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Abstract: Transmission, distribution, and micro-grid system operators are struggling with the in-
creasing number of renewables and the changing nature of energy demand. This necessitates the use
of prognostic methods based on ever shorter time series. This study depicted an attempt to develop
an appropriate method by introducing a novel forecasting model based on the idea to use the Pareto
fronts as a tool to select data in the forecasting process. The proposed model was implemented to
forecast short-term electric energy demand in Poland using historical hourly demand values from
Polish TSO. The study rather intended on implementing the range of different approaches—scenarios
of Pareto fronts usage than on a complex evaluation of the obtained results. However, performance
of proposed models was compared with a few benchmark forecasting models, including naïve
approach, SARIMAX, kNN, and regression. For two scenarios, it has outperformed all other models
by minimum 7.7%.

Keywords: electric energy demand; Pareto fronts in forecasting; K nearest neighbors (kNN) algo-
rithm; nondominated solutions; power engineering challenges

1. Introduction

After decades of a rather stable situation in the electric power engineering sector, al-
most every year brings new challenges. This sector faces dynamically growing intermittent
sources of production of electric energy (wind, PV) [1], changes in energy storages [2],
changes in electricity demand (e-mobility, standard of living, social influence) [3,4], changes
in existing electricity production methods (pollution, climate) [5]. All of them cause the
forecasting to be more complicated and more unreliable.

The obvious point is that accurate forecasting is an important part of any successful
planning process. In the electric energy sector, transmission system operators (TSOs),
distribution system operators (DSOs), commercial operators (COs), or commercial and
technical operators (CTOs) perform numerous different forecasts to plan their activities in
an optimal way.

The high accuracy forecasts enable, particularly in the short-term, the TSOs to pro-
vide more secure power system operation, i.e., to balance demand with production and
minimalize its costs. The impact of forecasts’ accuracy is multilevel: it influences not only
the security, reliability of the power system, and cost of electrical energy production, but
also procurement of both electrical energy and frequency reserves. Moreover, the accuracy
influences the comfort of dispatchers’ everyday work, which is due to operation on more
reliable sets of data about the foreseen situations in the power system for the following,
future time steps, used by them in the security management of power systems. In the long
run, forecasts’ accuracy will influence the possibility of green energy inclusion in energy
mix and proper management of energy storage which can give benefits both for customer
and energy provider [6].
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As mentioned, accuracy is crucial in TSOs’ planning and operating processes. In
consequence, over the years many TSOs’ projects have concentrated on inventing new
forecasting models or adjusting the existing ones [7,8].

Future energy systems will create more complex connections and dependencies than
the current hierarchical connection of TSOs and DSOs. Most countries change their econ-
omy to be environment friendly. That results in emergence of many new entities generating
green energy and also many entities using energy responsibly. Responsibly means also
usage of every possible energy source and form—not only electric energy. We should be
able to manage and optimize multi energy systems [9,10], where harmoniously cooperating
thermal, gas, electricity, and other sources will create new quality through synergy [11–13].
Undoubtedly, it will be important to use high-speed computer networks to effectively
manage and control all entities [14]. Not only information about energy control signals
must be transmitted but also predictions on different system levels must be elaborated and
dispatched.

The aforementioned development of computer networks and saturation with mea-
suring devices increases the amount of available data, which can be the basis for making
forecasts. This influences the creation of an apparent picture that the time series of phenom-
ena are sufficient to use any prognostic methods. But the mentioned dynamic changes in
the energy sector result in variability of relationships between explanatory and explained
variables. In other words, prediction models should be elaborated often. This entails
necessity to develop and use forecasting methods that are capable of producing precise
forecasts on the basis of small amount of data. This means we should have a method
that uses short time series but is better than naïve approach or k nearest neighbors (kNN)
algorithm. A current trend in energy forecasting is the use of increasingly complex and
ensemble methods consisting of LSTM [15] and convolutional [16–19] neural networks.
This ensures high quality forecasts, but it is in contradiction with the possibility of using
short time series.

In this article, the authors, whose scope of expertise are power systems, propose a
new forecasting model evaluated on the short-term electric energy demand forecasting
problem (next hour demand). Presented model bases on the historic data sets, combining
both Pareto fronts calculation to choose the data from the training set and one of the
methodologies to compute the forecast value like the least-squares method. The similar
model based on Pareto fronts was presented in [20], but they aimed to identify anomalies
among data rather than to forecast values.

Pareto fronts have been used as parts of models forecasting different aspects of power
systems [21–24], but never as proposed in this article.

The authors, in this article, focus rather on the range of different approaches to
Pareto fronts usage in forecasting and its advantages and disadvantages than on complex
evaluation of the obtained results. The process of evaluation will be in the scope of further
publications.

The remainder of this article is organized as follows: Section 2 demonstrates the
proposed idea of Pareto fronts application for forecasting; Section 3 presents results of
experiments; Section 4 discusses the results; Section 5 concludes the article.

2. Materials and Methods
2.1. The Idea behind the Pareto Fronts Usage

The idea to use the Pareto fronts as a tool to select data in the forecasting process
originated from the fact that similar, well-known and described in many articles [25–27]
machine learning algorithm, k nearest neighbors (kNN), has been successfully applied
to that task. This algorithm has been used and described in the literature both as a
classification algorithm [28,29] and as a forecasting model. This algorithm is a powerful
forecasting tool due to the combination of its simplicity and accuracy. It has been provided
in this article, as the kNN algorithm had been chosen as one of the benchmark models.
In the kNN models k represents the model’s parameter, i.e., the number of data (facts)
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selected from the training data set, which are the k closest ones in terms of the explanatory
variables (e.g., calculated as the Euclidean distance) to the forecast one. The forecast value
is calculated based on the selected k nearest training data values, e.g., as their arithmetic
average (as in the Figure 1). Hence, in this approach, the number of similar data is the main
factor determining the chosen data from the training data set (set items are used to make
the forecast) [30].
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Figure 1. Example of choosing k nearest neighbors from the training data set for k = 7.

The authors’ aim was to challenge kNN’s approach and verify a similar concept. The
new model proposed in this article assumed that the process of choosing similar data, from
the training data set, was based on their belonging to the Pareto fronts rather than on the
predefined number of nearest data points.

The general idea of using Pareto fronts for forecasting is presented in Figure 2.
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The entire process of forecasting begins with the construction of a set of facts from
historical data. A single fact (as it is in the case of neural networks) is understood as a set
consisting of a subset of the values of the explanatory variables and the corresponding one
value of the dependent variable. Facts are constructed from historical data. The method
of including the explanatory data in the subset depends on the adopted data scenario on
which the forecast is to be based.

Then the time quantum for which the forecast is to be determined should be chosen.
For this quantum, the values of the explanatory variables should be determined (in the
same way as a subset of the explanatory variables for individual fact).

The key step is to select, according to the assumed scenario, a subset of facts using
the Pareto front. Central point location for determining of Pareto fronts is stated by
coordinates—values of the explanatory variables of the predicted quantum.

The last step is to determine the appropriate forecast using the assumed method and
using the subset of facts selected in the previous step. The methods/scenarios for selecting
Pareto fronts and the forecast calculation are described in following sections.

2.2. Theory and Examples of Pareto Fronts

In optimization the Pareto front represents the set of nondominated solutions being
chosen as optimal if no objective can be improved without sacrificing at least one other
objective [31,32].

Nondominated solution is defined in [33] as “A point, x∗ ∈ X, is Pareto optimal if
there does not exist another point, x ∈ X, such that F (x) ≤ F (x∗), and Fi (x) < Fi (x∗) for at
least one function.” In the authors’ approach to forecasting and choosing nearest neighbors,
Pareto front represents training data points that are nondominated in sense of distance (in
many dimensions) to testing point. Each explanatory variable creates one space dimension.

In other words, in case of problem with two explanatory variables (two dimensions
∆X,∆Y) and when sought values for Pareto front are minimalized, as in the Figure 3, the
points on the Pareto front (represented by the red dots in the Figure 3) are:

• Those elements whose values are the closest to the zero value in dimension ∆X or ∆Y;
• Those elements which with one another have one value closer to zero in one dimen-

sion than other elements and one value further than other elements in the second
dimension.

Mentioned above two-dimensional elements have their values calculated:

• For ∆X dimension as differences between testing data value representing value con-
nected with first explanatory variable X and relevant corresponding training example’
value of this variable;

• For ∆Y dimension as differences between testing data value representing value con-
nected with the second explanatory variable Y and relevant corresponding training
example value of this variable.

As a result there is no unequivocal methodology to compare the points on Pareto front
to one another in situations when parameters represented by the two dimensions (∆X,∆Y)
are so different from each other (for example price and color). The testing data represents
data for which the forecast value is calculated.



Energies 2021, 14, 3204 5 of 19Energies 2021, 14, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 3. The example of training data belonging to the first Pareto front in one quadrant. 

In the proposed model, as compared to kNN algorithm, there is no parameter directly 
defining the number of training data points belonging to the Pareto fronts. In conse-
quence, the selection of the data for the forecast computation is, while still structured, 
randomized. This can be viewed as an advantage, as the users are not required to deter-
mine the optimal number of ‘k’ neighbors themselves, and a disadvantage considering the 
lack of control over the data selection process. However, the proposed model contains a 
new, different parameter defining the number of Pareto fronts, from which training data 
are used to set forecast values. An example of three Pareto fronts is presented in Figure 4. 

 
Figure 4. The example of testing data belonging to the first, the second, and the third Pareto front 
in one quadrant. 

2.3. Implementation Options 
There are many methods of applying proposed Pareto fronts model to select data 

from training data set and to use them further in the forecasting process. Those taken into 
account by authors, implemented and verified by them are described and presented be-
low. 

Scenario options and their combination on which Pareto fronts as model has been 
verified as described in Section 3: Application and Results. 

Option 1: The set of training data contains all available training data (there are no 
limitations added, all historic data from the set are treated as the training data). 

Figure 3. The example of training data belonging to the first Pareto front in one quadrant.

In the proposed model, as compared to kNN algorithm, there is no parameter directly
defining the number of training data points belonging to the Pareto fronts. In consequence,
the selection of the data for the forecast computation is, while still structured, randomized.
This can be viewed as an advantage, as the users are not required to determine the optimal
number of ‘k’ neighbors themselves, and a disadvantage considering the lack of control
over the data selection process. However, the proposed model contains a new, different
parameter defining the number of Pareto fronts, from which training data are used to set
forecast values. An example of three Pareto fronts is presented in Figure 4.

Energies 2021, 14, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 3. The example of training data belonging to the first Pareto front in one quadrant. 

In the proposed model, as compared to kNN algorithm, there is no parameter directly 
defining the number of training data points belonging to the Pareto fronts. In conse-
quence, the selection of the data for the forecast computation is, while still structured, 
randomized. This can be viewed as an advantage, as the users are not required to deter-
mine the optimal number of ‘k’ neighbors themselves, and a disadvantage considering the 
lack of control over the data selection process. However, the proposed model contains a 
new, different parameter defining the number of Pareto fronts, from which training data 
are used to set forecast values. An example of three Pareto fronts is presented in Figure 4. 

 
Figure 4. The example of testing data belonging to the first, the second, and the third Pareto front 
in one quadrant. 

2.3. Implementation Options 
There are many methods of applying proposed Pareto fronts model to select data 

from training data set and to use them further in the forecasting process. Those taken into 
account by authors, implemented and verified by them are described and presented be-
low. 

Scenario options and their combination on which Pareto fronts as model has been 
verified as described in Section 3: Application and Results. 

Option 1: The set of training data contains all available training data (there are no 
limitations added, all historic data from the set are treated as the training data). 

Figure 4. The example of testing data belonging to the first, the second, and the third Pareto front in
one quadrant.

2.3. Implementation Options

There are many methods of applying proposed Pareto fronts model to select data
from training data set and to use them further in the forecasting process. Those taken into
account by authors, implemented and verified by them are described and presented below.

Scenario options and their combination on which Pareto fronts as model has been
verified as described in Section 3: Application and Results.
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Option 1: The set of training data contains all available training data (there are no
limitations added, all historic data from the set are treated as the training data).

Option 2: The set of training data is limited exclusively to data representing historical
hours equal to the forecast hour.

Option 3: The forecast value is calculated as the arithmetic average of testing data
belonging to Pareto front/s.

Option 4: The forecast value is obtained as the result of the linear regression calculated
on testing data belonging to Pareto front/s.

Option 5: Explanatory variables are:

(a) Historical hourly demand values for different historic hours (for example training
data is characterized by two explanatory variables, i.e., on ∆X dimension by the
demand in the previous hour (h-1) and on ∆Y dimension by the demand on the same
hour but on the previous day (h-24)).

(b) Days of the week (values are in range from −3 to 3, i.e., value equals 0 when the
forecast hour comes from the same day of the week as the historic hour, for example,
both are Wednesdays).

(c) Hours (values are in range from −11 to 12, i.e., value equals 0 when the forecast hour
is the same as the historic hour from historic day, for example, both are 10 a.m.).

(d) Meteorological data (historical temperature demand values, for example, when train-
ing data is characterized by three explanatory variables and on ∆Z dimension is by
the temperature in the previous hour (h-1)).

Option 6: There are differences in the size of set of training data.
All presented above scenario options have been verified and are presented in Section 3:

Application and Results with necessary examples and results provided.
Additionally, to compare achieved results from Pareto front model the following

benchmark approach, algorithm, and models have been implemented:

• Naïve approach (used as benchmark in [34,35],
• SARIMAX model (different variations of ARIMA model i.e., ARIMA, SARIMA and

SARIMAX used to forecast demand has been described in [36–38],
• K nearest neighbors algorithm,
• Additional ‘no data selection’ model.

Above-mentioned approach, algorithm, and models have been characterized by the
following sets of parameters:

(1) Naïve approach in three variants:

(a) Forecast value for the hour equals previous hour’s value (h-1);
(b) Forecast value for the hour equals the value for the same hour but the previous

day (h-24);
(c) Forecast value for the hour equals the arithmetic average of values from points

a and b (h-1, h-24).

(2) SARIMAX model with following values verified and giving the best results for the
analyzed sets of data:

(a) Trend parameters:

• autoregression order (p) equals 2;
• difference order (d) equals 1;
• moving average order (q) equals 2.

(b) Seasonal parameters:

• autoregressive order (P) equals 1;
• difference order (D) equals 1;
• moving average order (Q) equals 0;
• the number of time steps for a single seasonal period (m) equals 24.

(3) K nearest neighbors algorithm with the k parameter’s value is from set (1, 7).
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(4) ‘No data selection’ model in which forecast value is calculated equally to the cor-
responding Pareto front scenarios mentioned above, but the forecast calculation
involves all available training data values without any kind of selection.

Scenario options for Pareto front model verification and benchmark approach, algo-
rithm and models described above have been implemented and described both in two-
and three-dimensional spaces (in Section 3: Application and Results; Sections 3.1 and 3.2,
respectively). Each verification case contains set of results and detailed information about
forecast period, range of available historic data, methodology of forecast value calculations.

For cases in two-dimensional spaces, Pareto fronts have been obtained in all quadrants
individually.

The example of the first Pareto front visualization is presented in Figure 5 and of the
first, the second, and the third Pareto fronts in Figure 6, respectively.
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The values of the elements in basic verification cases represents differences between
the pairs of historical hourly demand values from h-1 and h-24 as explanatory variables (as
described in this Section’s scenario Option 5a). For example, when the demand for 6 p.m.
on 1.06.2018 is forecast, the points in two-dimensional space are characterized by the two
following values:

• The first one as the parameter representing ∆X dimension equals the difference be-
tween the value of demand for one hour before the forecast one which is for 5 p.m. on
1.06.2018 and the value of demand for one of the previous hours from the available
data set like 4 p.m. on 1.06.2018.

• The second one as the parameter representing ∆Y dimension equals the difference
between the value of demand for the hour 24 hours before the forecast one which is
for 6 p.m. on 31.05.2018 and the value of demand for the hour 24 hours before the
hour chosen from the available data set in process of setting parameter ∆X which is
5 p.m. on 31.05.2018.

In that case if the element characterized by historical hourly demand values from
4 p.m. on 1.06.2018 and 5 p.m. on 31.05.2018 is situated on Pareto front, the historical
demand value from 5 p.m. on 1.06.2018 will be used to calculate forecast value.

Based on information from this Section’s scenario Options 3 and 4, forecast value
might be calculated in different ways. Illustration of one of the approaches, which is when
the forecast value is calculated based on linear regression modeled based on values located
on the Pareto fronts, is presented in Figure 7. The presented orange rectangle represents the
plane that most closely fits values (green dots) of the points on Pareto front (here the red
dots) used to calculate forecast value. The green rhomb marks the point on the rectangle
surface, when values of parameters ∆X and ∆Y equal zero, representing the forecast value.
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2.4. Data

The proposed model was implemented to forecast short-term electric energy demand
in Poland using historical hourly demand values from Polish TSO. Polish TSO publishes
historical hourly demand values for Poland on its website https://www.pse.pl/obszary-
dzialalnosci/krajowy-system-elektroenergetyczny/zapotrzebowanie-kse (accessed on 5
September 2018). The exact forecasting task was to predict next hour demand having
available data of hourly demand for previous hours and some additional explanatory
variables—depending on case considered. For each case, the data was specially collected
for all methods compared. The results depicted in this paper are only a small, more
interesting part of numerous experiments.

https://www.pse.pl/obszary-dzialalnosci/krajowy-system-elektroenergetyczny/zapotrzebowanie-kse
https://www.pse.pl/obszary-dzialalnosci/krajowy-system-elektroenergetyczny/zapotrzebowanie-kse
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The set of weather data was provided to authors directly by employees of the Inter-
disciplinary Centre for Mathematical and Computational Modelling at the University of
Warsaw.

3. Results

In this Section, as mentioned in Section 1: Introduction, authors present the range
of different approaches to Pareto fronts usage in forecasting rather than the complex
evaluation of the obtained results. However, to present and compare different scenarios’
results (verification cases) obtained from Pareto front model and benchmark approach,
model, and algorithm within the same verification case and between different cases the
mean absolute percentage error (MAPE) was calculated and used:

MAPE =
1
n ∑n

t=1

∣∣∣∣At − Ft

At

∣∣∣∣·100% (1)

where:
At—The actual hourly value
Ft—The forecast hourly value
n—The total number of the forecast values
The percentage of the error for every forecast horizon is averaged resulting in the

MAPE value for the Pareto front and benchmark approach, model, and algorithm. The
mean absolute percentage error is considered as standard measurement, for electric fore-
casting, in the process of verifying the accuracy of the models [36].

3.1. Results for the Two-Dimensional Spaces

Results for the first verification case are given in Tables 1 and 2. The first verification
case assumptions (in line with Section 2 scenario Options 2, 3, and 5a):

(1) Forecast period: 1–30.06.2018;
(2) Available historic data from: 1.05.2018;
(3) The same historic hours as forecast;
(4) Pareto fronts model uses differences between the pairs of historical demand values

from h-1 and h-24 as explanatory variables;
(5) Forecast value is calculated as arithmetic average of values on Pareto fronts.

Table 1. MAPE values for naïve approach, SARIMAX model, and kNN algorithm for the first verification case.

Naïve Approach [%] SARIMAX [%] kNN [%]

h-1 h-24 h-1,
h-24

(2,1,2)
(1,1,0,24) k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

3.181 7.598 4.470 0.918 1.213 1.223 1.293 1.407 1.446 1.579 1.676

Table 2. MAPE values for Pareto fronts and ‘no data selection’ models for the first verification case.

Pareto Fronts [%] No Data Selection [%]

1 Front 2 Fronts 3 Fronts -

3.511 4.540 5.130 13.660

Results for the second verification case are given in Tables 3 and 4. The second
verification case assumptions (in line with Section 2 scenario Options 2, 4, and 5a, and no
limitations in case of Option 6):

(1) Forecast period: 1–30.06.2018;
(2) Available historic data from: 1.05.2018;
(3) The same historic hours as forecast;
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(4) Pareto fronts model uses historical demand values from h-1 and h-24 as explanatory
variables;

(5) Forecast value is calculated based on linear regression modeled based on values
located on the Pareto fronts/all training data.

Table 3. MAPE values for naïve approach, SARIMAX model, and kNN algorithm for the second verification case.

Naïve Approach [%] SARIMAX [%] kNN [%]

h-1 h-24 h-1,
h-24

(2,1,2)
(1,1,0,24) k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

3.181 7.598 4.470 0.918 1.213 1.223 1.293 1.407 1.446 1.579 1.676

Table 4. MAPE values for Pareto fronts and ‘no data selection’ models for the second verification
case.

Pareto Fronts [%] No Data Selection [%]

1 Front 2 Fronts 3 Fronts -

1.100 0.687 0.705 0.718

Results for the third verification case are given in Tables 5 and 6. The third verification
case assumptions (in line with Section 2 scenario Options 2, 4, 5a, and no limitations in case
of Option 6), with longer forecast period than in the previous cases:

(1) Forecast period 1.06–31.08.2018;
(2) Available historic data from 1.05.2018;
(3) The same historic hours as forecast;
(4) Pareto fronts model uses historical demand values from h-1 and h-24 as explanatory

variables;
(5) Forecast value is calculated based on linear regression modeled based on values

located on the Pareto fronts/all training data.

Table 5. MAPE values for naïve approach, SARIMAX model, and kNN algorithm for the third verification case.

Naïve Approach [%] SARIMAX [%] kNN [%]

h-1 h-24 h-1,
h-24

(2,1,2)
(1,1,0,24) k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

3.203 7.702 4.563 0.889 1.027 0.993 1.019 1.049 1.079 1.144 1.209

Table 6. MAPE values for Pareto fronts and ‘no data selection’ models for the third verification case.

Pareto Fronts [%] No Data Selection [%]

1 Front 2 Fronts 3 Fronts -

1.143 0.703 0.722 0.762

Results for the fourth verification case are given in Tables 7 and 8. The fourth assumptions
(in line with Section 2 scenario Options 1, 4, 5a, and no limitations in case of Option 6):

(1) Forecast period 1–30.06.2018;
(2) Available historic data from 1.05.2018;
(3) The all historic hours;
(4) Pareto fronts methodology uses historical demand values from h-1 and h-24 as ex-

planatory variables;
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(5) Forecast value is calculated based on linear regression modeled based on values
located on the Pareto fronts/all training data.

Table 7. MAPE values for naïve approach, SARIMAX model, and kNN algorithm for the fourth verification case.

Naïve Approach [%] SARIMAX [%] kNN [%]

h-1 h-24 h-1,
h-24

(2,1,2)
(1,1,0,24) k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

3.181 7.598 4.470 0.918 2.360 2.236 2.266 2.249 2.219 2.259 2.267

Table 8. MAPE values for Pareto fronts and ‘no data selection’ models for the fourth verification case.

Pareto Fronts [%] No Data Selection [%]

1 Front 2 Fronts 3 Front -

2.489 2.607 2.705 3.126

Results for the first verification case are given in Tables 9 and 10. The fifth verification
case assumptions (in line with Section 2 scenario Options 1, 4, combination of Options 5a
and 5b, and no limitations in case of Option 6):

(1) Forecast period 1–30.06.2018;
(2) Available historic data from 1.05.2018;
(3) The all historic hours;
(4) Pareto fronts model uses historical demand value from h-1 and difference between

days of the week as explanatory variables;
(5) Forecast value is calculated based on linear regression modeled based on values

located on the Pareto fronts/all training data.

Table 9. MAPE values for naïve approach, SARIMAX model, and kNN algorithm for the fifth verification case.

Naïve Approach [%] SARIMAX [%] kNN [%]

h-1 h-24 h-1,
h-24

(2,1,2)
(1,1,0,24) k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

3.181 7.598 4.470 0.918 3.962 3.505 3.362 3.298 3.273 3.237 3.226

Table 10. MAPE values for Pareto fronts and ‘no data selection’ models for the fifth verification case.

Pareto Fronts [%] No Data Selection [%]

1 Front 2 Fronts 3 Fronts -

3.461 3.232 3.251 3.220

Results for the sixth verification case are given in Tables 11 and 12. The sixth verifica-
tion case assumptions (in line with Section 2 scenario Options 1, 4, combination of Options
5a and 5c, and no limitations in case of Option 6):

(1) Forecast period 1–30.06.2018;
(2) Available historic data from 1.05.2018;
(3) The all historic hours;
(4) Pareto fronts model uses historical demand value from h-1 and difference between

hours as explanatory variables;
(5) Forecast value is calculated based on linear regression modeled based on values

located on the Pareto fronts/all training data.
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Table 11. MAPE values for naïve approach, SARIMAX model, and kNN algorithm for the sixth verification case.

Naïve Approach [%] SARIMAX [%] kNN [%]

h-1 h-24 h-1
h-24

(2,1,2)
(1,1,0,24) k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

3.181 7.598 4.470 0.918 1.002 0.924 0.937 0.934 0.979 1.012 1.038

Table 12. MAPE values for Pareto fronts and ‘no data selection’ models for the sixth verification case.

Pareto Fronts [%] No Data Selection [%]

1 Front 2 Fronts 3 Fronts -

2.536 2.500 2.581 3.207

Results for six verification cases described above are illustrated in Figures 8 and 9. In
the case of proposed approach (Figure 8) best results were obtained for second and third
cases. Other cases gave inferior forecast quality. For mentioned best cases it can be pointed
out that MAPE is maximal for one Pareto front, having minimum for two Pareto fronts, and
goes little up for three Pareto fronts. This is probably due to the fact that points from the
third Pareto front are different from the forecasted point than those from first and second
Pareto fronts. For kNN method (Figure 9) a similar phenomenon is visible. For the best
three cases (first, third, and sixth), best results are obtained for two neighbors. Obviously,
this can be called only a “similar phenomenon” because operation of these two methods is
different.
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Additionally, the impact of the data history length on the forecast accuracy has been
under investigation with the results as in Table 13 (in line with Section 2 scenario Options
1, 4, 5a, and with limitations in case of Option 6):

(1) Forecast period 1–30.06.2018;
(2) Available historic data from 1.05.2018;
(3) The different sets of historic hours;
(4) Pareto fronts models uses historical demand values from h-1 and h-24 as explanatory

variables;
(5) Forecast value is calculated based on linear regression modeled based on values

located on the Pareto fronts/all training data.

Table 13. MAPE values for Pareto fronts models with and without available historic data limitation.

Number of Historic Day Available [%] All Historic Data Available
[%]10 15 20 25 30

1 Front 2.484 2.522 2.569 2.519 2.686 2.489
2 Fronts 2.622 2.646 2.730 2.819 2.955 2.607
3 Fronts 2.714 2.789 2.893 2.921 3.022 2.705

In case of calculation involving three explanatory variables (presented in Section 3.2)
the historical hourly demand values from 2015, not from 2018, were used due to having
more available adequate meteorological data for that year. Therefore, one extra simplified
simulation was run to obtain results for Pareto front model based on two explanatory
variables from 2015 (Table 14) required to have a benchmark for the three-dimensional one.

The benchmark simplified 2015 verification case assumptions (in line with Section 2
scenario Options 1, 4, 5a and no limitations in case of Option 6.6):

(1) Forecast period 1–30.06.2015;
(2) Available historic data from 1.05.2015;
(3) The all historic hours;
(4) Pareto fronts model uses historical demand values from h-1 and h-24 as explanatory

variables;
(5) Forecast value is calculated based on linear regression modeled based on values

located on the Pareto fronts/all training data.
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Table 14. MAPE values for Pareto fronts and ‘no data selection’ models for the benchmark simplified
2015 verification case.

Pareto Fronts [%] No Data Selection [%]

1 Front 2 Fronts 3 Fronts -

2.782 2.953 3.023 3.314

3.2. Results for the Three-Dimensional Spaces

Results for the three-dimensional verification case are given in Tables 15 and 16. The
verification case assumptions (in line with Section 2 scenario Options 1, 4, combination of
Options 5a and 5d, and no limitations in case of Option 6):

(1) Forecast period 1–30.06.2015;
(2) Available historic data from 1.05.2015;
(3) The all historic hours;
(4) Pareto fronts model uses historical demand values from h-1 and h-24 and temperature

from h-1 as explanatory variables;
(5) Forecast value is calculated based on linear regression modeled based on values

located on the Pareto fronts/all training data.

Table 15. MAPE values for naïve approach, SARIMAX model, and kNN algorithm for the three-dimensional verification
case.

Naïve Approach [%] SARIMAX [%] kNN [%]

h-1 h-24 h-1,
h-24

(2,1,2)
(1,1,0,24) k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

3.349 8.057 4.742 0.972 4.180 4.174 4.475 4.591 4.776 5.060 5.285

Table 16. MAPE values for Pareto fronts and ‘no data selection’ models for the three-dimensional
verification case.

Pareto Fronts [%] No Data Selection [%]

1 Front 2 Fronts 3 Fronts All

2.692 2.784 2.832 3.137

3.3. Two- and Three-Dimensional Spaces’ Quadrants and Octants Analysis

All Pareto fronts results presented in Sections 3.1 and 3.2 were calculated based on all
nondominated solutions situated in all four quadrants, for two explanatory variables in
Section 3.1 and all eight octants in Section 3.2 for three explanatory variables. The focus of
further analysis was on investigating results in individual quadrants and octants and their
potential impact on the final forecast value. The following two options were considered
and verified in terms of searching possible enhancement of Pareto front model:

(1) Forecasts based on nondominated solutions situated in only one quadrant/octant
(from four or eight available);

(2) Usage of forecasts based on nondominated solutions situated in each of the quad-
rants/octants (four or eight) in order to calculate the final forecast demand value.

For both options individual quadrants and octants analyses were performed based on
the assumptions like the one in the third scenario in the Section 3.1 and in scenario in the
Section 3.2:

(1) Forecast period 1–30.06.2015;
(2) Available historic data from 1.05.2015;
(3) The all historic hours;
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(4) Pareto fronts model uses historical demand values from h-1 and h-24 (for four quad-
rants analysis) and additional temperature from h-1 as explanatory variables (for
eight octants analysis);

(5) Forecast value is calculated based on linear regression modeled based on values
located on the Pareto fronts.

A meticulously performed analysis, for both options described above, exhibit insta-
bility and unpredictability in terms of the number of historic data points appearing in
each quadrant and octant. This instability and unpredictability resulted in the occurrence
of hours for which the number of the data points on Pareto fronts in one or more quad-
rants/octants were not sufficient to use linear regression to calculate the forecast value;
in an extreme example, that number equaled zero. When the number of data points was
not sufficient to use linear regression but was still different from zero, that issue could be
solved by using an alternative method to calculate the forecast for those hours, for instance
the mean average. However, there were hours in which the number of training examples
in a quadrant/octant equaled zero. In consequence there was no method allowing the
forecast value calculation to apply, which could solve this issue. The simulations showed
that the issue with the insufficient number of selected training examples was not connected
with any particular quadrant nor octant. The insufficient number of selected data points
occurred occasionally in each quadrant/octant depending on the data set. In consequence,
the first option of enhancement proposed in this subsection cannot be treated as a potential
possibility to achieve that, even though the analyzed cases proved that there was potential
in this approach due to hours in which forecast values, calculated based on results from
one of the spaces instead of from all of them, are more accurate.

As far as the second option of enhancement was concerned, the abovementioned
instability and unpredictability foreclosed constructing an enhancing universal adjustment
to the proposed Pareto front model. Moreover, the same obstacles, as described for the
first option, apply to that one. For the second option, verified forecast calculation as mean
average value from forecast values calculated for each quadrant/octant (for four and eight
spaces) and tried to find equation coefficients for the following equation (for quadrants):

a ∗ f1 + b ∗ f2 + c ∗ f3 + d ∗ f4 = ff (2)

where:
a—the first quadrant forecast value’s coefficient
b—the second quadrant forecast value’ coefficient
c—the third quadrant forecast value’s coefficient
d—the fourth quadrant forecast value’ coefficient
f1—forecast value obtained based on the Pareto front in the first quadrant
f2—forecast value obtained based on the Pareto front in the second quadrant
f3—forecast value obtained based on the Pareto front in the third quadrant
f4—forecast value obtained based on the Pareto front in the fourth quadrant
f5—final forecast value
Both attempts to did not enhance the Pareto front model, therefore further work

concerning them was not continued.

4. Discussion

The authors presented the new forecasting model based on the idea to use Pareto fronts
as a tool to select data in the forecasting process with its various variants. The proposed
model was implemented to forecast short-term electric energy demand in Poland.

The publication aimed to present the range of different approaches to Pareto fronts us-
age in forecasting, thus the descriptions of eight basic verification cases and two additional
developed approaches were provided in the text. Naïve approach, SARIMAX model, and
kNN algorithm, and ‘no data selection’ model were implemented as benchmarks to the
proposed Pareto front model.
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As far as two-dimensional spaces, i.e., with two explanatory variables concerned, the
first verification case focused on using the set of training data that was limited exclusively
to data representing historical hours equal to the forecast hour. Simple forecast value
calculation as the arithmetic average of values on Pareto fronts did not deliver accurate
results, comparing not only to SARIMAX but also with kNN and naïve approach’s results.
However, the change in forecast value calculation, like in the second and third cases, from
obtaining arithmetic average to linear regression modelling based on values located on
the Pareto fronts increased results accuracy. This additional training data preselection
resulted, in the second verification case, in the smallest mean absolute percentage error
not only among all benchmark models’ results for that specific case but also as compared
to results obtained in all other scenarios. Therefore, the second case’s assumptions are
the most promising for further investigation. On the other hand, the difference between
MAPE value for Pareto front with two fronts and ‘no data selection’ models equaled 0.031%
(MAPE), but it also means improvement by 4.3% in forecast quality. In this case, training
data selection provided by Pareto fronts improved the accuracy of the obtained results, but
not significantly.

The third case results confirmed those obtained in the second verification case pre-
senting the Pareto front method advantage again. The difference between MAPE value
for Pareto front with two fronts and ‘no data selection’ models equaled 0.059% (MAPE),
but it also means stronger improvement than in previous case—by 7.7% in forecast quality.
However, that case showed also that the set of training data containing data representing
longer history than in the second case, may negatively influence the accuracy, e.g., by
0.016% in MAPE for two fronts.

Further investigation will focus both on the Pareto front model development and
identifying this method’s advantages over ‘no data selection’.

Further verification cases, i.e., from number four to six, showed that lack of the
additional training data preselection and, using the difference between days of the week or
hours as explanatory variables, decreased the Pareto fronts models’ forecast accuracy.

For the case aimed to verify results for three-dimensional spaces, i.e., with three
explanatory variables both historical demand and temperature values, adding the third
dimension improved the proposed method’s forecast accuracy by 0.09% in MAPE for
the best one front calculations. This slight improvement causes that three- and more-
dimensional cases will be implemented and verified in further investigation.

5. Conclusions

In all analyzed cases so far, all Pareto fronts results were calculated based on all
nondominated solutions situated in all four quadrants/eight octants.

Additionally, the authors proposed and examined the Pareto front model to obtain
forecasts based on nondominated solutions situated in each quadrant/octant individually
or on nondominated solutions situated in each of the quadrants/octants (four or eight) in
order to calculate the final forecast demand value. Even though those approaches seemed
intriguing, they both had a disadvantage of instability and unpredictability in terms of the
number of historic data appearing in each quadrant and octant. The extreme examples
when the number of data equaled zero were the reason why those ideas were not developed
and are not planned to be in the future.

The new forecasting model based on the idea to use the Pareto fronts as a tool to select
data in the forecasting process was presented and its various variants were analyzed. Two-
dimensional cases assuming additional training data preselection and forecast obtained
from linear regression modelling based on values located on the Pareto fronts provided
promising results’ accuracy. For two investigated cases (second and third) proposed model
gave best results among all benchmark methods. The forecast quality was better by 4.3%
and 7.7%, respectively, comparing to next best method.
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As stated, the authors find the presented idea to be very promising. In this article
they have presented more interesting results than they have obtained so far. These results
give rise to many subsequent questions which the authors intend to analyze. As the most
interesting, the authors indicate the following issues:

- Tests of the approach for other time series (e.g., wind energy forecast),
- Development of other methods of final forecast calculation from Pareto fronts sets,
- Tests of the approach in more than three-dimensional spaces,
- Development of a new approach for more than three-dimensional spaces,
- Development of hybrid and ensemble approaches.
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