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Abstract: Wind is a physical phenomenon with uncertainties in several temporal scales, in addition,
measured wind time series have noise superimposed on them. These time series are the basis for
forecasting methods. This paper studied the application of the wavelet transform to three forecasting
methods, namely, stochastic, neural network, and fuzzy, and six wavelet families. Wind speed time
series were first filtered to eliminate the high-frequency component using wavelet filters and then the
different forecasting methods were applied to the filtered time series. All methods showed important
improvements when the wavelet filter was applied. It is important to note that the application of the
wavelet technique requires a deep study of the time series in order to select the appropriate family
and filter level. The best results were obtained with an optimal filtering level and improper selection
may significantly affect the accuracy of the results.

Keywords: wavelet transforms; forecasting methods; wind energy

1. Introduction

When the penetration of wind power into the network reaches a certain level, system
operators have difficulties in balancing generation with demand. To help address this issue,
it is necessary to apply forecasting methods to estimate the wind power generated in the
next few hours and days.

Several methods have been used to forecast the wind speed: stochastic methods
such as the AR [1] and ARIMA [2–4] process or heuristic methods such as the Kalman
filter [5,6], neural networks [7–9], and neuro-fuzzy systems [10,11]. Among all methods,
neural networks are the most widely used by researchers.

It is difficult to compare different methods if they do not use the same dataset and the
same performance indexes. A typical approach for comparison is to use the persistence
model as the reference [12]. Table 1 illustrates the improvement achieved by different
forecasting methods compared to the persistence method (although different forecast
horizons are used, the list gives an idea of the range of improvement). These improvements
are rarely over 25%.

Wind speed series have considerable uncertainty because of weather fluctuations and
the added instrument uncertainty. This uncertainty and noise make it difficult to improve
the forecasts. There are several strategies to process the data [13–15]. Some authors have
used wavelet transforms [16] to process the time series. Most authors [17–31] have used
wavelets to decompose the time series into sub-series, called approximation and details;
applied the forecasting method to each sub-series, and finally, summarized the forecasting
results to obtain the final solution. The advantage of this method comes from the sub-series
having an improved performance with respect to the original series. A few authors [32–37]
have used other wavelet filtering techniques to eliminate the high frequency variations
and smooth the time series. In all papers, the authors selected the wavelet family and
decomposition level without too much justification. For example, the cited authors only
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used one wavelet family. These works used the wavelet transform as an auxiliary technique
and did not study them at sufficient depth.

Table 1. Review of forecasting methods.

Authors Forecast Method Forecast Horizon Improvement vs.
Persistence Model

[1] AR – –
[2] ARMA 1–10 h 12–20%
[3] ARMA 20′′–10′′ 5–12%
[4] ARMA 6 h 19%
[5] Kalman filter 1′ 4–10%
[6] Kalman filter – –
[7] ANN 1′–10′ 11–8%
[8] Spatial/ANN 2–2 h 15–25%
[9] ANN 1′–1 h –

[10] Neuro-fuzzy 6–36 h 46%
[11] Neuro-fuzzy 10′ 5%

In this paper, the wavelet transform was analyzed thoroughly. This work demon-
strated that the selection of the wavelet family and decomposition level were far more
important than they have been given credit for thus far. The improvement obtained was
greater than that achieved with most new forecasting methods. The result was applied to
the three main forecasting methods currently used, namely statistical, neural network, and
fuzzy methods. These were applied to several forecast horizons and sample times. In all
cases, the results obtained were improved for each method when the optimal wavelet filter
was applied. Finally, the main contribution of the paper is to highlight the importance of
data processing and to propose it as an additional phase in the forecasting method, so that
both steps are optimized together.

The rest of this paper is structured as follows. Section 2 explains the basic concepts of
the wavelet transform. Section 3 presents the different forecasting approaches. Section 4
describes the forecasting approach proposed. In Section 5, the comparison criteria to
evaluate the improvement of each method are explained. Section 6 presents the results for
the different methods considered. Finally, Section 7 draws the main conclusions of this
research.

2. Basic Concepts of the Wavelet Transform

Fourier analysis is commonly used to help analyze different types of signals. With
this method, a signal f (t) is expressed as a linear decomposition of real-valued functions of
t, as shown in Equation (1),

f (t) = ∑k akφk(t) (1)

where ak are the real-valued expansion coefficients and φk(t) are a set of real-valued func-
tions of t called the expansion set. In Fourier series, these are sin(kω0t) and cos(kω0t) with
frequencies of kω0.

2.1. Wavelet Transform

An introduction to the wavelet transform can be found in [16]. In Equation (2), the
signal is already decomposed into coefficients aj,k and functions Ψj,k(t), which depend on
parameters j and k,

f (t) = ∑k ∑j aj,kΨj,k(t) (2)

where Ψj,k are the wavelet expansion functions and aj,k is the discrete wavelet transform of
f (t), or the set of expansion coefficients.
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The wavelet expansion functions, or family of wavelets are generated from a mother
wavelet Ψ(t) by scaling and translation:

Ψj,k(t) = 2j/2Ψ
(

2jt− k
)

(3)

where the parameter k translates the function and the parameter j scales it. Figure 1 shows
the translating and scaling operations of the function Ψ

(
2jt− k

)
.
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2.2. Multi-Resolution Formulation of Wavelet Systems

In multi-resolution analysis, the resolution of the approximation of f (t) depends on
the choice of j in Equation (2). For a value of j = j0, the equation is:

f (t) = ∑k cj0,k ϕj0,k(t) (4)

For low values of j, the approximation of f (t) can represent only coarse information. In
multi-resolution formulation, ϕj0,k(t) are called scaling functions. If we want to represent
detailed information, then high values of j are required.

However, there is another way to describe a signal with better resolution without
increasing j. This new approach consists of describing the differences between the approxi-
mation and the original signal with a combination of other functions called wavelets Ψj,k(t)
and the coefficients dj,k, as shown in Equation (5). The parameters k and j indicate the
translation and scaling of the function.

f (t) = ∑k cj0,k ϕj0,k(t) + ∑k ∑J−1
j=jo dj,kψj,k(t)

= ∑k cj0(k)2j0/2 ϕ
(
2j0t− k

)
+ ∑k ∑J−1

j=jo dj(k)2j/2ψ
(
2jt− k

) (5)

There are several packets of scaling functions ϕ(t) and wavelets Ψ(t), as shown in
Equation (6) (see Figure 2), which were chosen depending on the signal that has to be
approximated.

ϕ(t) = ∑n h0(n)
√

2ϕ(2t− n)
ψ(t) = ∑n h1(n)

√
2ψ(2t− n)

(6)
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In Equation (6), the coefficients h0(n) and h1(n) with n∈Z, are a sequence of real
numbers called filter coefficients. The process is similar to digital filters, where h0(m − 2k)
acts as a low-pass filter and h1(m − 2k) acts as a high-pass filter. Figure 3 shows the
decomposition process of cj in: cj+1 (low frequency) and dj+1 (high frequency).
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The j+1 level scaling coefficients are:

cj+1(k) = ∑m h0(m− 2k)cj(m)
dj+1(k) = ∑m h1(m− 2k)cj(m)

(7)

These expressions represent the approximation and details of the signal for a j + 1
level scaling, and m = 2k + n is a sequence of real numbers.

This process can be repeated iteratively to reduce the high-frequency component as
shown in Figure 4.
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In Figure 5b, we can see the approximation c2(k) and the details d2(k), d1(k), and d0(k)
of the original signal f (t) are shown in Figure 5a.

Wind speed time series have a high-frequency component due to wind gusts, mea-
surement errors, and random events as well as a low-frequency component with slower
variation. The high-frequency component of the signal introduces a lot of noise into fore-
casting methods, causing them to perform poorly. If this component is eliminated and
the forecasting methods are applied to an approximation with only the low frequency
component, improved results can be obtained.
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2.3. Wavelet Families

There is a large number of wavelets. The selection of the wavelet function depends on
the problem and the properties of the wavelet function [16]. The main properties are its
region of support and the number of vanishing moments. The region of support affects its
localization capabilities, whereas the vanishing moments limit the ability of the wavelet to
represent the information of a signal. In this paper, the wavelet families used were: Haar,
Daubechies, Symlet, Coiflet, Biorsplines, and Meyer.

There are some methods to select the optimal wavelet family, but they have been de-
veloped for specific applications and it is not certain that they can be applied to forecasting
problems:

• In the cross-correlation method [38], the optimum wavelet maximizes the cross-
correlation between the signal of interest and the wavelet;

• In the energy method [39], the aim is to maximize the energy of the signal of interest;
and

• In the entropy method [40], the best wavelet minimizes the entropy of the signal of
interest.

3. Forecasting Models

The wavelet filter was applied to several forecasting methods, namely regression,
neural network and fuzzy models.

3.1. Persistence Model

In the persistence model, the variable value in t + ∆t is equal to the variable value in t.
Due to its simplicity, this model was used as a reference.

yt = yt−1. (8)

3.2. Regressive Model

This model [41] is based on the multiple regressions that study the relations between a
dependent variable and a set of independent variables. Among the independent variables,
there are exogenous variables such as temperature, and intrinsic variables like the historical
values of these variables. When the model only uses the historical values of these variables,
it is called the auto-regressive temporal series model. In this work, the model used the
historical values:

yt = ∑p
i=1 αiyt−i. (9)
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where αi represents the auto-regressive parameters and p is the number of past values.

3.3. Neural Network Model

Neural networks [42] are auto-adaptive dynamic systems that are able to find nonlin-
ear relations between several variables. The model used is a multilayer perceptron that
gives good results in forecasting problems:

yt = ∑j w′kjg
(
∑i(wjiyt−i − θj)− θ′k

)
(10)

where θ′ j and θ′k are the layer thresholds; wji and wkj are the layer weights; i and j are the
number of neurons in each layer; and g is the activation function.

3.4. Fuzzy Model

The fuzzy model [43] is based on concepts of fuzzy sets theory, fuzzy rules of type
if–then, and approximation reasoning: Rj : if∩i

(
yt−i is Ãi

)
then uj = ∑i(piyt−i)

yt = ∑j

(
ωjuj
ω j

) (11)

where ωi is the normalized firing strengths; ui is the functions that depend on the inputs
yt-I; Ãi is the fuzzy set that represents the input variables; and pi is the membership grade
of each input yt in Ãi.

4. Forecasting Approach

Wind time series have high variability due to the intrinsic uncertainty of the wind; this
variability negatively influences the forecasting result. In this paper, the adopted approach,
illustrated in Figure 6, consists of using an optimized filter based on wavelets to de-noise
the data that are used to train the chosen forecasting method. The filter is optimized with a
genetic algorithm that selects the best wavelet family and the optimal decomposition level.

The algorithm receives as inputs the wind speed data and the prediction method to be
used.

In step 1, a random population of individuals is created. Each individual contains the
information of the parameters of the prediction method, the wavelet family, and the level
of decomposition.

In step 2, each individual in the population is evaluated. The evaluation has three
phases.

The first phase consists of applying the wavelet filter to the input data with the wavelet
family and the level indicated by each individual. The data are divided into training and
test sets. The original time series is filtered with the wavelet transform and is decomposed
into an approximation component and several details of the signal. The approximation
component has improved behavior in comparison to the original series in the forecasting
process. Therefore, only the approximation component is used in the next phase and the
details are discarded. In this phase, there are two important decisions to analyze: the best
wavelet family to use and the optimal filter level. These questions have not been answered
in the technical literature.

The second phase consists of training the prediction method with the parameters
indicated by each individual and the training dataset. A forecasting method is applied only
to the approximation component. In this paper, three methods were used to forecast the
time series: autoregressive, neural networks, and fuzzy models.

The third phase consists of evaluating the prediction method, already trained, with
the test dataset.

In step 3, the best individuals are selected based on the error obtained in the evaluation
with the test data.
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In step 4, the crossover and mutation operators of the genetic algorithm are applied
that give rise to a new population.

Steps 2 through 4 are repeated until the termination criterion is reached, which is the
number of generations or iterations of the genetic algorithm.
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5. Forecasting Errors

We compared these forecasting methods with the simpler persistence model used as
the reference. The measure of the error of each method was calculated by the root mean
square error (RMSE),

RMSE =

√
∑n

t=1(Xpredt − Xrealt)
2

n
(12)

where Xpredt is the predicted value in t; Xrealt is the real value at t; and n is the number of
samples.

The improvement of each method in comparison to the persistence model was calcu-
lated with the following equation:

Improvement vs. persistence (%) =
RMSE(persistence)− RMSE(method)

RMSE(persistence)
(13)
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6. Results of Validation Cases
6.1. Data Description

The wavelet filter was applied to several forecasting methods: regression, neural
network, and fuzzy models. Five wind speed series were used in this work: two series with
a high sampling frequency (1′′ and 1′, respectively) and three with a sampling frequency of
10′. Table 2 shows the main statistic characteristics of these time series and Figures A1–A5
in the Appendix A represent their temporal variation.

Table 2. Time series description.

Time Series Mean Standard
Deviation Maximum Skewness Kurtosis Size Sampling

Frequency

I 5.281 1.862 12.597 0.643 3.139 1 month 1′′

II 4.951 2.313 19.726 1.212 5.467 1 month 1′

III 8.258 4.709 34.690 1.115 4.815 2 years 10′

IV 8.308 9.883 30.000 1.124 2.873 2 years 10′

V 6.848 3.548 27.020 0.684 3.406 2 years 10′

Several cases were built from these data to observe the performance of the forecasting
models when the sampling step (∆t) and the forecasting horizon (FH) changed. An
identifier (ID) was assigned to each case in Table 3.

Table 3. Case description.

T.S.-I T.S.-II T.S.-III T.S.-IV T.S.-V

ID FH. ∆t ID FH. ∆t ID FH. ∆t ID FH. ∆t ID FH. ∆t

1 1′ 5′′ 11 2 h 5′ 21 10′ 10′ 26 10′ 10′ 31 10′ 10′

2 5′ 5′′ 12 2 h 10′ 22 1 h 1 h 27 1 h 1 h 32 1 h 1 h
3 5′ 10′′ 13 6 h 10′ 23 6 h 6 h 28 6 h 6 h 33 6 h 6 h
4 5′ 20′′ 14 6 h 30′ 24 12 h 12 h 29 12 h 12 h 34 12 h 12 h
5 10′ 10′′ 15 12 h 10′ 25 24 h 24 h 30 24 h 24 h 35 24 h 24 h
6 10′ 20′′ 16 12 h 30′

7 10′ 30′′ 17 12 h 1 h
8 20′ 30′′ 18 24 h 30′

9 20′ 1′ 19 24 h 1 h
10 1 h 1′ 20 24 h 2 h

6.2. Results

Every time series was divided into two sets of the same length: a training set and a
test set. The forecasting models were built with the training set and the results presented
here were obtained by applying these models to the test set. Moreover, eight inputs were
used in all methods.

First, a detailed analysis of wavelet filtering is presented, aiming to answer whether
they are helpful with different prediction methods and whether they depend on factors such
as the level of filtering, the prediction horizon, and the sampling frequency. Afterward,
we analyze whether it is possible to select the wavelet family by any of the methods
described in the literature regardless of the prediction method used. Finally, its application
is presented in a specific case.

6.2.1. Influence of Wavelet Filters in Several Forecasting Methods

The best obtained results of applying the wavelet filters on time series are presented
in Figures 7 and 8. It is shown that regardless of the model, the forecasting horizon, or time
step, the performance was much better with the wavelet filter than without it when the
optimal wavelet family and level were chosen.
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Figure 8. Time series II: Improve versus persistence.

Detailed results are provided in Tables A1–A6 in the Appendix A. It is important to
note that the optimal wavelet family and level was different in each case. That is, there
was a lot of variability in this point. This fact is contrary to the widespread action among
researchers who choose these parameters depending on the application.

6.2.2. Influence of Decomposition Level

However, there was a great similarity in the performance of the different wavelet
families in each case. Each family reached different levels of improvement, but all families
achieved their maximum improvement percentage at a similar level. Figure 9 shows the
improvement/level rate for a particular case, with different forecasting methods. Figure 10
shows the improvement/level rate of the same case and method for different wavelet
families (see Tables A10–A13 for details).
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Figure 10. Case 31: Improvement percentage versus level for all families with neural model.

The last results explain why researchers can obtain favorable solutions by applying
wavelets, even when they do not select the wavelet family and level accurately.

6.2.3. Influence of the Forecasting Horizon

Comparisons made up to now were in percent, because it permitted us to adequately
show the difference between whether the wavelet filters were applied or not. However, it
is necessary to remember that the error (RMSE) increased with the forecasting horizon, as
can be seen in Figures 11–13, although less when the wavelet filters were applied.
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Figure 12. Time series IV: (a) Improvement percentage versus persistence; (b) RMSE.
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6.2.4. Influence of Different Sampling Frequencies

In Figure 14, it can be seen that with low filtering levels, an important improvement
was obtained, but with high filtering levels, information was lost and the improvement
decreased or even worsened substantially at high sampling frequencies.
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6.2.5. Selection of Optimal Wavelet Family

In Table 4, the wavelet families found by the cross-correlation, energy, and entropy
methods are shown in the columns “cross-corr”, “energy”, and “entropy”, respectively.
The column “optimum” shows the wavelet family that gave the best results in our tests.
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Table 4. Selection of wavelet family.

Case Optimum Cross-Corr Energy Entropy Case Optimum Cross-Corr Energy Entropy

1 dmey Bior5.5 dmey sym5 21 dmey Haar-bior1.3 Bior6.8 Bior1.3
2 db2 Bior5.5 dmey sym5 22 dmey Haar-bior1.3 Bior6.8 Bior1.3
3 Bior2.8 Bior5.5 dmey dmey 23 Bior6.8 Bior5.5 dmey Bior1.3
4 db3 Bior5.5 dmey db2 24 Bior6.8 Bior5.5 dmey Bior1.3
5 dmey Bior5.5 dmey dmey 25 dmey Bior5.5 dmey Bior1.3
6 db5 Bior5.5 dmey db2 26 dmey Haar-bior1.3 Bior6.8 Bior1.3
7 Bior5.5 Bior5.5 dmey Bior1.3 27 dmey Haar-bior1.3 dmey Bior1.3
8 db2 Bior5.5 dmey Bior1.3 28 Bior6.8 Bior5.5 dmey Bior1.3
9 db2 Bior5.5 dmey db5 29 coif3 Bior5.5 dmey Bior1.3
10 Bior3.9 Bior5.5 dmey db5 30 Bior5.5 Bior5.5 dmey db2-sym2
11 sym4 Bior5.5 dmey Bior1.3 31 Bior5.5 Bior5.5 Bior5.5 Bior1.3
12 coif3 Bior5.5 dmey sym4 32 dmey Bior5.5 dmey Bior1.3
13 dmey Bior5.5 dmey sym4 33 dmey Bior5.5 dmey dmey
14 db4 Bior5.5 dmey Bior1.3 34 dmey Bior5.5 dmey Bior2.8
15 dmey Bior5.5 dmey sym4 35 dmey Bior5.5 dmey db2-sym2
16 sym5 Bior5.5 dmey Bior1.3
17 coif4 Bior5.5 Bior6.8 sym3
18 dmey Bior5.5 dmey Bior1.3
19 Bior3.9 Bior5.5 Bior6.8 sym3
20 db4 Bior5.5 Bior6.8 coif5

These methods were applied to the time series with poor results. The cross-correlation
method obtained the correct result in cases 7, 30, and 31; the energy method in cases 1, 5,
13, 15, 18, 25, 27, 32, 33, 34 and 3; and the entropy method in cases 5 and 33.

6.2.6. Applying the Forecasting Approach

The importance of using filtered data is illustrated in the following example. Figure 15
shows the first 300 data points (to appreciate it in detail) of the original data series of case
22, the data series filtered with the wavelet family “dmey” and a filter level 2, and the
difference between the two series. Figure 16 shows the results of the forecast made with the
neural network trained with the filtered data training set, and Figure 17 shows the results
of the forecast made with the neural network trained with the unfiltered data training
set. The results using correctly filtered data were considerably better than those with the
unfiltered data.

Energies 2021, 14, 3181 14 of 23 
 

 

17 coif4 Bior5.5 Bior6.8 sym3      
18 dmey Bior5.5 dmey Bior1.3      
19 Bior3.9 Bior5.5 Bior6.8 sym3      
20 db4 Bior5.5 Bior6.8 coif5      

These methods were applied to the time series with poor results. The cross-correla-
tion method obtained the correct result in cases 7, 30, and 31; the energy method in cases 
1, 5, 13, 15, 18, 25, 27, 32, 33, 34 and 3; and the entropy method in cases 5 and 33. 

6.2.6. Applying the Forecasting Approach 
The importance of using filtered data is illustrated in the following example. Figure 

15 shows the first 300 data points (to appreciate it in detail) of the original data series of 
case 22, the data series filtered with the wavelet family “dmey” and a filter level 2, and 
the difference between the two series. Figure 16 shows the results of the forecast made 
with the neural network trained with the filtered data training set, and Figure 17 shows 
the results of the forecast made with the neural network trained with the unfiltered data 
training set. The results using correctly filtered data were considerably better than those 
with the unfiltered data. 

 
Figure 15. Wavelet filtered process in case 22. 

-10

-5

0

5

10

15

20

25

30

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

24
3

25
4

26
5

27
6

28
7

29
8

W
in

d 
sp

ee
d 

(m
/s

)

Time (hour)

Original data Filtered data Difference

Figure 15. Wavelet filtered process in case 22.
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Figure 16. Forecasting result for case 22 with the neural network method trained with filtered data.
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Figure 17. Forecasting result for case 22 with the neural network method trained with unfiltered
data.

7. Conclusions

In this paper, the forecasting models were applied to the approximation component
of the wavelet decomposition and the details components were discarded, as opposed to
most authors who use both components in their forecasting models.

A deep analysis of the wavelet filter in results was made, and the conclusions will
enable improvements in all forecasting models.

The wavelet filter method was applied to different forecasting models: regression,
neural network, and fuzzy models. In all models, this technique (wavelet filter + forecasting
model) improved the obtained results compared to the case when only the forecasting
model was used. The improvement of these methods versus the persistence method was
between 2% and 30%, but with the wavelet filter method, it was between 20% and 50%.

The study was extended to several wavelet families. In all cases, there were improve-
ments, but it was not easy to select the best family. The selection methods did not work for
the proposed method.

The filtering level was more important to obtain good results than the wavelet family
in most of cases. This optimum level was between 2 and 5 in all wavelet families.



Energies 2021, 14, 3181 15 of 22

As a final conclusion, it seems necessary to use an optimization algorithm to select the
wavelet family and level.

It has become clear that it is not easy to determine the parameters of the data processing
methods and that they significantly influence the results obtained. Hence, future research
is the joint optimization of the data processing and the forecasting method.
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Appendix A

Below are the graphical representations of the measured wind speed data in each time
series (Figures A1–A5).

Energies 2021, 14, 3181 16 of 23 
 

 

The filtering level was more important to obtain good results than the wavelet family 
in most of cases. This optimum level was between 2 and 5 in all wavelet families. 

As a final conclusion, it seems necessary to use an optimization algorithm to select 
the wavelet family and level. 

It has become clear that it is not easy to determine the parameters of the data pro-
cessing methods and that they significantly influence the results obtained. Hence, future 
research is the joint optimization of the data processing and the forecasting method. 

Author Contributions: Conceptualization, J.A.D.-N.; Methodology, J.A.D.-N.; Software, S.M.V.-B. 
and T.B.L.-G.; Validation, S.M.V.-B. and T.B.L.-G.; Writing—original draft preparation, J.A.D.-N.; 
Writing—review and editing, T.B.L.-G.; Supervision, J.A.D.-N. All authors have read and agreed to 
the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available in supplementary ma-
terial. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A 
Below are the graphical representations of the measured wind speed data in each time 

series (Figures A1–A5). 

 
Figure A1. Time series 1: Measured wind speed data with 1-s sampling. 

 
Figure A2. Time series 2: Measured wind speed data with 1-min sampling. 

0 1000 2000 3000 4000 5000 6000
Time (min)

0

5

10

15

20

Figure A1. Time series 1: Measured wind speed data with 1-s sampling.

Energies 2021, 14, 3181 16 of 23 
 

 

The filtering level was more important to obtain good results than the wavelet family 
in most of cases. This optimum level was between 2 and 5 in all wavelet families. 

As a final conclusion, it seems necessary to use an optimization algorithm to select 
the wavelet family and level. 

It has become clear that it is not easy to determine the parameters of the data pro-
cessing methods and that they significantly influence the results obtained. Hence, future 
research is the joint optimization of the data processing and the forecasting method. 

Author Contributions: Conceptualization, J.A.D.-N.; Methodology, J.A.D.-N.; Software, S.M.V.-B. 
and T.B.L.-G.; Validation, S.M.V.-B. and T.B.L.-G.; Writing—original draft preparation, J.A.D.-N.; 
Writing—review and editing, T.B.L.-G.; Supervision, J.A.D.-N. All authors have read and agreed to 
the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available in supplementary ma-
terial. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A 
Below are the graphical representations of the measured wind speed data in each time 

series (Figures A1–A5). 

 
Figure A1. Time series 1: Measured wind speed data with 1-s sampling. 

 
Figure A2. Time series 2: Measured wind speed data with 1-min sampling. 

0 1000 2000 3000 4000 5000 6000
Time (min)

0

5

10

15

20

Figure A2. Time series 2: Measured wind speed data with 1-min sampling.

https://www.mdpi.com/article/10.3390/en14113181/s1
https://www.mdpi.com/article/10.3390/en14113181/s1


Energies 2021, 14, 3181 16 of 22Energies 2021, 14, 3181 17 of 23 
 

 

 
Figure A3. Time series 3: Measured wind speed data with 10-min sampling. 

 
Figure A4. Time series 4: Measured wind speed data with 10-min sampling. 

 
Figure A5. Time series 5: Measured wind speed data with 10-min sampling. 

In each table, the column FH is the forecasting horizon, Δt is the time step in the look-
ahead period, then we have the RMSE of the persistence model, the RMSE of the study 
model without a wavelet filter, the RMSE of the study model with the wavelet filter, and 
finally, we have the improvement of the model with and without the wavelet filter versus 
the persistence model. 

Table A1. Time series I results of the regressive model. 

ID FH. Δt RMSE (m/s) Improve  
vs. Persistence (%) 

Wavelet 

   Persistence n-Filter Filter n-Filter Filter Family Level 
1 1′ 5″ 1.255 1.133 0.761 9.71 39.35 mey 3 
2 5′ 5″ 1.017 1.019 0.810 −0.13 20.37 db2 4 
3 5′ 10″ 1.282 1.230 0.688 4.08 46.35 bior2.8 5 

0 1 2 3 4 5 6 7 8 9 10
Time (10 min) 104

0

10

20

30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (10 min) 104

0

10

20

30

Figure A3. Time series 3: Measured wind speed data with 10-min sampling.

Energies 2021, 14, 3181 17 of 23 
 

 

 
Figure A3. Time series 3: Measured wind speed data with 10-min sampling. 

 
Figure A4. Time series 4: Measured wind speed data with 10-min sampling. 

 
Figure A5. Time series 5: Measured wind speed data with 10-min sampling. 

In each table, the column FH is the forecasting horizon, Δt is the time step in the look-
ahead period, then we have the RMSE of the persistence model, the RMSE of the study 
model without a wavelet filter, the RMSE of the study model with the wavelet filter, and 
finally, we have the improvement of the model with and without the wavelet filter versus 
the persistence model. 

Table A1. Time series I results of the regressive model. 

ID FH. Δt RMSE (m/s) Improve  
vs. Persistence (%) 

Wavelet 

   Persistence n-Filter Filter n-Filter Filter Family Level 
1 1′ 5″ 1.255 1.133 0.761 9.71 39.35 mey 3 
2 5′ 5″ 1.017 1.019 0.810 −0.13 20.37 db2 4 
3 5′ 10″ 1.282 1.230 0.688 4.08 46.35 bior2.8 5 

0 1 2 3 4 5 6 7 8 9 10
Time (10 min) 104

0

10

20

30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (10 min) 104

0

10

20

30

Figure A4. Time series 4: Measured wind speed data with 10-min sampling.

Energies 2021, 14, 3181 17 of 23 
 

 

 
Figure A3. Time series 3: Measured wind speed data with 10-min sampling. 

 
Figure A4. Time series 4: Measured wind speed data with 10-min sampling. 

 
Figure A5. Time series 5: Measured wind speed data with 10-min sampling. 

In each table, the column FH is the forecasting horizon, Δt is the time step in the look-
ahead period, then we have the RMSE of the persistence model, the RMSE of the study 
model without a wavelet filter, the RMSE of the study model with the wavelet filter, and 
finally, we have the improvement of the model with and without the wavelet filter versus 
the persistence model. 

Table A1. Time series I results of the regressive model. 

ID FH. Δt RMSE (m/s) Improve  
vs. Persistence (%) 

Wavelet 

   Persistence n-Filter Filter n-Filter Filter Family Level 
1 1′ 5″ 1.255 1.133 0.761 9.71 39.35 mey 3 
2 5′ 5″ 1.017 1.019 0.810 −0.13 20.37 db2 4 
3 5′ 10″ 1.282 1.230 0.688 4.08 46.35 bior2.8 5 

0 1 2 3 4 5 6 7 8 9 10
Time (10 min) 104

0

10

20

30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (10 min) 104

0

10

20

30

Figure A5. Time series 5: Measured wind speed data with 10-min sampling.

In each table, the column FH is the forecasting horizon, ∆t is the time step in the
look-ahead period, then we have the RMSE of the persistence model, the RMSE of the
study model without a wavelet filter, the RMSE of the study model with the wavelet filter,
and finally, we have the improvement of the model with and without the wavelet filter
versus the persistence model.
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Table A1. Time series I results of the regressive model.

ID FH. ∆t RMSE (m/s) Improve
vs. Persistence (%) Wavelet

Persistence n-Filter Filter n-Filter Filter Family Level

1 1′ 5′′ 1.255 1.133 0.761 9.71 39.35 mey 3
2 5′ 5′′ 1.017 1.019 0.810 −0.13 20.37 db2 4
3 5′ 10′′ 1.282 1.230 0.688 4.08 46.35 bior2.8 5
4 5′ 20′′ 1.288 1.232 0.705 4.34 45.24 db3 7
5 10′ 10′′ 1.258 1.179 0.610 6.25 51.49 mey 4
6 10′ 20′′ 1.287 1.196 0.724 7.01 43.74 db5 6
7 10′ 30′′ 1.299 1.200 0.694 7.65 46.54 bior5.5 6
8 20′ 30′′ 1.266 1.161 0.647 7.95 48.88 db2 6
9 20′ 1′ 0.973 0.953 0.718 2.00 26.17 db2 7
10 1 h 1′ 1.207 1.083 0.649 10.33 46.18 bior3.9 7

Table A2. Time series I results of the fuzzy model.

ID FH. ∆t RMSE (m/s) Improve
vs. Persistence (%) Wavelet

Persistence n-Filter Filter n-Filter Filter Family Level

1 1′ 5′′ 1.255 1.135 0.761 9.58 39.34 mey 3
2 5′ 5′′ 1.017 1.001 0.718 1.57 29.37 db5 4
3 5′ 10′′ 1.282 1.183 0.630 7.76 50.85 mey 4
4 5′ 20′′ 1.288 1.195 0.656 7.22 49.04 bior3.9 6
5 10′ 10′′ 1.258 1.167 0.607 7.20 51.73 mey 4
6 10′ 20′′ 1.287 1.179 0.712 8.33 44.62 db5 6
7 10′ 30′′ 1.299 1.175 0.711 9.58 45.25 db2 6
8 20′ 30′′ 1.266 1.128 0.641 10.93 49.32 db2 6
9 20′ 1′ 0.973 0.946 0.747 2.76 23.20 db2 7
10 1 h 1′ 1.207 1.063 0.643 11.98 46.68 bior3.9 7

Table A3. Time series I results of the neuronal model.

ID FH. ∆t RMSE (m/s) Improve
vs. Persistence (%) Wavelet

Persistence n-Filter Filter n-Filter Filter Family Level

1 1′ 5′′ 1.255 1.141 0.812 9.08 35.30 mey 3
2 5′ 5′′ 1.017 1.003 0.821 1.37 19.33 db2 4
3 5′ 10′′ 1.282 1.201 0.686 6.35 46.50 bior2.8 5
4 5′ 20′′ 1.288 1.215 0.712 5.64 44.68 db3 7
5 10′ 10′′ 1.258 1.169 0.791 7.04 37.06 mey 4
6 10′ 20′′ 1.287 1.189 0.696 7.55 45.87 db5 6
7 10′ 30′′ 1.299 1.186 0.692 8.72 46.70 db2 6
8 20′ 30′′ 1.266 1.148 0.649 9.30 48.70 db2 6
9 20′ 1′ 0.973 0.947 0.749 2.64 22.99 db2 7
10 1 h 1′ 1.207 1.085 0.660 10.1 45.31 bior3.9 7
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Table A4. Time series II results of the regressive model.

ID FH. ∆t RMSE (m/s) Improve
vs. Persistence (%) Wavelet

Persistence n-Filter Filter n-Filter Filter Family Level

11 2 h 5′ 0.912 0.865 0.481 5.12 47.19 sym4 3
12 2 h 10′ 0.925 0.834 0.385 9.77 58.29 coif3 4
13 6 h 10′ 0.730 0.672 0.390 8.00 46.61 mey 4
14 6 h 30′ 0.647 0.632 0.444 2.29 31.34 db4 6
15 12 h 10′ 6.897 6.482 2.794 6.01 59.49 mey 4
16 12 h 30′ 7.346 6.718 3.523 8.55 52.04 sym5 6
17 12 h 1 h 7.968 7.254 4.245 8.95 46.73 coif4 7
18 24 h 30′ 15.737 14.750 6.977 6.26 55.69 mey 6
19 24 h 1 h 20.241 18.256 9.592 9.80 52.61 bior3.9 7
20 24 h 2 h 23.967 18.942 17.484 20.96 27.05 db4 7

Table A5. Time series II results of the fuzzy model.

ID FH. ∆t RMSE (m/s) Improve
vs. Persistence (%) Wavelet

Persistence n-Filter Filter n-Filter Filter Family Level

11 2 h 5′ 0.912 0.865 0.481 5.12 47.19 sym4 3
12 2 h 10′ 0.925 0.834 0.383 9.77 58.52 coif3 4
13 6 h 10′ 0.730 0.672 0.390 8.00 46.61 mey 4
14 6 h 30′ 0.647 0.580 0.370 10.30 42.67 db2 6
15 12 h 10′ 6.897 6.482 2.794 6.01 59.49 mey 4
16 12 h 30′ 7.346 6.491 3.213 11.63 56.26 sym5 6
17 12 h 1 h 7.968 6.645 4.503 16.59 43.48 coif5 4
18 24 h 30′ 15.737 12.013 8.533 23.66 45.77 mey 6
19 24 h 1 h 20.241 18.256 9.592 9.80 52.61 bior3.9 7
20 24 h 2 h 23.967 16.321 16.321 31.90 31.90 haar 1

Table A6. Time series II results of the neuronal model.

ID FH. ∆t RMSE (m/s) Improve
vs. Persistence (%) Wavelet

Persistence n-Filter Filter n-Filter Filter Family Level

11 2 h 5′ 0.912 0.782 0.459 14.22 49.61 mey 3
12 2 h 10′ 0.925 0.774 0.485 16.36 47.51 coif3 4
13 6 h 10′ 0.730 0.672 0.387 7.98 46.99 mey 4
14 6 h 30′ 0.647 0.599 0.348 7.40 46.15 haar 6
15 12 h 10′ 6.897 6.633 4.139 3.82 39.99 mey 4
16 12 h 30′ 7.346 6.699 3.555 8.83 51.60 sym5 6
17 12 h 1 h 7.968 6.822 4.232 14.40 46.89 coif5 7
18 24 h 30′ 15.737 14.783 6.868 6.06 56.35 mey 6
19 24 h 1 h 20.241 18.224 11.197 9.96 44.68 bior3.9 7
20 24 h 2 h 23.967 17.161 15.545 28.39 35.14 haar 6
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Table A7. Time series III results of the neuronal model.

ID FH ∆t RMSE (m/s) Improve
vs. Persistence (%) Wavelet

Persistence n-Filter Filter n-Filter Filter Family Level

21 10′ 10′ 0.497 0.746 0.295 −50.16 40.54 dmey 2
22 1 h 1 h 1.738 2.435 1.066 −40.09 38.70 dmey 2
23 6 h 6 h 4.604 4.518 2.395 1.86 47.97 Bior6.8 1
24 12 h 12 h 5.919 4.764 3.107 19.52 47.50 Bior6.8 1
25 24 h 24 h 5.224 4.241 3.049 18.81 41.63 dmey 1

Table A8. Time series IV results of the neuronal model.

ID FH ∆t RMSE (m/s) Improve
vs. Persistence (%) Wavelet

Persistence n-Filter Filter n-Filter Filter Family Level

26 10′ 10′ 1.372 2.030 0.831 −47.95 39.42 dmey 2
27 1 h 1 h 4.443 5.857 2.386 −31.83 46.29 Bior6.8 1
28 6 h 6 h 9.595 9.301 5.179 3.07 46.03 coif3 1
29 12 h 12 h 11.081 9.665 5.603 12.78 49.44 Bior3.9 1
30 24 h 24 h 11.628 9.634 5.836 17.15 49.81 Bior3.9 1

Table A9. Time series V results of the neuronal model.

ID FH ∆t RMSE (m/s) Improve
vs. Persistence (%) Wavelet

Persistence n-Filter Filter n-Filter Filter Family LEVEL

31 10′ 10′ 0.853 1.084 0.552 −27.07 35.32 dmey 2
32 1 h 1 h 1.656 2.017 1.079 −21.84 34.82 dmey 1
33 6 h 6 h 3.043 2.989 1.843 1.77 39.43 dmey 1
34 12 h 12 h 3.532 3.172 2.134 10.17 39.57 dmey 1
35 24 h 24 h 3.762 3.449 2.325 8.30 38.20 dmey 2

In Tables A10–A13, we can see the effect (in %) of using different wavelet families and
different filtered j-level. The best results are marked in bold and underlined. The abscissa
axis is the filter level and the ordinate axis is the wavelet family.

Table A10. Results of the regressive model (%) in case 3.

Wavelet Level

Family 1 2 3 4 5 6 7

haar 4.08 5.24 9.65 15.45 14.81 6.53 −64.89
daub 2 4.11 4.24 9.01 29.19 17.92 14.64 −75.76
daub 3 3.95 3.97 5.26 18.66 36.62 12.20 −9.48
daub 4 3.73 3.39 6.30 24.22 45.74 8.32 10.82
daub 5 3.63 3.69 5.09 35.18 30.97 24.14 −46.79

symlet 2 4.11 4.24 9.01 29.19 17.92 14.64 −75.76
symlet 3 3.95 3.97 5.26 18.66 36.62 12.20 −9.48
symlet 4 3.77 3.65 5.10 22.10 39.73 5.55 9.77
symlet 5 4.01 3.36 6.67 34.05 26.63 27.39 −64.57
coiflet 2 3.69 3.45 5.39 20.98 42.79 6.81 −6.10
coiflet 3 3.68 3.44 5.36 31.13 43.06 4.89 −0.01
coiflet 4 3.68 3.46 4.11 37.50 38.23 4.41 4.79
coiflet 5 3.68 3.49 4.62 32.45 31.04 4.85 7.47
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Table A10. Cont.

Wavelet Level

Family 1 2 3 4 5 6 7

bior 1.3 3.60 3.82 6.05 18.12 17.83 12.25 −58.89
bior 2.8 3.67 4.05 6.65 22.81 46.35 5.62 −5.97
bior 3.9 3.71 3.75 3.17 36.75 27.81 22.25 −42.57
bior 5.5 4.04 3.48 3.60 25.45 36.22 11.22 −12.70
bior 6.8 3.66 4.03 5.79 29.49 38.54 8.51 −6.80
meyer 3.64 3.51 3.10 38.44 24.27 10.23 2.87

Table A11. Results of the fuzzy model (%) in case 3.

Wavelet Level

Family 1 2 3 4 5 6 7

haar 7.76 8.86 9.02 15.49 14.23 9.12 −63.29
daub 2 7.95 4.77 11.05 30.56 17.60 14.14 −74.53
daub 3 7.73 5.45 6.07 20.51 34.33 10.21 −10.20
daub 4 6.90 4.87 5.54 27.23 43.34 5.67 10.92
daub 5 7.00 4.28 5.81 41.66 30.69 23.73 −46.99

symlet 2 7.96 4.78 11.05 30.56 17.61 14.15 −74.54
symlet 3 7.74 5.45 6.08 20.52 34.33 10.21 −10.21
symlet 4 7.60 5.17 6.16 25.66 38.34 4.52 9.17
symlet 5 7.70 4.81 4.24 39.18 27.83 27.24 −65.07
coiflet 2 7.31 4.94 5.89 22.40 42.09 5.88 −6.99
coiflet 3 7.50 4.91 6.17 34.25 40.49 4.94 0.67
coiflet 4 7.56 4.94 4.97 44.52 35.97 3.96 4.97
coiflet 5 7.59 4.98 5.65 40.20 30.52 4.81 7.52
bior 1.3 7.21 5.41 8.07 20.66 18.05 14.06 −58.78
bior 2.8 7.25 4.79 10.37 25.36 45.00 4.23 −6.61
bior 3.9 7.30 5.27 3.18 44.63 26.84 21.94 −42.45
bior 5.5 8.08 4.56 3.79 29.16 35.24 11.25 −12.30
bior 6.8 7.47 4.90 9.58 31.96 37.50 8.49 −6.41
meyer 7.58 4.97 4.30 50.85 24.42 9.97 2.89

Table A12. Results of the neuronal model (%) in case 3.

Wavelet Level

Family 1 2 3 4 5 6 7

haar 6.36 7.57 10.83 −6.02 16.36 2.55 −72.60
daub 2 5.51 −11.23 10.80 5.28 18.06 −15.27 −75.44
daub 3 5.39 4.26 7.07 20.81 36.57 −9.02 −10.14
daub 4 4.93 −17.27 8.84 2.15 45.68 7.39 7.40
daub 5 0.45 5.26 6.60 32.97 30.57 24.66 −72.56

symlet 2 5.51 −11.23 10.80 5.28 18.06 −15.27 −75.44
symlet 3 5.39 4.26 7.07 20.81 36.57 −9.02 −10.14
symlet 4 −0.31 −11.46 7.34 −3.02 40.19 −0.76 9.63
symlet 5 6.06 4.55 8.17 32.26 27.29 27.35 −65.68
coiflet 2 5.25 −3.80 8.25 20.86 3.66 6.88 −9.63
coiflet 3 1.48 −20.58 6.45 1.17 6.55 5.03 1.96
coiflet 4 5.29 −20.46 −0.43 34.05 39.66 4.40 4.62
coiflet 5 −1.08 −22.19 6.00 31.33 33.74 4.78 7.23
bior 1.3 −1.23 −15.93 8.15 −4.01 17.46 −2.32 −58.89
bior 2.8 4.93 5.57 8.59 6.59 46.50 5.48 −15.90
bior 3.9 5.16 4.41 −16.52 4.35 28.43 4.82 −39.62
bior 5.5 5.05 −16.06 5.79 12.66 36.29 11.17 −10.82
bior 6.8 5.06 5.26 8.12 31.26 38.99 0.41 −7.17
meyer −3.08 −2.65 5.39 34.19 25.64 3.52 2.10
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Table A13. Results of the neuronal model (%) in cases 22 and 31.

Wavelet Levels in Case 22 Levels in Case 31

Family 1 2 3 4 1 2 3 4

haar −30.73 −25.46 −42.13 −30.73 −19.06 −4.92 −10.73 −32.24
daub 2 −26.23 −238.57 −19.91 −26.23 −15.72 7.38 1.90 −21.62
daub 3 −15.85 7.02 −12.60 −15.85 −9.72 15.53 7.77 −15.68
daub 4 −4.14 13.55 −5.95 −4.14 −5.77 23.39 10.34 −14.27
daub 5 −10.55 21.28 −5.52 −10.55 −2.14 26.52 12.67 −13.74

symlet 2 −25.98 −6.49 −19.21 −25.98 −14.49 7.66 2.12 −21.49
symlet 3 −17.80 6.35 −12.78 −17.80 −10.13 14.85 7.11 −15.78
symlet 4 16.53 15.51 −9.61 16.53 −4.92 22.03 11.38 −13.86
symlet 5 −2.92 24.84 −1.95 −2.92 −0.63 26.50 13.43 −13.62
coiflet 2 30.71 33.45 −5.18 30.71 −5.05 23.13 10.78 −13.54
coiflet 3 −2.42 27.34 −0.32 −2.42 3.30 29.61 14.71 −12.76
coiflet 4 6.49 33.27 −1.69 6.49 10.19 33.42 14.54 −12.35
coiflet 5 12.55 35.62 1.93 12.55 14.20 34.52 15.70 −11.70
bior 1.3 −34.18 −27.20 −41.09 −34.18
bior 2.8 −23.50 4.12 −9.08 −23.50
bior 3.9 −7.46 26.02 −3.80 −7.46
bior 5.5 6.31 29.96 −3.36 6.31
bior 6.8 4.43 28.93 0.26 4.43
meyer 34.12 38.70 2.48 34.12
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