound
values of Nv, another set of nm × nlc optimizations must be solved for that is explained in
Appendix A.
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The suggested solution procedure is as follows.

• Stage A: given a set of missions within the transportation network, a look-up space
must be built by determining the best vehicle-infrastructure design for each choice
of vehicle capacity, mission, and number of vehicles with that capacity within the
mission. The objective function, in this case, includes the unit transportation cost
while design variables are inclusive of vehicle hardware, recharging power, and the
loading–unloading scheme at each mission node.

• Stage B: the look-up space must be used during allocation optimization, wherein
design variables include the number of vehicles and required round-trips to form the
optimized fleet, which accomplishes the overall transportation task whilst incurring
minimum cost of ownership. Not all vehicles and missions in the look-up space
need to be used in the fleet (refer Section 4.2). The objective function, in this case, is
fleet TCO.

These above two stages are illustrated in Figure 6, and a detailed explanation is
provided in following sections.

A multigraph was used as representative of a transportation network, wherein there
may exist several arcs connecting two nodes [59]. Multiple arcs existing between two
nodes tend to better reflect real-world transportation scenarios, wherein there may ex-
ist several paths between two nodes. Alternatively, additional nodes could be added to
the network, where no pickup and delivery could take place. In that case, special care
must be spent on excluding these additional nodes from loading–unloading and instal-
lation of charging stations decision variables. Using multigraph has been suggested to
avoid these extra work. The directed multigraph can be denoted by G(V, A), wherein
V = {0, 1, . . . , n} represents the set of nodes while A denotes the arc set. Node 0 denotes
the depot while Vc = V \ {0} denotes n customers. Between each pair of nodes (q, p),
q, p ∈ V, there exist nhqp arcs aqpl , aqpl ∈ h(q, p), l = 1, . . . , nhqp. Thus, each arc in A,
from node q to node p, can be defined as (q, p, lqp). Finally, a feasible cyclic route connect-
ing nodes (0, q1, q2, . . . , qk, 0) can be represented by means of a sequence of arcs given by
r = ((0, q1, l0q1), (q1, q2, lq1q2), . . . , (qk, 0, lqk0)). The index set of all feasible routes can be
denoted by Xr; i.e., for all q ∈ Xr, rq is feasible. A feasible route is any cyclic route starting
and ending at the depot, passing at least one node. The cyclic route is called a district if the
depot is visited several times.

4.1. Stage A: Optimized Vehicle-Infrastructure Design Candidates

The present stage focuses on determining the best vehicle-infrastructure design for
each choice of loading capacity and number of vehicles for a given mission, motivated by
the postulate above.

After excluding loading capacity from the search space SV or fixing loading capacities
to a single value, the optimization problem of stage A, for a given mission i, loading
capacity cj, and number of vehicles Ni

v,j, can be expressed as

∀ i ∈ {1, . . . , nm}, j ∈ {1, . . . , nlc}, Ni
v,j ∈ {1, . . . , Ni

vmax,j}

find Xrh ∈ X i
r, XVl ∈ XV

to minimize ct(Xrh, XVl, cj, Ni
v,j) (7)

subject to

vehicle dynamic model constraints;

performance constraints;

transportation task constraints;

design sets constraints;
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where, ct, denotes the annual cost of transporting one unit of freight, which is a nonlinear
function of cj and Ni

v,j; cj and Ni
v,j denote given inputs representing the loading capacity j

and number of vehicles corresponding to that loading capacity in the mission i; X i
r denotes

a subset of Xr, which contains all possible cyclic routes and districts of mission i. It must
be noted that, in the optimization problem (7), the design space, depicted in Figure 3, is
treated as a search space with fixed vehicle capacity. A new search space Si

RV is defined
including SV as well as X i

r marking the range of a design variable—route.

Si
RV = {X i

r, SV,1, SV,2, . . . , SV,ns} (8)

and

X i
RV = X i

R × SV,1 × SV,2 × . . .× SV,ns =

{(a0, a1, a2, . . . , ans) | ak ∈ SRV,k ∈ SRV} (9)

The optimization problem (7) can, therefore, be expressed as

find X i
RV,l ∈ X i

RV

to minimize ct(X i
RV,l , cj, Ni

v,j) (10)

subject to all constraints;

or reformulated as follows using design variables ak.

find ak ∈ Si
RV,k ∈ Si

RV, k = 0, . . . , ns

to minimize ct(a0, a1, . . . , ans , cj, Ni
v,j) (11)

subject to all constraints.

The optimization problem of the form described in (11), where ak serve as optimization
design variables in the ns + 1 dimensional space Si

RV, of the range specified by Si
RV,k, could

be solved using a stochastic optimization technique, such as particle swarm optimization
(PSO) [60,61], and according to the algorithm described in [62]. PSO demonstrates good
performance when dealing with non-smooth and non-convex problems. However, it is
not very efficient at handling design variables exceeding 30 in number. Ref. [61] provided
a comprehensive comparison of different methods. Moreover, the optimization problem
must be solved for a number of times to reduce the probability of obtaining a solution far
from the global optimum. In the presented case-study, many runs resulted in a similar
solution referred as an local optimum solution where, considering the fact that each run was
initialized with different initial points (i.e., population), there is a high probability that the
obtained solution is a global optimum.

Owing to the inherent nonlinearity and coupling between the number of vehicles,
with different payload capacities on a mission, and their corresponding hardware setup,
the optimization problem (11) must be solved for all possible numbers of vehicles, i.e., for
Ni

v,j = 1, . . . , Ni
vmax,j. Ni

vmax,j, in this case, denotes the maximum number of vehicles, of
the same capacity cj, which must be used in a given mission i.

To determine the lower bound for Ni
vmax,j, a corresponding optimization problem

must be solved to also determine optimum values of masses mi
L,j and mi

U,j of the loaded
and unloaded freight, respectively, by means of a vehicle performing identical trips within
a mission. By having a single vehicle performing nt identical trips or employing nt identical
vehicles, each performing a single trip, the total transportation demand of the mission
can be satisfied. It should be noted that each vehicle of the same type performs identical
trip(s) within a mission. The optimization problem used for finding Ni

vmax,j, mi
L,j and mi

U,j
is described in Appendix A.
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After solving optimization problem described in (11) for all missions i = 1, . . . , nm,
loading capacities j = 1, . . . , nlc, and quantity of vehicles Ni

v,j = 1, . . . , Ni
vmax,j, correspond-

ing solutions obtained must be stored and used as the look-up space Sb in stage B. An
example of such a space is depicted in Figure 7. The stored information in the look-up space
corresponds to a∗ = (a∗0 , . . . a∗ns), ct, and ttr, i.e., optimized design, the unit transportation
cost, and trip duration time, respectively; that is

Si
b,jl = {a∗ijl , ci

t,jl , ti
tr,jl}, ∀ i ∈ {1, . . . , nm}, j ∈ {1, . . . , nlc}, l ∈ {1, . . . , Ni

vmax,j} (12)
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b,jl = {a∗ijl, cit,jl, titr,jl}

Figure 7. Look-up space Sb.

4.1.1. Unit Yearly Transportation Cost

The total annual cost of a heavy combination vehicle per unit freight transported,
denoted as ct, for a given mission can be expressed as

ct(a0, . . . , ans , c, Nv) =
C(a0, . . . , ans , c, Nv)

ftr
(13)

where, c denotes the loading capacity, ftr indicates the number of freight units transported
in a year from/to a depot, and C represents TCO given by Equation (3).

Following Equations (3) and (4), operational costs could be calculated as follows.

cfuel = pf Fc Ntf nd Nv

celec = pel Eel Ntf nd Nv (14)

cdriver = pd ttr Ntf nd Nv

cmaint = cm [cfuel + celec] Nv

where pf, pel, nd, and pd denote prices of diesel fuel, electricity, number of working
days per year, and driver salary, respectively. Fc denotes fuel consumed during a trip
(Equation (A23)), Eel denotes electricity consumed during a trip (Equation (A32)), cm is
a constant, which provides a rough estimate of maintenance costs as a fraction of the
energy cost; ttr denotes trip time, which can be calculated using the vehicle dynamic model
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(Equation (A42)). Ntf denotes the maximum number of trips a fully operational vehicle
performs per day, and can be expressed as

Ntf = b
wtmax

ttr
c (15)

where, wtmax denotes the maximum allowable working time per day. The operator bac
provides the closet integer equal to or less than a.

Description of a vehicle dynamic model along with the procedure for calculating
values of Fc, Eel, and ttr is given in Appendix E according to [48], and all parameters and
prices are included in the Appendix F.

Moreover, the cost of loading-unloading equipments plu and charging infrastructure
prech for each vehicle in mission i are given by

plu = ∑
k∈Ii

n

pLU,k

Nv
, prech = ∑

k∈Ii
n

pCH,k

Nv
(16)

where Ii
n is a set containing node indices of the ith mission, pLU,k and pCH,k denotes

the cost of shared loading–unloading equipments and charging infrastructure at node
k, respectively.

4.1.2. Optimization-Problem Constraints

Constraints of the optimization problem (11) include vehicle-model constraints per-
taining to the dynamic, recharging, and powertrain models, inclusive of all equations
and inequalities, together with a battery degradation model are described in Appendix E
according to [48], inspired by [11,49–54].

Performance constraints, i.e., gradeability Gr, startability Sr, acceleration capability
Ac, and down-grade holding capability Dg could be summarized in the mathematical form
as follows.

Gr(a1, . . . , ans) ≥ Gr,min

Sr(a1, . . . , ans) ≥ Sr,min

Ac(a1, . . . , ans) ≤ Ac,max (17)

Dg(a1, . . . , ans) ≥ Dg,min

It must be noted that the performance constraints are only affected by vehicle hardware
design parameters. Refer Appendix F for selected values of the performance constraints.

Part of transportation constraints must be covered under the optimization problem
in stage B (refer Section 4.2). Other constraints that must be considered in the optimiza-
tion problem (11) relate to vehicle-loading capacity, pick-up, and delivery during a single
trip, as described in Appendix A by Equations (A2)–(A8), as well as the working time,
given by Equation (A42). Another set of transportation-task constraints pertaining to rules
prescribed for loading–unloading operations are explained in Appendix C. No mathemat-
ical description about loading–unloading operations is provided in this paper to avoid
notational complexity.

4.2. Stage B: The Optimized Fleet

By solving the optimization problem (11) for all available mission choices, loading
capacities, and number of vehicles, a set or a space Sb containing optimum design candi-
dates is obtained. Candidate designs belonging to this space must be optimally allocated
by deciding which designs must work together to satisfy the required pick-up and delivery
demands of the transportation network. Fleet composition and sizing is finalized in this
stage; moreover, the total number of trips to be performed by each vehicle type is also
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finalized. Minimum value of the total cost of fleet ownership can be realized by solving the
following optimization problem.

find Nv ∈ Nnm×nlc , Nt ∈ Nnm×nlc

to minimize C(Nv, Nt) = nd

nm

∑
i=1

nlc

∑
j=1

[
Ni

vf,j Ni
tf,j cj ci

t,jl+ (18)

Ni
vp,j Ni

tp,j cj ci
t,j(ai

jl , cj, Ni
vp,j)

]
subject to

Ni
tf,j = b

wi
tmax

ti
tr,jl
c (19)

Ni
vf,j = b

Ni
t,j

Ni
tf,j
c (20)

Ni
tp,j = Ni

t,j − Ni
tf,j Ni

vf,j (21)

Ni
vp,j = Ni

v,j − Ni
vf,j (22)

ci
t,j(ai

jl , cj, Ni
vp,j) =

copr(ai
jl , cj, Ni

vp,j) + cdep(ai
jl , cj, Ni

vp,j)

ftr(ai
jl , cj, Ni

vp,j)
(23)

{ai
jl , ci

t,jl , ti
tr,jl} = Si

b,jl , l = Ni
v,j (24)

Ni
v,jN

i
tf,j ≥ Ni

t,j ∀ i ∈ Xm, j = 1 . . . nlc (25)
nm

∑
i=1

nlc

∑
j=1

Ni
t,j mi

L,jk ≥ Qp,k, ∀ k ∈ V (26)

nm

∑
i=1

nlc

∑
j=1

Ni
t,j mi

U,jk ≥ Qd,k, ∀ k ∈ V (27)

where Nv is a matrix containing the number of vehicles with different loading capacities
employed in different missions; Nt refers to a matrix containing the total number of round
trips per day that Nv vehicles perform together; Ni

t,j corresponds to the total number of
identical trips that must be performed by all vehicles with loading capacity cj in the ith
mission; Ni

v,j corresponds to the total number of vehicles with loading capacity cj in the ith
mission; nm denotes the total number of missions constituting the set Xm; nlc corresponds
to the total number of loading-capacity choices. The objective function C corresponds
to the total cost of fleet ownership per year represented as [e/year]. Subscripts f and p
translate to fully operational and partially operational, respectively; and nd is the number
of working days per year. Fully-operational vehicles perform the maximum number of
trips Ni

tf,j per day before maximum limit of daily working hours wi
tmax is violated. Having

a flexible maximum limit daily working hours is shortly discussed later in discussion
section. A vehicle performing any number of trips less than Ni

tf,j is referred to as being
partially operational. Constraints (19)–(22) yield the number of fully and partially operated
vehicles—Ni

vf,j and Ni
vp,j along with the maximum number of trips per day Ni

tf,j as well as

number of trips Ni
tp,j less than maximum.

While building the look-up space Sb by solving the optimization problem (11), it
was assumed that all vehicles are fully operational, i.e., all vehicles perform maximum
number of trips per day, by evaluating Equation (13) using Equation (15). We made this
assumption to avoid complication of adding a fourth dimension to the look-up space, since
most of the fleet vehicles perform the maximum number of trips. If, for some reason, a fully
operational vehicle is not required, it must be redesigned for the given required number
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of trips per day. Any redesigning of vehicles is not considered in this paper, and partially
operational vehicles are considered to have a design similar to that of fully operational.
For such vehicles, however, the annual ownership cost per unit freight, as described in
Equation (13), must be re-evaluated for the assigned number of trips the vehicle performs
per day. This implies replacing Ni

tf,j by Ni
tp,j in Equation (14). This constraint is expressed

by Equation (23), wherein ai
jl represents the vehicle-infrastructure design; values of ai

jl , ci
t,jl ,

and ti
tr,jl are adopted from the look-up space expressed by the constraint (24). The reason

why Nv is considered as an optimization variable is that it cannot directly be calculated
from Nt, since vehicle-infrastructure design and correspondingly, the maximum number of
trips per day or trip duration time remains unknown if one does not know which block to
choose corresponding to the number of vehicles in the look-up space.

The constraint described in (25) ensures that the daily working time is not violated
as well as that the selected total number of trips are performed by the selected number
of vehicles. Constraints described in (26) and (27) guarantee that the daily demands
concerning pick-up and delivery of all nodes of the transportation network are met. In this
case, V denotes the set of all nodes in the transportation network and mL and mU denote
masses of the loaded and unloaded freight during a trip, respectively, obtained by solving
the optimization problem described by (A1)–(A8) in Appendix A, Qp,k denotes individual
units (for example mass) of the total daily demand of freight pick-up from node k and Qd,k
represents units of the total freight that needs to be delivered to node k.

Vehicle missions within transportation networks may overlap. Constraints above
ensure that the entire transportation task of the network is performed via all or some
missions within the specified daily working time window. The optimization problem
(18)–(27) can also be solved using the PSO method.

The search space within the optimization problem (18)–(27) comprises two 3D spaces,
as depicted in Figure 8. The range of design variables is described by the third dimension
of space—the number of vehicles and total number of round trips. Both these ranges have
the same size starting from zero to a maximum number given by Equations (A1)–(A8).
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Figure 8. Search space of optimization problem defined by (18)–(27). Vertical bars denote ranges of
design variables.

5. Case Study: Auto-Freight Project

The case-study problem considered in this study relates to a project called Highly
Automated Freight Transports funded by Vinnova (Ref number 2016-05413 and 2016-05415)
in Sweden. This project was initiated to design and manage transportation of goods in
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containers between Gothenburg seaport and city Borås. Here, we investigate a scenario
considering a dry port, close to Borås, where goods must be loaded/unloaded onto/from
transport vehicles and subsequently transported to local companies.

A dry port is an inland terminal, where goods can be picked-up from or delivered to in
a manner similar to a seaport [63,64]. Benefits offered by a dry port include the possibility of
switching over to more efficient especially developed transportation solutions and logistic
convenience. Road connections for such a transportation network are depicted in Figure 9,
wherein rkl represents different road sections and Ci denotes the ith customer. The routes
within the mission are described in Appendix D. To evaluate the fuel consumption, each
cyclic route is described by an operating cycle according to Appendix E.

Requests for pick-up and delivery of goods at each node are listed in Table 2. Goods
could be delivered or picked-up in sets of 500-kg pallets, 20-foot, or 40-foot containers.
Duration of the normal working time per day was set as 600 min, including minimum
90 min of waiting time at the seaport during each visit. Longer working times were allowed
up to 960 min, with extra penalty, however, on operational costs. There were 220 working
days per year within an 8-year service life of a vehicle. Total distance covered in a round trip
measured approximately 140 km, the exact value varying depending on the route selection.
Other mission data related to economics and transportation design could be found in
Appendix F. The optimization problem shown in Table 1 was solved for the above case
study. The range of the mission design variable included three missions shown in Figure 9.
The range of vehicle sizes are depicted in Figure 10. The charging power at each node
ranged between 0 and 180 kW. Zero-charging power means that there is no charging station
at the node, therefore, the solution of the optimization problem also defined the location
of the charging stations. Furthermore, the range of loading–unloading design variable, at
each of the nodes and for each of the semitrailers of the vehicles, included four loading–
unloading schemes (i.e., OBL, SC, AST, and OBW) together with no-loading–unloading
(NLU), meaning that no action should be done at the node regarding loading–unloading
for the corresponding container. Vehicle types were defined using the design space given
by Equation (A9), that together with possibility of having on-board lift resulted in about
83,000 different vehicle types, despite the small size of the vehicle design sets. Please refer
to Appendix B for the description about the ranges of the vehicle design sets.

Table 2. Constant daily pick-up and delivery requests.

C1 C2 C3 C4 Dryport Seaport

Delivery [ton/day], [33-m3 container/day], [m3/day] 24, 4, 113 12, 2, 57 12, 2, 57 0 48, 8, 226 28, 4, 132
Pick-up [ton/day], [33-m3 container/day], [m3/day] 0 0 0 28, 4, 132 48, 8, 226 48, 8, 226

Seaport

Dry port
2 km 500 m

C4C3

C1
C2

:Via bridge

:Exit to
dry port

r21

r22

r23

45 km

Mission 1
Mission 2
Mission 3

r12

r11

Figure 9. Road connections of the transportation network. rkl denotes different road sections and Ci

denotes the ith customer. Different road colors represent different transport missions.
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33 m3

33 m3

66 m3

66 m3

66 m3 66 m3

Figure 10. A design set of vehicles with different loading capacities. A small (33-m3) container has a
loading capacity of 33 m3 or 7 tons of the intended freight. Gross combination masses are: 25, 35, 60,
80 tons from the smallest vehicle to the largest one, respectively. Semitrailers may carry two small
33-m3 containers.

5.1. Presenting the Solution

For the case study problem presented above, stages A and B were solved and the solu-
tions were compared among 20 and 100 runs, respectively, where about 60% of solutions
were found to be similar.

The solution yields the optimum vehicle fleet given the set of routes/missions shown
in Figure 9. Figure 11 depicts the optimization result for the case-study problem presented
above with a maximum daily working time of 10 h and daily demand flow of 226 cubic
meters. The optimum fleet includes one vehicle combination comprising one tractor, one
dolly, and two semitrailers with a total loading capacity of 132 m3 and performing two
trips per day on the second mission; one vehicle combination comprising one tractor and
one semitrailer with a loading capacity of 66 m3 and making four trips per day on the third
mission whilst also comprising three straddle carriers, an additional semitrailer, and two
charging stations. Specifications pertaining to vehicle and recharging power are provided
in Table 3. All containers measured 33 m3 volume.

Max daily working time: 10 h; Daily flow: 226 m3; TCO = 287 ke/year.

Figure 11. Optimum fleet for maximum daily working time of 10 h and daily flow of 226 m3; fleet
TCO equaled 287,000 e/year. LC denotes loading capacity.
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Figure 12 depicts the optimum fleet for two different maximum daily working
durations—10 h and 16 h—and demands of daily freight flow—48 and 168 tons—
corresponding to 226 and 792 m3, respectively. A small container has a loading capacity
of 33 m3 or 7 tons of intended freight. Figures demonstrate that the optimum fleet is
very sensitive to optimization-problem constraints—daily flow and maximum daily
working hours. Selection of different constraints, other than ones shown in Figure 12,
might result in a different optimum-fleet configuration.

C4

C3

C1

C2

Seaport Dry port

Mission 1, X1
r

Mission 2, X2
r

Mission 3, X3
r

2 trips

1×

Max daily working time: 16 h; Daily flow: 226 m3; TCO = 260 ke.

C4

C3

C1

C2

Seaport Dry port

6 trips
12 trips

3×3×

1×
1 trip

Max daily working time: 10 h; Daily flow: 792 m3; TCO = 806 ke.

C4

C3

C1

C2

Seaport Dry port
6 trips

2× 1×
1 trip

Max daily working time: 16 h; Daily flow: 792 m3; TCO = 714 ke.

Figure 12. Optimum fleet for different maximum daily working times and freight flow. Lines between
nodes illustrate routes among nodes corresponding to different missions.

Designs of vehicle hardware, loading–unloading schemes, and recharging power for
the three optimized vehicles selected for the three missions are listed in Table 3 while the
number of vehicles is assumed to be one on a mission.

Figures 13 and 14 compare annual costs incurred per unit freight transported by
optimum conventional, fully electric, and plug-in hybrid vehicles with a loading capacity
of 132 m3 during the first mission. Data depicted in Figures 13 and 14 were obtained
by solving optimization problem shown in Table 1 with the powertrain fixed as being
either of the conventional, fully electric, or hybrid type. It can be observed that use of the
fully-electric vehicle demonstrated a lower TCO per year compared to using conventional
and hybrid vehicles. Moreover, the operational cost of the conventional vehicle is seen to
be high due to fuel consumption. On the other hand, the investment cost of the battery-
electric and hybrid vehicles is high due to the high battery cost. However, hybrid vehicles
offer benefits of good energy-management strategy, which in turn, reduces operational
costs. The control strategy here for optimizing the powertrain is ruled-based, which is
similar to the instantaneous optimization reported by [49]. Through the use of an optimum
energy-management strategy, overall energy costs could be reduced by up to 4% when
moving in traffic with a smooth variation in speed on the roads considered in this study.
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Table 3. Vehicle-hardware, loading–unloading (LU) scheme, and recharging-power designs of three
selected optimized vehicles on three missions with the number of vehicles being one on a mission.
X i

r denotes mission i, that contains different choices of the cyclic routes within mission explained in
Appendix D. EM denotes electric motor; please refer to Appendix F for EMs specification.

Mission 1, (X1
r ) Mission 2, (X2

r ) Mission 3, (X3
r )

Maximum working time per day (h) 16 10 10
Route X1

r (1) X2
r (1) X3

r (1)
Conventional-Electric-Hybrid Electric Electric Electric

Loading capacity (m3) 132 132 66
Type of electric motor EM2 EM2 EM1

Number of electric motors 6 6 4
Total number of battery packs 13 12 3

Total size of battery packs (kWh) 438.75 405 101.25
Total mass of battery packs (ton) 3.25 3 0.75

Size of IC engine (lit) - - -
Recharging at Dryport (kW) 10 10 10
Recharging at Seaport (kW) 70 70 -

LU at Dryport, 1st semitrailer SC SC SC
LU at Dryport, 2nd semitrailer SC SC -
LU at Seaport, 1st semitrailer SC SC -
LU at Seaport, 2nd semitrailer SC SC -

LU at C1, 1st semitrailer NLU - SC
LU at C1, 2nd semitrailer AST - -
LU at C2, 1st semitrailer NLU - OBW
LU at C2, 2nd semitrailer OBW - -
LU at C3, 1st semitrailer NLU - OBW
LU at C3, 2nd semitrailer OBW - -
LU at C4, 1st semitrailer NLU - AST
LU at C4, 2nd semitrailer AST - -
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Figure 13. Annual cost per unit freight incurred when using optimum conventional, fully electric,
and hybrid vehicles during first mission. Vehicles and corresponding missions, in which they are
utilized, are marked with the same color.
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Figure 14. Sensitivity of annual costs per unit freight [ton] to optimum conventional, fully electric,
and hybrid vehicles separated for different cost indicators on the first mission.
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To investigate the sensitivity of annual costs incurred per unit freight with regards
to variation in design parameters, an electric vehicle on the first mission was selected
with a fixed design; subsequently, the value of only one parameter was changed within
the admissible range. The corresponding result is depicted in Figures 15 and 16. It must
be noted that most of the observations and conclusions drawn here about design and
performance of electric heavy-vehicles are general and not limited to the case study.

The dependence of mission costs on road conditions can be rather high, if the con-
cerned vehicle fails to complete the trip on time or vehicle hardware is not feasible to
operate on the given road. However, the vehicle selected for sensitivity analysis was both
feasible and could make the trip on time under all road conditions. Thus, the only sources
of incurring extra costs on different roads were the driver and energy costs, in view of the
increased trip duration and distance, as depicted on the top-left of Figure 15.
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Figure 15. Sensitivity of annual costs incurred per unit freight with regard to different vehicles and
transportation-design parameters for different cost indicators on first mission, X1
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Figure 16. Sensitivity of annual cost incurred per unit freight with regard to different loading–
unloading schemes, i.e., On-Board Lift (OBL), Straddle Carrier (SC), Additional SemiTrailer (AST)
On-Board vehicle Waiting (OBW) on the first mission.

There exists a linear relationship between the TCO and number of electric motors
until 10 electric motors are installed in a vehicle. As can be observed in the middle left of
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Figure 15, a jump in total cost is observed when 11 electric motors are used in a vehicle.
The reason behind this jump is the observed increase in loading–unloading costs, because
the 11th electric motor must be placed on the last semitrailer. The total loading–unloading
cost, therefore, increases if additional semitrailers with propelled axles are assigned to
the mission.

The TCO per ton of freight demonstrated a linear trend with respect to the recharging
power as long as no battery replacement was required. Battery degradation increases with
large recharging power and small battery size; thus, batteries of a given size and capacity
tend to exhaust earlier, if the recharging power is increased. Figure 17 illustrates this
behavior. Trade-offs between fast and slow charging have already been discussed by [30]
among others in the literature.

Figure 17. TCO versus battery size and charging power.

As can be observed, the TCO is greatly influenced by battery size and charging power,
thereby producing several local minima. Battery size influences the total operational time in
terms of the optimum recharging time, as well as power needed to fully charge the batteries,
thereby facilitating fully electric vehicles to reach the next charging station. Additionally,
vehicle speed can also be affected by the maximum available battery power. Moreover,
batteries of different sizes possess different lifetimes. Together, all these factors cause a
large variation in TCO with respect to battery size, as depicted in Figures 15 and 17. The
reason behind having a large drop in most of cost indicators for battery sizes larger than
a threshold is that the vehicle could perform one more trip within the given daily time
window as the result of higher power availability, thereby increasing the freight transported
per day and consequently reducing the annual unit transportation cost. A drop in cost is,
therefore, observed corresponding to all cost indicators in the middle-right of Figure 15,
except for the driver cost, the reason being that driving time increases accordingly (within
the time window) and also there is an increase in waiting time at a charging station in order
to charge the batteries sufficiently so that the final trip could be performed. Furthermore,
in the same figure, each drop in battery cost with increase in battery size implies that one
less battery replacement is needed during the service life of a vehicle.

Further, the optimum battery size as well as recharging power can be affected by the
number of vehicles employed during a mission. As previously discussed, investment cost
per vehicle reduces via sharing of charging stations; it is, therefore, favorable to have a
large recharging power compared to large battery size. Table 4 lists hardware setups and
recharging powers for two optimum fully electric vehicles assigned to mission X1

r . The
type depicted in the first row was optimized considering only one vehicle in the mission,
whereas the type in the second row was optimized considering two vehicles. The route as
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well as loading–unloading scheme were maintained fixed in both cases. It can be seen that
optimum battery size and charging power are different for different numbers of vehicles.

Figure 16 depicts sensitivity of the TCO per ton of freight with regard to different
loading–unloading schemes during the first mission for different nodes. The cost of SC and
AST are very close to each other, thereby implying that they can be swapped with each
other—for example, in cases wherein optimization of missions X2

r and X3
r yields different

loading–unloading schemes at the shared node (e.g., the dry port in the case study).
Finally, Figure 18 compares annual costs of transportation per ton of freight amongst

optimally designed vehicles of different sizes. The largest vehicle demonstrated an average
53% reduction in costs compared to the smallest vehicle. Large vehicles were observed
to perform even better during the second mission compared to the first, since they tend
to spend less time in loading–unloading during the second mission, thereby resulting in
higher vehicle utilization. Moreover, considering the impact of driver and depreciation
costs, it is usually the case that trucks with higher capacity are more attractive as long as they
are not idle (low temporal utilization) or traveling partially full (low capacity utilization).

Table 4. Two optimum types of electric vehicles assigned to mission X1
r for fully loaded vehicles and two trips per day.

Optimized for typeem Nem Npack RC1 (kW) RC2 (kW) Cost, if One Vehicle in
the Mission ( e

ton·year )
Cost, if Two Vehicles in

the Mission ( e
ton·year )

one vehicle in the mission EM2 6 14 10 90 15.48 13.63
two vehicles in the mission EM2 6 9 100 130 15.65 13.38
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Figure 18. Comparison of annual TCO savings per ton for different vehicle sizes, in case of exclusively
using one vehicle size in the fleet making maximum number of trips per day within 16 h. Vehicles
with 132-m3. loading capacity demonstrate an average 53% reduction in TCO compared to vehicles
with a 33-m3 loading capacity.

5.2. Competitiveness Amongst Conventional, Fully Electric, and Plug-in Hybrid
Heavy-Vehicle Combinations

Gross combination mass (GCM) is the maximum mass of a vehicle allowed on a
road. As regards the case-study problem considered in this study, loading capacities are
mostly constrained by volume while the mass constraint remains inactive; thus, GCM
is not realized, and the weight of battery packs does not reduce the loading capacity or
capacity utilization of fully electric and hybrid vehicles compared to that of conventional
vehicles. Moreover, the unit of mass [ton] is considered as a unit of transported freight while
calculating the annual TCO per unit freight, thereby implying that a larger transported
mass contributes to lower unit-transportation cost.

Another scenario could be considered in the form of transportation of high-density
freight, so that the mass constraint becomes active. In such a case, heavy hardware reduces
the overall loading capacity, thereby resulting in higher transportation cost. Besides the
limited range of electric vehicles and expensive batteries, reduction in loading capacity
through use of heavy hardware in both electric and hybrid vehicles makes them infeasible
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for use in some applications [2] although a value of total vehicle mass exceeding GCM
by a small amount is allowed for electric and hybrid heavy-vehicles, in accordance with
the directive (EU) 2015/719. Figure 19 depicts how the type of transported freight (low-
or high-density), battery cost, and number of vehicles involved in a mission influence
optimum vehicle hardware when performing different missions. As a measure of the
battery cost, the number of charge-discharge cycles (NOC) performed prior to the end of
battery life (EOL) was used. This measure corresponds to battery quality in that a high NOC
implies lesser battery replacements needed during the service life of a vehicle (refer battery-
degradation model in Appendix E). Figure 19 depicts roughly under what conditions
electric and hybrid vehicles become economically more feasible compared to conventional
ones. Vehicle combinations employed during missions 1, 2, and 3 demonstrated GCM
values of 80, 80, and 35 tons, respectively. The loading–unloading scheme was fixed as
described in Table 3. The hardware and recharging power were separately optimized for
the given number of vehicles, freight type, and NOC during different missions as well as
conventional, electric, and hybrid vehicle types. Likewise, costs of optimum vehicles of the
conventional, hybrid, and fully electric type have been separately indicated for different
missions and for two cases—volume constraint active considering low-density freight; and
mass constraint active considering high-density freight. Plots on the left correspond to the
case when only the volume constraint is active, similar to the case-study problem described
above. Correspondingly, plots on the right depict the case with active mass constraint.
Following conclusions could be drawn from the figure.

� Electric and hybrid heavy-vehicle combinations equipped with a medium-quality
battery result in lower costs compared to conventional vehicles for the case wherein
only the volume constraint is active corresponding to low-density transported freight,
such that GCM is not realized even when large batteries are employed.

� Conventional heavy-vehicle combinations result in lower costs being incurred in cases
wherein the mass constraint is active, i.e., no more freight can be loaded because the
GCM limit is reached. In such a case, use of heavy batteries reduces the maximum
freight that can be loaded.

� To meet large demands of freight flow during a given mission, more than one vehicle
may be required. Thus, the cost of recharging infrastructure can be shared, and the
optimum battery size changes accordingly (refer Table 4). In such cases, fully electric
and hybrid heavy-vehicle combinations come across as being cheaper, albeit equipped
with a medium-quality battery while the mass constraint remains active.

� Electric vehicles benefit more compared to hybrid vehicles from enhancement in
battery quality.

� The cost per ton of freight decreases when using better batteries, more number of
vehicles, and more loaded freight per vehicle.

� For short missions involving many stops, i.e., mission three, use of conventional
vehicles results in lower unit transportation costs compared to hybrid and electric
vehicles for transportation of high-density freight. This is because for transportation
of heavy freight, a stronger powertrain is needed, and for a mission with multiple
stops, the vehicle spends less time on the road, thereby resulting low vehicle temporal
utilization. Thus, the depreciation cost of expensive hybrid and electric powertrains,
or purchase cost, is higher compared to that of conventional powertrains, as also
reported by [20].

� As a result of simultaneous optimization, a fleet of fully electric heavy-vehicle combi-
nations can be designed with approximately 5–10% reduction in TCO compared to a
fleet of conventional vehicles.

It must also be noted that the unit transportation cost of electric and hybrid vehicles
increases if the working time per day is short owing to the high depreciation cost of hardware
and low vehicle temporal utilization. In such a case, the vehicle is not used enough to return
the cost of investment. Furthermore, tax incentives, future reduction in battery price, increase
in diesel price, and extension of vehicle service life or planning horizon all contribute to even
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cheaper and more competitive electric heavy-vehicle combinations being made available in
the near future. Moreover, fuel efficiency and cost are among reasons of coupling between
transportation and vehicle design as well as dependence of optimum vehicle hardware to
specific use-case (depending on the cost of fuel in region being studied) [5,29].
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Figure 19. Competitiveness between conventional, fully electric, and hybrid vehicles in terms of the unit transportation cost
of different optimally designed vehicles. Each small circle corresponds to an optimized vehicle with different hardware. For
all plots, maximum working time per day is 16 h .

6. Discussion and Remarks

The following remarks are relevant to the limitations and clarifications of the suggested
methodology.
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– The optimizer might increase the size of batteries more than the needed traveling
range and power to minimize the number of battery replacements required during
the service life of a vehicle.

– Recharging-power design is only performed for daily operation of a vehicle. The
charging power and number of charging plugs required while, for example, all ve-
hicles are not in operation (i.e., during night), are not considered. However, battery
degradation owing to overnight charging has been considered in this study.

– When employing hybrid vehicles, operational costs could be reduced by implement-
ing an optimum energy-management strategy (OEMS), which whilst considering
upcoming driving horizon, optimally splits requested power between electric motors
and ICE. However, for vehicle configurations identified for operation in smooth traffic,
OEMS gain was observed to be less than 4% in terms of reduction in energy and
battery-degradation costs [49]. More specifically, for the first mission, the gain is close
to zero owing to the large battery size; during the second mission, an approximately
3% gain is observed; lastly, during the third mission, the observed gain again nearly
equals zero owing mainly to availability of a near-flat road. In this study, the coupling
between OEMS and vehicle-infrastructure design has not been considered. Consider-
ing OEMS and an optimum-speed profile together with vehicle-infrastructure design,
the optimization exercise might result in the design of hybrid vehicles equipped with
smaller batteries as a feasible solution.

– A driver can rest during the loading–unloading process. In the case study, the waiting
time at seaport is 90 min, which the driver utilizes for resting.

– It has been observed that TCO increased up to 30% if an optimum fully-electric vehicle
designed to operate in the first mission is used, instead, in the third mission, while the
optimum loading capacity is kept similar to the one in the third mission, for both cases.

It should be noted that the best vehicle-infrastructure candidates identified during
each mission are exclusively applicable for that mission irrespective of all other mis-
sions. This leads to a problem when two different designs are finalized for the loading–
unloading scheme at a node shared between two missions. Furthermore, optimum vehicle-
infrastructure candidates of a given size are determined exclusively for that size irrespective
of other vehicles with different sizes employed in the same mission. The ownership cost of
a mission is a nonlinear function of the total number of vehicles employed with different
loading capacities. Moreover, charging infrastructure and semitrailers or straddle carriers
could be shared among all vehicles involved in a mission, not only among vehicles with
the same loading capacity, as was earlier assumed while building the look-up space. The
latter problem, however, is not very significant, since there always exists one vehicle size
that is dominant in a given mission. If multiple vehicles are needed, they would all be of
the same size whilst only one or two vehicles with sizes different compared to dominant
one would be employed to fulfill an uneven total demand of freight flow.

The first problem could be overcome by redesigning missions comprising shared
nodes with different loading–unloading and/or charging infrastructure designs. The
highest redesign priority is assigned to the mission with lower infrastructure cost whilst
using information already available from other designed missions.

Another alternative of problem definition is employing a flexible working time con-
straint, wherein working is allowed more than the maximum daily working time, however,
with a penalty on operational costs. Consequently, a parabolic-like cost curve as a function
of number of trips per day was observed. If there exists no penalty cost for violating the
flexible time window, there would be a steady decrease in cost whit respect to number of
trips. In the latter case, annual TCO per unit of freight [ton] can be minimized to find the
optimized fleet. However, in the former case, there should be another optimization process
which distributes the total number of trips among vehicles, assigning the optimum number
of trips to as many vehicles as possible. Figure 20 shows the dependence of the annual cost
per freight unit to the number of vehicles and number of trips each vehicle performs, for
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two cases. First case introduces no-penalty costs; while in the second case, a 50% penalty
on operational cost for working time more than eight hours has been introduced.

For an excising carrier fleet, with already known vehicle hardware, to apply the
framework described in this study, the range of vehicle powertrain decision variables need
to be fixed and the rest of the optimization framework can be applied with no change.

Despite the small size of the transportation network in the case-study, the problem
cannot be solved by enumeration. There are approximately 83,000 vehicle types, whereas
the number of vehicles and number of trips are unknowns. Assuming maximum 10 ve-
hicles of each type and 10 trips of each vehicle on a route yields (10× 10)83,000 different
possibilities for a single route. In addition, the case study included at least four missions,
on average two routes per mission, six nodes each with an unknown charging power
from a set of 18 choices (6× 18 different possibilities) and unknown loading–unloading
(four different possibilities). Therefore, the total number of possibilities is approximately
(4× 2× 6× 18× 6× 4)× (10× 10)83,000 ≈ 10166,000. Clearly, such a problem cannot be
solved by enumeration because of many different possibilities.

Finally, it must be noted that the presented values are only valid for the missions
defined, input data provided, and vehicle models used. However, the methodology
of determining the optimum fleet is generally applicable for repetitive transportation
assignments and may be modified to include more vehicle- and transportation-design
variables; for instance, type of gearbox, location of articulation point(s), inclusion of
dynamic charging [65], more options of loading–unloading and charging strategy.
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Figure 20. Annual transportation cost per ton as a function of number of daily trips per vehicle and number of vehicles.
A penalty cost of 50% on operational cost was considered for number of trips more than four, (left); No-penalty, (right).
Projection of surface lines can be seen in left and right planes.

Limitations

In this study, the driving cycle of all trips is considered to be fully deterministic and
no variation in traffic due to nondeterministic events has been considered. In case of a high
probability of deviation from a given driving cycle (owing to heavy traffic, for example),
higher constraints on vehicle performance must be applied.

The solution method described in this paper is based on a given set of missions Xm
as an input. In case of dealing with a transportation network of low number of route
connectivity, the number of possible missions included in Xm is low, thereby making the
method presented in this paper computationally applicable. However, the method can
still be useful for large transportation networks if the number of possible missions or the
number of cyclic routes can be reduced by means of a bounding procedure, which allows
only potential “good” routes in the Xr set. The potential “good” routes could be determined
by decoupling the two problems of routing and vehicle-infrastructure design in a large
transportation network. Such a decoupling has been motivated by the results reported
in [40] stating that, in presence of performance constraints, routing problem is not strongly
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interconnected with vehicle design. Traditional approaches for solving VRPs could then
be employed on a small set of representative vehicle types. For example, a homogeneous
VRP reported by [66] can be solved separately for each available loading capacity using a
representative vehicle hardware setup. A combination of all separate solutions along with
corresponding solutions for heterogeneous VRPs on the same representative set of vehicles
yields a reduced set of routes/missions.

In addition, potential “good” missions can be determined by solving network opti-
mization problems or districting [67]. As such, output districts—a group of nodes that
could be visited by a single vehicle—serve as inputs to the set of missions, wherein a
mission is either defined by a single or multiple cyclic routes corresponding to multiple
trips or by a district with several possible cyclic routes.

In the proposed study, the authors have tried to include most aspects important to
transportation systems; however, not all aspects could be considered—speed optimization,
for example. As reported by [68], allowing a heterogeneous fleet is more important
than speed optimization on each arc, and using a fixed speed results in slightly higher
energy-consumption compared to moving at an optimized speed. This claim is true for
combustion-powered vehicles with fixed hardware running on flat roads. For a vehicle
moving on a road with variable grade, having the speed as an optimization variable is
useful, as reported by [69,70]. However, speed optimization is not considered in this study
owing to increased complexity and computational cost. The effect of average speed on
vehicle-infrastructure design is studied in ref. [11].

The approach presented in this study yields an efficient and low-cost vehicle-
transportation if the vehicle use-case is known during the entire or dominant part of
its lifetime. If transportation characteristics, i.e., consumers, routes, the characteristics
of the roads, amounts and types of goods transported etc would change considerably
over the lifetime of a vehicle, optimizing towards a very specific operation would lead
to inefficiency and even in-feasibility in other transport operations. Therefore, to keep
the vehicles to operate near their best performance, the deviation from the assignments
that they are designed for has to be small.

7. Conclusions

The proposed study demonstrates that vehicle hardware design can be treated as
an integrated optimization problem comprising transportation-mission, logistics, infras-
tructure, and fleet-size optimization. A case-study problem has been solved according
to the proposed methodology. It has been demonstrated that freight-vehicle designs are
influenced by the route, transportation mission, fleet-size and recharging power, as well
as transportation boundaries, such as loading–unloading schemes, especially in case of
battery-electric heavy-vehicle. Moreover, use of an integrated optimization process could
lead to increased profitability of battery-electric heavy-vehicle combinations in highway
and urban freight transport by about 30%, and up to 10% reduction in TCO compared to
a fleet of conventional vehicles. In addition, it has been shown that long heavy-vehicle
combinations in a heterogeneous fleet result in an approximate 53% reduction in TCO
compared to a homogeneous fleet comprising rigid trucks. The final outcome of the opti-
mization process is a vehicle fleet with minimum TCO and zero emissions provided that
electric energy comes from renewable sources and ignoring emissions from vehicle and
particularly battery manufacturing. Through use of the proposed integrated fleet design,
this study demonstrates that battery-electric heavy-vehicle combinations can compete
against their conventional combustion-powered counterparts, and discusses contributing
factors such as vehicle utilization level, payload, battery quality, number of vehicles, battery
size and charging power. This would create a true incentive for transportation companies
to consider switching to electrification.

The resulting optimization problem is very large; thus, a methodology has been
proposed to reduce its size by defining and solving several much smaller optimization
subproblems. The first stage includes finding the best vehicle-infrastructure candidates,
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and in the second stage, the final fleet is found among those candidates and corresponding
missions and number of trips are assigned. The proposed methodology is limited to the
availability of a clear description of a relatively small transportation network and repetitive
assignments, that must be obtained through clear communication between stakeholders,
already in conceptual design stages of the vehicles.
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Appendix A. Determining Ni
vmax,j, mi

L,j and mi
U,j

The corresponding optimization problem can be defined as follows.

∀ i ∈ Xm, j ∈ {1, . . . , nlc}
find mi

L,jk, mi
U,jk, ∀ k ∈ Ii

n \ 0

to minimize nt ∈ N (A1)

subject to mi
L,j0 = ∑

k∈Ii
n\0

mi
U,jk (A2)

mi
L,j0 ≤ cm

j (A3)

∑
k∈Ii

n\0

mi
U,jk

ρU,k
≤ cv

j (A4)
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∑
k∈{Ii

n,2,...,Ii
n,K}

(mi
L,jk −mi

U,jk) ≤ cm
j , ∀K ∈ {2, . . . , ni

nodes} (A5)

∑
k∈{Ii

n,2,...,Ii
n,K}

mi
L,jk

ρL,k
−

mi
U,jk

ρU,k
≤ cv

j , ∀K ∈ {2, . . . , ni
nodes} (A6)

Qp,k ≤ nt mi
U,jk, ∀ k ∈ Ii

n \ 0 (A7)

Qd,k ≤ nt mi
L,jk, ∀ k ∈ Ii

n \ 0 (A8)

where Ii
n denotes a set containing node indices of the ith mission ordered in accordance

with the order of visit; Qp,k represents individual units (for example mass) of the total daily
demand of freight pick-up from node k whilst Qd,k represents units of the total freight
that needs to be delivered to node k; cm

j represents the maximum vehicle loading mass;
cv

j denotes maximum loading volume of the vehicle; and ρL,k and ρU,k denote densities

of the loaded and unloaded freight at node k, respectively. Thus, Ni
vmax,j = nt, thereby

determining the third dimension of the look-up space. Constraints (A2)–(A4) ensure that
vehicles are not loaded beyond their corresponding loading capacity in terms of mass and
volume at the depot, whereas constraints (A5) and (A6) ensure that the payload is not
exceeded in terms of mass and volume at each node. Constraints (A7) and (A8) ensure
all demands are satisfied within nt identical trips performed either by a single vehicle or
nt identical vehicles. The condition of minimum nt implies loading the vehicles as much
as possible loads with a feasible loading–unloading amounts of freight given by mi

L,j and

mi
U,j. It should be noted that if a mission is defined to be of the multi-trip type, i.e., it

includes non-identical trips, nt must be determined separately for each trip. Furthermore,
correspondingly, the value of Ni

vmax,j would equal the maximum of all nt values determined.
The optimization problem (A1)–(A8) is solved using a stochastic optimization method,
such as PSO.

Appendix B. Vehicle–Infrastructure Optimization Design Sets

As regards to optimization problem (11), the design space (or search space) Si
RV is

an ns + 1 dimensional space, wherein each dimension relates to one optimization design
variable. As an example, for the case study problem, the range of a dimension was defined
by a set of discrete parameters, such as sets of available routes, vehicle-design sets, loading–
unloading design sets, and recharging infrastructure design sets. Thus,

Si
RV = {SRV,0, SRV,1, . . . , SRV,ns} = (A9)

{ X i
r︸︷︷︸

set of routes

, CEH, typeem, Nem, typepack, Npack, typeice︸ ︷︷ ︸
vehicle design sets

,

LU1stTr,k, LU2ndTr,k︸ ︷︷ ︸
loading–unloading scheme

, RCk︸︷︷︸
Recharging power

}, ∀ k ∈ Ii
n

where

CEH = {Conventional, Fully electric, Hybrid}
typeem = {EM1, EM2, EM3}
Nem = {2, 4, . . . , 2× Naxles}
typepack = {pack1}
Npack = {1, . . . , Npackmax}
typeice = {ICE4lit, ICE6lit, ICE8lit, ICE11lit, ICE13lit, ICE16lit} (A10)

∀ k ∈ Ii
n :

LU1stTr,k = {No-loading–unloading, On-board lift, Straddle carrier,
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Additional semitrailer, On-board waiting}
LU2ndTr,k = {No-loading–unloading, On-board lift, Straddle carrier,

Additional semitrailer, On-board waiting}
RCk = {0, 10, . . . , 180 kW}

where Si
RV denotes a design space or search space and SRV,j, j = 0, . . . , ns denotes design

sets or dimensions of that space; X i
r is a set of available routes for mission i; CEH is a design

set that allows selection between conventional, fully electric, and plug-in hybrid propulsion
systems; typeem is a design set containing different types of electric motors. Corresponding
specifications can be found in Appendix F. The parameter Nem refers to the number of
electric motors used for propulsion. All electric motors installed in a vehicle were of the
same type and specified by typeem. An assumption made herein was that all propelled
axles employed close-wheel transmission, and thus, utilized electric motors. Thus, Nem
also provides a measure of the number of propelled axles. The maximum number of
electric motors equaled (2 Naxles), where Naxles denotes the total number of axles in a
vehicle. The parameter typepack specifies a design set comprising different types of battery
packs, specifications of which are provided in in Table A5. Parameter Npack denotes the
number of battery packs specified by typepack. The maximum number of battery packs
was constrained by Npackmax to bound the range of this design variable. Parameter typeice
contained all possible choices of ICE, which mainly differed in size, and thus, maximum
output power; LU1stTr,k and LU2ndTr,k represent all possible loading–unloading schemes
of the first and second trailers at the kth node, respectively; and finally, RCk specifies the
recharging power at the kth node. Zero charging power at a node implies that there exists
no charging station at that node. It should be noted that typeem, Nem, typepack, and Npack
have no significant effect on vehicle dynamic model and cost evaluation if the selected
propulsion system is of the “conventional” or combustion-powered type.

In general, the loading–unloading scheme and recharging power must be decided for
each node comprising a mission. However, based on problem requirements and available
information, these can be known in advance at some nodes, and can thus, be excluded from
the set of design variables. Moreover, loading–unloading schemes must be determined
separately for each trailer. If a vehicle does not have a second trailer, the value of LU2ndTr,k
is neglected, and the cost associated to it equals zero.

Selection of one amongst different vehicle combinations or loading capacities is not
included in (A9) because the optimization problem (11) must first be solved based on a
given and fixed loading capacity.

The design space described in (A9) is defined for the case study problem described in
Section 5. Generally, it can include any sought parameter of the vehicle or transportation
task provided that there exists a proper model relating the parameter being sought to the
objective function, vehicle design, or transportation task. Optimization design variables ak
and their corresponding range SRV,k, related to stage A, are depicted in Figure A1, for a
mission comprising only two nodes.

Appendix C. Rules of Loading–Unloading

Rules prescribed for loading–unloading operations are as follows. Mathematical
formulations are not provided to avoid rotational complexity.

� No-loading–unloading of a container corresponds to no action and no costs. However,
at least one trailer or container must be loaded or unloaded at a node.

� The scheme “on-board waiting” corresponds to no investment cost, while waiting
time leads to operational cost.

� If, at a node, an on-board lift is installed on a vehicle unit, investment cost of the
on-board lift is calculated only once for that unit at all other nodes.

� If a straddle carrier is already selected as a loading–unloading scheme for a trailer it
may be employed for the other trailer with no extra investment cost.
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� The cost of off-line container loading–unloading has been assumed to be the same for all
schemes, thereby it has not been included in the cost function of the optimization problem.

� It has been assumed that a vehicle operation can be scheduled in a manner that does
not block operation of other vehicles.

� It has been assumed that up to 12 vehicles may share an additional semitrailer or a
charging station.

� In (A9), one of the design variables is the number of electric motors used for propulsion
on driven axles. Each driven axle has two electric motors, for hybrid and fully electric
vehicles. In the case study problem, the location of the driven axles, as well as the location
of battery packs, are not among the design variables, thus a rule needs to be set for
their positioning in different units. Otherwise, in case of having additional semitrailers
in a fleet it would be unclear if an additional semitrailer has a propelled axle, or if it
should carry battery packs. The set rule is as follows. The rear axle group of the first unit
(i.e., truck) has the highest priority of being propelled; then, axles of dolly or the front
axle of the truck; next, axles of the first (i.e., front semitrailer); and finally, the second
semitrailer. The same ordering of units holds for positioning of the battery packs. Here,
the maximum number of semitrailers are two, as depicted in Figure 10.

� If several customers load on a same trailer then employing an additional semitrailer is
only possible for the first visited customer during a trip. Likewise, if several customers
unload a same trailer then employing an additional semitrailer is only possible for the
last visited customer.

� The first customer that uses an additional semitrailer switches it with the last semi-
trailer of the vehicle combination. This requirement is needed to minimize the cost, if
the first semitrailer of the vehicle combination has a propulsion hardware.

� At most, two customers can use a same semitrailer for loading–unloading employing
an on-board lift or a straddle carrier. This requirement is needed since the smallest
allowed container has 33 m3 capacity, while a semitrailer may carry 66 m3.

Available routes

Number of propelled axles

Conventional-Electric-Hybrid

Type of electric motors

Type of battery packs

Number of battery packs

Loading-unloading scheme

Size of ICE

Recharging infrastructure

a0

a1

a2

a3

a4

a5

a6

a7

a8

Loading-unloading schemea9

a10

a11

a12

Second trailer

First trailer

Figure A1. Schematic of vehicle-infrastructure design variables and their corresponding range for a
mission comprising two nodes.
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Appendix D. Missions and Routes

Node set of transportation network is defined as {Dry port, C1, C2, C3, C4, Seaport}
with index set V = {0, 1, 2, 3, 4, 5}. In this study, the transportation network is a multi-
graph. The arc set between dry port and seaport is h(0, 5) = {r11r21, r11r22, r11r23, r12r21,
r12r22, r12r23}, nh05 = 6, while there exists only one arc between all other pair of nodes. An
arc connecting a pair of nodes (q, p), (q, p) ∈ V, is defined by (q, p, l), l ∈ {1, . . . , nhqp}.

In the case study the set of missions Xm comprises three missions:

Xm = {1, 2, 3} (A11)

Each mission, partly or completely, satisfies entire transportation demands and might
contain one or several cyclic routes including multiple-trips. A single cyclic route is
exclusively selected as the best route for performing the mission by implementing the
optimization process described in stage B. Multiple-trips refer to routes where node 0
(i.e., depot) is visited twice or more by non-identical trips, while a single cyclic route is
selected for each trip.

The first mission X i
r, i = 1 ∈ Xm, includes all nodes of the network (i.e., I1

n = V). Its
routes are defined as follows.

X1
r = {R1

1, R1
2, R1

3, R1
4, R1

5, R1
6} =

{((0, 1, 1), (1, 2, 1), (2, 3, 1), (3, 4, 1), (4, 0, 1), (0, 5, 1), (5, 0, 4)),

((0, 1, 1), (1, 2, 1), (2, 3, 1), (3, 4, 1), (4, 0, 1), (0, 5, 2), (5, 0, 4)),

((0, 1, 1), (1, 2, 1), (2, 3, 1), (3, 4, 1), (4, 0, 1), (0, 5, 3), (5, 0, 4)),

((0, 1, 1), (1, 2, 1), (2, 3, 1), (3, 4, 1), (4, 0, 1), (0, 5, 1), (5, 0, 1)),

((0, 1, 1), (1, 2, 1), (2, 3, 1), (3, 4, 1), (4, 0, 1), (0, 5, 2), (5, 0, 2)),

((0, 1, 1), (1, 2, 1), (2, 3, 1), (3, 4, 1), (4, 0, 1), (0, 5, 3), (5, 0, 3))}

The second mission X2
r comprises seaport and dry port (i.e., I2

n = {0, 5}), and six
cyclic routes defined as follows.

X2
r = {R2

1, R2
2, R2

3, R2
4, R2

5, R2
6} =

{((0, 5, 1), (5, 0, 4)),

((0, 5, 2), (5, 0, 4)),

((0, 5, 3), (5, 0, 4)),

((0, 5, 1), (5, 0, 1)),

((0, 5, 2), (5, 0, 2)),

((0, 5, 3), (5, 0, 3))}

The third mission includes freight distribution from dry port to local companies
comprising nodes I3

n = {0, 1, 2, 3, 4}. The corresponding cyclic route is defined as follows.

X3
r = {R3

1} =
{((0, 1, 1), (1, 2, 1), (2, 3, 1), (3, 4, 1), (4, 0, 1))}

It should be noted that a same arc can have two directions with slightly different
topography.

Appendix E. Vehicle Dynamic Model

Appendix E.1. Vehicle Longitudinal Dynamic Model

Longitudinal equation of motion can be described as follows.

Fwh(s) = m(s) v̇(s) + Fr(s) (A12)
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where m(s) is mass of the loaded vehicle, v̇(s) is the acceleration, and Fwh(s) is the sum of
propulsion and brake-actuated longitudinal forces of all wheels acting on wheels contact
patch with the road at distance traveled s. The resistant force Fr(s) is defined by

Fr(s) = m(s) g fr cos(φ(s)) +
1
2

ρa Af cd v(s)2 −m(s) g sin(φ(s)) (A13)

where φ is road grade angle, positive downhill, and g, fr, ρa, Af, cd and v denote grav-
itational acceleration, rolling resistance coefficient, air density, front area of the vehicle,
aerodynamic drag coefficient and velocity (0 < v), respectively. Rolling resistances are,
physically, torques acting on the wheels but, for energy consumption evaluation, they can
be represented as forces acting on the vehicle body.

The independent variable is distance traveled s rather than time t, because the driving
cycle, i.e., road slope, speed limits and consumer location are functions of distance traveled.
The time derivative in space domain is described by

v̇(s) =
dv(s)

dt
=

dv(s)
ds

ds
dt

=
dv(s)

ds
v(s) (A14)

The gross combination mass, i.e., the mass of the loaded vehicle, can be described
as follows.

m(s) =mv + Nem meldrive + Npack mpack + mice+ (A15)

mL(s)−mU(s) + mobl

where mv is the vehicle curb mass excluding drivelines, powertrain, engines, and battery
packs, and Nem, mElDrive, Npack, mpack, mice, mL(s), mU(s) and mobl are number of electric
motors, mass of an electric motor and its transmission, number of battery packs, mass of a
battery pack, mass of ICE and its associated transmission, mass of loaded freight, mass of
unloaded freight and mass of the on-board lift (if any), respectively.

Equation (A12) is a differential equation which needs to be integrated; however, Fwh(s)
and v̇(s) are unknowns. Therefore, a speed reference signal vref(s) needs to be used, e.g., a
representative or the road legal speed limit. The vehicle tries to keep the reference speed
within the constraints of the vehicle powertrain and power sources. Given the reference
speed vref(s), the achieved acceleration can be calculated as follows.

v̇(s) =



v̇ref(s), Fwhmin(s) ≤ Fwh(s) ≤ Fwhmax(s)

Fwhmax(s)− Fr(s)
m(s)

, Fwh(s) > Fwhmax(s)

Fwhmin(s)− Fr(s)
m(s)

, Fwh(s) < Fwhmin(s)

(A16)

where, Fwhmax(s) and Fwhmin(s) are the limits of the longitudinal force delivered by propul-
sion and braking actuation given by

Fwhmax(s) = min(
Tmax Ratiomax

R
,

Pmax

v(s)
) (A17)

Fwhmin(s) = max(
Tmin Ratiomax

R
,

Pmin

v(s)
) + Ffri(s) (A18)

where T and P are the torque and power of the electric motors or ICE, acting on wheels,
respectively, Ratiomax is the transmission total final ratio, R is the wheel radius, and Ffri is
the force generated by friction brake.
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Furthermore, Fice and Fem are defined as propulsion forces actuated by ICE and electric
drivelines, respectively, on the contact patch of the wheels as follows.

Fwh(s) = Fice(s) + nemFem(s) + Ffri(s) (A19)

where nem is the number of electric motors. It should be noted that the road-wheel grip limit
and tire slip models are not considered, assuming smooth driving on normal road friction.

After calculating the actual speed v(s), using Equation (A16), the travel time ttor spent
on road during a mission can be calculated according to

ttor =
∫ sf

0

ds
v(s)

(A20)

where sf is the length of the mission.

Appendix E.2. Conventional Vehicle and Internal Combustion Engine Model

In this study, the data of highest efficiency versus the normalized power were used for
describing different diesel internal combustion engines. It was assumed that a vehicle is
equipped with a tightly stepped gearbox with fast changes, or with a continuous variable
transmission, and the control system selected the transmission ratio to keep the ICE
operation on the highest efficiency for each requested power. The maximum efficiency
versus normalized power Pice

Picemax
is given in Table A1, where a proper interpolation needs

to be performed for continuous approximation of the efficiency. The ICE power Pice is can
be calculated as follows.

Pice(s) =
1

ηctr
Fice(s) v(s), Picemin ≤ Pice(s) ≤ Picemax (A21)

where ηctr is the continuous variable transmission efficiency.For the positive propulsion
the ICE power cannot drop below the minimum value given in Table A1. Therefore, the
torque and power limits at the wheels level needed for Equations (A17) and (A18) can be
calculated as follows, assuming no engine brake is employed.

Pmax = ηctr Picemax

Pmin = ηctr Picemin (A22)

Tmax = ηctr Ticemax

Tmin = ηctr Ticemin

By change of variable s = v t, the fuel consumption of one trip Fc is

Fc =
1

Epgf ηice Df

∫ ttor

0
Pice(t) dt. (A23)

where ηice is the maximum efficiency of ICE, Epgf is energy per mass of diesel fuel, Df is
the fuel density, and ttor is the travel time on road given by Equation (A20). The value of
parameters can be found in Appendix F.

Table A1. Maximum ICE efficiency against normalized power [11].

Normalized power, Pice
Picemax

0.2209 0.2989 0.3768 0.4547 0.5326 0.6105 0.6884 0.7663 0.8442 0.9221 1.0000

ηice 0.1995 0.3438 0.3740 0.3989 0.4101 0.4245 0.4284 0.4284 0.4318 0.4247 0.4156
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Appendix E.3. Fully Electric Vehicle and Electric Drive Model

Total power Pem(s) of an electric motor is given by

Pem(s) =

min(
1

ηtr
Fem(s) v(s), Pemmax), 0 ≤ Fem(s)

max(ηtr Fem(s) v(s), Pemmin), Fem(s) < 0
(A24)

where ηtr is the efficiency of the electric driveline. The charge/discharge power of the
battery packs can be calculated as follows, provided that the state of charge (SOC) of the
battery packs is within the limits, i.e., SOCmin ≤ SOC(s) ≤ SOCmax.

Pb(s) = nem
(

Pem(s) + Pemloss(s)
)
+ npackPpackloss(s) (A25)

Ppackmin ≤
Pb(s)
npack

≤ Ppackmax

where Pb(s) = npackPpack(s) is the total power provided by npack battery packs that are
connected in parallel, Ppack is the power of a single battery pack, Pemloss(s) and Ppackloss(s)
are energy losses in the electric motor and a battery pack (always positive). Therefore, the
limits of power and torque acting on the wheels of a fully-electric vehicle can be calculated
as follows.

Pmax = ηtr min(npackPpackmax − nemPemloss(s)− npackPpackloss(s), nemPemmax)

Pmin =
1

ηtr
max(npackPpackmin − nemPemloss(s)− npackPpackloss(s), nemPemmin) (A26)

Tmax = ηtr nemTemmax

Tmin =
1

ηtr
nemTemmin

Appendix E.3.1. Battery Pack Energy Loss

The energy loss in battery packs, with a known resistance Rbp is calculated as follows.

Ppackloss(s) = Ipack(s)2 Rpack(s) (A27)

where the current Ipack is given by

Ipack(s) =
nem(Pem(s) + Pemloss(s))

npackVpack(s)
(A28)

where Vpack = 600 V is the voltage of the battery packs. Battery pack voltage and resistance
generally functions of state of charge; however, in this paper, they are assumed to be
constants. Moreover, it is assumed that the voltage drop as the result of the battery
resistance is considerably smaller than Vpack. Refer Table A5.

Appendix E.3.2. Electric Motor Energy Loss

For calculating Pemloss, in this paper, it is assumed that the electric motor efficiency is
a convex and quadratic function of the electric motor input torque T(s) and speed ω(s) in
the form

Pemloss(s) = kω ω(s)2 + kT T(s)2 (A29)
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Furthermore, it is assumed that electric motor torque and speed can be selected such
that highest efficiency is achieved for a linear relation T(s) = b ω(s) [40]. Therefore, the
lowest power loss of electric motors can be calculated as follows.

Pemloss(s) = 2 kω ω(s)2 (A30)

where ω is given by

ω(s) =

√
Pem(s)

b
(A31)

where kω and b =
√

kω
kT

are constants related to the loss map of the electric motor. Refer
Table A4.

Finally, the consumed electric energy Eel can be calculated as follows.

Eel =
∫ sf

0
Pb(s) ds. (A32)

Appendix E.4. State of Charge and Trip Time

SOC needs to be calculated in order to estimate the feasibility of the selected hardware
as well as the charging time spent in a charging station. The SOC between charging stations
can be calculated as follows.

SOC(s) = SOC(si) +
∫ s

si

−Pb(S)
Ebmax

dS, si < s ≤ si+1, ∀i ∈ In, (A33)

where si is the distance of node i from the starting position, In denotes the index set of
all loading–unloading nodes in the mission, and SOC(si) is the SOC of the battery packs
immediately after leaving node i, given by

SOC(si) = SOC(s−i ) +
∫ tch,i

0

Pch,i(τ)

Ebmax
dτ, (A34)

where SOC(s−i ) is SOC at arrival to node i, Pch,i is the recharging power from the charging
station at node i, tch,i is the charging time, and Ebmax denotes the maximum energy capacity
of the battery packs. A constant charging power and a linear charging time with respect to
SOC are assumed [50]; therefore,

SOC(si) = SOC(s−i ) +
tch,i Pch,i

Ebmax
. (A35)

For a plug-in hybrid vehicle, the recharging time tch,i can be assumed the same as the
loading–unloading time calculated as

tch,i = min
(
max(tlu,i, ts,i),

[SOCmax − SOC(s−i )] Ebmax

Pch,i

)
, (A36)

where tlu and ts are the loading–unloading time and a fixed minimum service time, respec-
tively. In Equation (A36), it is assumed that the charging time ends if SOCmax is reached.

For an electric vehicle, however, the recharging time might be longer than the loading–
unloading and service times at a node because it must be ensured that the vehicle can reach
the next charging station. Let ∆SOC(s−i+1) = SOC(s−i+1)− SOC(si) be the charge required
to reach node (i + 1) from node i. This value can be calculated in advance by simulating
the vehicle motion on the road, without considering a minimum limit on SOC.

To reach node (i + 1), ∀i ∈ In, the following condition must hold:

SOC(s−i+1) ≥ SOCmin, (A37)
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therefore,

[∆SOC(s−i+1) + SOC(si)] ≥ SOCmin, (A38)

and by using (A35) in (A38):

[∆SOC(s−i+1) + SOC(s−i ) +
tch,i Pch,i

Ebmax
] ≥ SOCmin, (A39)

therefore,

tch,i ≥
[SOCmin − ∆SOC(s−i+1)− SOC(s−i )]Ebmax

Pch,i
, (A40)

and

tch,i =



min
(

max
(
tlu,i, ts,i,

[SOCmin − ∆SOC(s−i+1)− SOC(s−i )]Ebmax

Pch,i

)
,

[SOCmax − SOC(s−i )] Ebmax

Pch,i

)
, Pch,i > 0

0, otherwise.

(A41)

Finally, the total trip time ttr can be calculated as

ttr = ttor + ∑
i∈In

max(tlu,i, ts,i, tch,i). (A42)

Appendix E.5. Battery State of Health

Battery degradation and battery replacement during the vehicle service life are inputs
for TCO calculations of BEHVs and hybrid vehicles. In this study, the battery is replaced
with a new one when the battery capacity reaches 80% of the initial capacity and evalua-
tion of the state of health of lithium-iron-phosphate batteries Sh was inspired by [51–53]
according to

Sh(t) = 1− 1
2 Ncycle Ebmax

∫ t

0
(|Pb(τ)|+ |Pch(τ)|)dτ (A43)

where Ncycle is the number of charge-discharge cycles before the end of life of the battery. In
general, Ncycle is a function of various parameters. In this study, however, it was assumed
to be constant for a given battery type. If t denotes the vehicle lifetime, the number of
battery replacement nrep can be calculated as

nrep = −bSh(t)c (A44)

where b c gives closest lower integer.

Appendix E.6. Plug–In Hybrid Vehicles

In plug–in hybrid vehicles the total power must be split between electric motors
and ICE according to an energy management strategy [69]. A computational-efficient
rule-based energy management strategy has been implemented in this paper, which was
validated compared to a predictive energy management strategy in [49].

Rule-based controller can be explained as follows. The priority of providing the
requested power for propulsion and braking first goes to electric driveline. Any additional
positive or negative requested power that passes the limits of the electric driveline must be
provided by ICE or friction brakes in parallel. ICE must not work in a power less than a
threshold. The threshold corresponds to the power where ICE efficiency drops to less than
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0.2. If the requested positive power is less than the threshold, the additional ICE power
can be used for charging the batteries.

Appendix E.7. Operating Cycle

Operating cycle refers to all information about surrounding environment and road
influencing driving situation [54]. In this study, the operating cycle has been static and
deterministic, i.e., the input data about a mission and its driving cycle do not evolve in
time and known in advance.

Operating cycle is characterized by the reference speed and topographic data, i.e., ele-
vation, curvature and length of the road. The reference speed is limited by the road legal
speed limit and varies in different sections of the road; for example, on rural areas, highway,
red light and alongside a curvature, depending on the daily average speed of the respective
section. The daily average speed is overridden, while negotiating a curvature, so that the
vehicle lateral acceleration remains below 1.5 m/s2. The influence of real-time varying
traffic was not included.

Appendix F. Parameters

The prices and values of parameters are obtained from Volvo group trucks technology.
The data presented in Tables A2–A8 are used for cost evaluation, and in the vehicle dynamic
model presented in Appendix E.

Table A2. Physical parameters.

Gravity, g, [m/s2] 9.81 Energy per gram fuel, kJ/gr 4182.7
Rolling resistance, fr 0.005 Fuel density, [kg/m3] 832

Air drag, cd 0.4 Mass of on-board lift, [ton] 2
Air density, ρa, [kg/m3] 1.184

Table A3. Chassis data of heavy combination vehicles (HCV).

Name HCV1 HCV2 HCV3 HCV4

Gross combination mass (GCM), [ton] 25 35 60 80
Loading capacity, [m3] 33 66 99 132

curb weight, [ton] 10 18 25 33
Number of axles 3 6 8 11
Wheel radius [m] 0.5 0.5 0.5 0.5
Front area [m2] 10 10 10 10

Maximum drive ratio 25 25 25 25
Price, [ke] 110 151 186 217

Insurance, [e/year] 2240 3000 3360 4120
Tax, [e/day] 6 6 6 6

Table A4. Electric motors specification.

Electric Motor Name EM1 EM2 EM3

Price, cem, [e] 5000 5500 8000
max torque, Tmax, [N·m] 221 266 400
Max power, Pemmax, [kW] 107 104 70
Max speed, ωmax, [rad/s] 1110 1047 366

Mass including close-wheel transmission, meldrive, [kg] 152 165 235
kω 0.0078 0.0100 0.0431
b 0.2975 0.3804 1.6362
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Table A5. Battery pack specification (a single pack).

Pack Name pack1

Pack price [e] 26,000
Max charge power, −Ppackmin, [kW] 33.75

Max discharge power, Ppackmax, [kW] 67.5
Energy capacity, Ebmax, [kWh] 33.75

Pack mass, mpack, [kg] 250
pack voltage, Vpack, [V] 600

pack resistance, Rpack, [Ohm] 0.336
Maximum state of charge 0.9
Minimum state of charge 0.2

Table A6. ICE data.

Name ICE4l ICE6l ICE8l ICE11l ICE13l ICE16l

Maximum power, [kW] 149 234 298 410 485 550
Maximum torque, [N m] 900 1400 1900 2300 2600 2800

Mass, [kg] 400 450 500 550 600 650
Price ICE and transmission, [e] 11,250 15,000 18,750 22,500 26,250 30,000

Table A7. Loading–unloading (LU) schemes data.

Name OBL SC AST OBW

LU time, [min/33m3] 20 25 15 44
Price, [ke] 150 40 31 0

Additional price, container 33 m3, [ke] 6 6 6 0
Additional price, container 66 m3, [ke] 10 10 10 0

Table A8. Mission and other cost data.

Number of working days per year, nd 220 Interest rate, r 0.05
Transmission cost for one EM [e] 1500 Transmission efficiency, ηtr 0.95

Driver salary [e/h] 25 Truck insurance, [e/year] 2240
Fuel price, [e/lit] 1.4 Trailer insurance, [e/year] 760

Electricity price [e/kWh] 0.1 Dolly insurance, [e/year] 360
Life time, ny, [year] 8 Maintenance relative to energy cost 0.27

Charging station [e/kW] 1000
Required startability, [%] 8 Required acceleration capability, [s] 29

Required gradeability, [%] 2 Required down-grade holding capability, [%] 2
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