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Abstract: Many leading companies in the automotive industry have been putting tremendous
effort into developing new powertrains and technologies to make their products more energy
efficient. Evaluating the fuel economy benefit of a new technology in specific powertrain systems is
straightforward; and, in an early concept phase, obtaining a projection of energy efficiency benefits
from new technologies is extremely useful. However, when carmakers consider new technology
or powertrain configurations, they must deal with a trade-off problem involving factors such as
energy efficiency and performance, because of the complexities of sizing a vehicle’s powertrain
components, which directly affect its energy efficiency and dynamic performance. As powertrains of
modern vehicles become more complicated, even more effort is required to design the size of each
component. This study presents a component-sizing process based on the forward-looking vehicle
simulator “Autonomie” and the optimization algorithm “POUNDERS”; the supervisory control
strategy based on Pontryagin’s Minimum Principle (PMP) assures sufficient computational system
efficiency. We tested the process by applying it to a single power-split hybrid electric vehicle to
determine optimal values of gear ratios and each component size, where we defined the optimization
problem as minimizing energy consumption when the vehicle’s dynamic performance is given as
a performance constraint. The suggested sizing process will be helpful in determining optimal
component sizes for vehicle powertrain to maximize fuel efficiency while dynamic performance is
satisfied. Indeed, this process does not require the engineer’s intuition or rules based on heuristics
required in the rule-based process.

Keywords: Autonomie; component sizing; forward-looking simulation; hybrid electric vehicle;
optimization; Pontryagin’s Minimum Principle

1. Introduction

In recent years, automotive powertrains have been rapidly electrified in order to
achieve low emissions and high fuel efficiency. Despite the intensive development of
electric vehicles (EVs) in the industry, EVs still have limitations due to the decreasing range
in cold temperatures [1]. For this reason, the hybrid electric vehicle (HEV) remains one of
the most promising candidates for next-generation vehicle powertrains. Hybrid electric
vehicles have more than two power sources; typically, an engine and a motor powered
by battery [2]. Plug-in hybrid vehicles (PHEV) have the advantages of both HEV and
EV, by adopting a power charging unit so that they can operate both modes depending
on the situation [3–5]. Fuel cell electric vehicles (FCEV) are also one of the promising
candidates. Since the FCEV uses hydrogen as fuel, emission is zero except pure water
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(H2O), and the problem of EV with respect to charging time can be solved [6–8]. Although
the FCEV is a great powertrain with many advantages, it has limitations in terms of cost
and infrastructure [9].

When developing all kinds of powertrains as well as HEVs, carmakers make great
efforts to design energy-efficient vehicles while satisfying specific dynamic performance,
such as acceleration performance and maximum speed. Component sizing is a very
important piece of the design puzzle-process of satisfying performance goals.

Many research efforts have sought to address the component-sizing problem. In [10],
a rule-based sizing algorithm is applied for various vehicle types, ranging from a con-
ventional vehicle to an HEV, a plug-in HEV (PHEV), and a battery electric vehicle (BEV).
Each sizing philosophy is applied for different powertrain configurations. For example, in
conventional vehicles, engine power is sized to meet and pass acceleration performance
measures. However, in an HEV, battery power is sized to recuperate 100% of energy on the
Urban Dynamometer Driving Schedule (UDDS) cycle. Component sizing on a backward-
looking simulation based on dynamic programming (DP) is conducted in [11]. The sizes
of an engine, two electric motors, and reduction gear ratios are optimized to maximize
fuel economy performance for the drivetrains studied. DP is used to find the best fuel
economy performance in specific component size configurations, assuming the use of an
optimal energy management strategy (EMS). In [12], drivetrain cost is minimized over
three different all-electric-range vehicles and two types of batteries for PHEVs. Parallel
chaos optimization is used as the component-sizing algorithm while satisfying driving
performance requirements are used as constraints. For plug-in hybrid vehicles in [13], a
rule-based fuzzy logic and genetic algorithm was used for optimization of component
sizing, minimizing weighted fuel consumption and exhaust gas emissions. In [14], the
component-sizing process is conducted for a plug-in hybrid electric bus using a rule-based
sizing algorithm and the energy management strategy with a gen-set optimal operating
line and a rule-based algorithm. In [15], based on the assumption that the powertrain
model represents quadratic losses for powertrain components, the researchers formulate
the problem as a convex optimization problem to minimize fuel consumption, electrical
energy, and component cost.

In the component-sizing problem for vehicle powertrains, it is hard to obtain the
derivative of an objective function because of the complexity of the powertrain structure
and its highly nonlinear characteristics. For this reason, most research has applied a rule-
based or brute-force algorithm as the component-sizing algorithm. However, some research
applied an optimization algorithm under only specific assumptions (e.g., powertrain loss
can be represented as a quadratic function).

In the HEV system, the energy management strategy is very important in terms of
fuel efficiency. In particular, it is important to apply optimal control logic so that the
effect of the EMS on each parameter configuration will be fair. Therefore, many studies
have applied mainly backward-looking simulations that enable the application of dynamic
programming, which guarantees globally optimal results. However, DP requires a huge
amount of computation time because it solves all possible controls. In addition, a backward-
looking simulation has the disadvantage that it does not represent the dynamics of the
supervisory controller, nor does it represent the sub-controller at the component level of
the vehicle.

Two studies perform component sizing using a sizing algorithm called Practical
Optimization Using No Derivatives for sums of Squares (POUNDERS), which is also used
in this study. One of these studies minimizes ownership cost in fuel cell vehicles [16],
and the other applied POUNDERS to the component-sizing problem to minimize fuel
consumption while satisfying the dynamic performance as a requirement [17]. The target
vehicle powertrains are those of a conventional vehicle and an HEV, and a rule-based energy
management strategy was applied. Therefore, for different parameter configurations of
vehicle powertrains, one limitation is that the impact of fuel economy of a rule-based EMS
may not be fair.
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For this reason, in this study, we apply Pontryagin’s Minimum Principle (PMP) to
EMS as a real-time control logic that can be applied to a forward-looking simulation while
ensuring optimality close to DP results when certain necessary conditions are satisfied in the
EMS problem of HEVs. Applying this PMP guarantees a fair comparison, and the dynamics
of the vehicle can be considered by constructing a forward-looking simulation. We used
the sizing algorithm which is an optimal algorithm called POUNDERS. Existing rule-based
algorithms that optimize fuel economy performance while satisfying the constraints require
engineer’s intuition or design heuristics, because an appropriate algorithm must be used
according to each powertrain structure. However, the POUNDERS algorithm, which is a
black-box optimization method, performs optimization using the cost function value, so it
can be applied to all types regardless of the powertrain structure.

2. Vehicle Modeling Methodology

The target vehicle in this study is the power-split hybrid system shown in Figure 1.
The planetary gear as a power-split device is connected to the engine and motors and drive
shaft, respectively. This power-split powertrain has been improved upon from one of the
most well-known systems, the Toyota Hybrid System (THS) [18,19]. This version has been
improved by the addition of a one-way clutch to the carrier of the planetary gear, which en-
ables the generator to assist the drive force, unlike in the previous version [20]. Table 1 lists
the vehicle specification data used in this study. We obtained this data and vehicle model
from Autonomie, a simulation tool developed by Argonne National Laboratory(Lemont,
United States) [21,22]. Because of the layout of the Autonomie program we used, we call
some specific components by abbreviations for general components. For instance, the
planetary gear as the power-split device is called GB, which stands for gearbox, because
the planetary gear performs the role of a gearbox in that it transmits engine power to the
drive shaft. The motor reduction gear is called TC, which stands for torque coupling, and
the final drive reduction gear is called FD. In 2019, we tested and validated the vehicle
model and controller model with the test data [23].
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Table 1. Vehicle model parameters.

Components Value

Engine power 72 kW
Battery power 18.4 kW

Planetary gear ratio (GB) 2.6
Motor (MG1) peak torque/power 40 Nm/23 kW
Motor (MG2) peak torque/power 163 Nm/53 kW

Final effective gear ratio (FD) 3.296
Motor reduction gear ratio (TC) 3.117

Curb weight 1575 kg
Wheel base 2700 mm

Weight distribution 60% front, 40% rear
Cd 0.25

Frontal area 2.07 m2
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3. Component-Sizing Methodology Using the Optimization Algorithm

In this study, the component-sizing optimization process was developed by apply-
ing PMP and POUNDERS to the EMS and component-sizing algorithm, respectively, in
a forward-looking simulation framework. For the initial parameter, we calculated the
fuel consumption using the forward-looking simulation model to which PMP is applied;
and through these results, the POUNDERS algorithm updates the parameter to find the
optimum value shown in Figure 2. While repeating this process, the process terminates
when the parameter converges or the iteration exceeds the maximum value.
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3.1. Pontryagin’s Minimum Principle

PMP is an optimal control strategy that can be applied to systems that are nonlinear
and non-differentiable, such as hybrid electric vehicle powertrains. PMP does not require
much calculation time because it provides a simple solution while ensuring optimality
when certain conditions are satisfied. It is derived from the Euler–Lagrange equation
in Calculus of Variation. Optimality is satisfied only when the necessary conditions are
obtained and satisfied [24]. Following are general PMP applications to HEVs [25].

The performance index can be defined as:

J =
∫ t f

t0

g(Pb, t)dt, (1)

where g(Pb,t) is the best fuel consumption rate function, which is a function of Pb and t. Pb
and t are battery output power and time, respectively. The Hamiltonian is defined as:

H(SOC, Pb, p) = g(Pb, t) + p(t)
.

SOC(Pb, SOC, t), (2)
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where p is a costate. SOC is state of charge of battery. The state equation and the costate
equation are described as:

.
SOC =

∂H
∂p

(SOC∗(t), Pb
∗(t), p∗(t), t) (3)

.
p = − ∂H

∂SOC
(SOC∗(t), Pb

∗(t), p∗(t), t). (4)

Researchers should consider Equation (5) as determining optimal control variable Pb
∗

at every time step.

H(SOC∗(t), Pb(t), p∗(t), t) ≤ H(SOC∗(t), Pb
∗(t), p∗(t), t). (5)

As a boundary condition, in the optimal control problem of HEV, initial SOC and final
SOC should be the same:

SOC(t0) = SOC
(

t f

)
. (6)

These necessary conditions and boundary conditions must be satisfied for determining
the optimal trajectory.

3.2. POUNDERS

In this study, we used the derivative-free optimization algorithm called POUNDERS
for component parameter optimization, which has been developed by Argonne National
Laboratory [26]. Vehicle simulation models are complex systems and consist of numerous
components, and each component has a controller model. Because of the high nonlinearity
of the control models and component performance curves, obtaining gradient and hessian
information related to component-sizing parameters is very difficult. For a black-box
optimization problem such as the component-sizing problem, instead of using finite-
difference approximations, the algorithm uses quadratic surrogate models to determine
the coarse approximations for the unknown gradient and hessian terms. This approach has
been shown to be efficient for minimizing the number of required simulation runs.

In this study, we optimized three gear ratios—final drive, TC and GB—to mini-
mize combined fuel consumption on the Urban Dynamometer Driving Schedule (UDDS)
and Highway Fuel Economy Test (HWFET). We calculated combined fuel economy as
a harmonic mean of fuel economy on the UDDS and HWFET weighted 55% and 45%,
respectively [27,28]. We considered dynamic performance using constraints such as accel-
eration time from 0 to 100 km per hour (kph) and missing time proportion for tracing each
driving cycle within 3.2 kph. We formulated the component-sizing optimization problem
as follows [17]:

min
r

{
m f (ri) : cj(ri) ≤ 0, li ≤ ri ≤ ui, i = 1, 2, 3, j = 1, 2

}
, (7)

where m f is fuel consumption on each driving cycle. It is minimized over ri whose range is
from li to ui, which are the lower limit and upper limit, respectively. cj represents the dy-
namic performance constraints, and j represents different constraints. i represents different
components whose parameter is updated by the algorithm. For given Lagrange multipliers
and the penalty parameter, a bound-constrained augmented Lagrangian problem can be
formulated as follows:

min
r

{
h(r, s) = m f (ri)−∑j∈J λj

(
cj(ri) + sj

)
+

µ

2 ∑j∈J

(
cj(ri) + sj

)2 : s ≥ 0; li ≤ ri ≤ ui, i = 1, 2, 3, j = 1, 2
}

, (8)

where h is a cost function, λj is an estimate of Lagrangian multipliers, sj are slack
variables, and µ is the penalty parameter. When the constraints are not satisfied (e.g.,
acceleration time is above the target value), the slack variables increase the cost function
value, h, and the point is excluded from the feasible points.
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4. Simulation and Results

The POUNDERS optimization process finds a parameter configuration that minimizes
the combined fuel economy while satisfying the dynamic performance constraints of an
acceleration time of 9.3 s and a driving cycle tracing error of 3.2 kph. Although they are not
the target parameters in this study, battery and motors have a great influence on dynamic
performance and fuel economy in hybrid electric vehicles. Therefore, we determined
their minimum size to satisfy the following conditions and considered the weight change
according to the power of the motor and battery based on our previous research [10]. We
sized battery power and electric machine MG1 power to recuperate 100% of the energy
through regenerative braking on UDDS, and we sized electric machine power to meet
the gradeability and performance requirements. We defined vehicle weight as a function
of the peak power of electric machine and battery cell number under the assumption
that the specific power density of the electric machine is 1440 W/kg and of the battery
is 2750 W/kg.

Since the initial costate in PMP has great influence on the final SOC, it is important to
find the initial costate that matches the final SOC with the initial SOC in the HEVs. To this
end, we iterate the simulation in the parameter set determined by POUNDERS, in order
to find the initial costate that makes the SOC deviation close to 0. It is terminated when it
converges below a certain tolerance or reaches the maximum number of iterations. If it is
terminated due to the maximum iteration number, fuel consumption is estimated through
linear approximation, as shown in Figure 3.
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First, component-sizing optimization was performed for three cases in which two out
of three parameters were paired. The objective is to find the optimal values of a parameter
set for the three gear ratios—GB, TC, and FD—that minimizes fuel consumption. Table 2
shows the parameter combinations and ranges of the three cases. For example, in Case
1, the optimal values of GB and TC that minimize fuel consumption are found, and the
FD value, which is not a target parameter, is fixed as the original value from Table 1.
The two-parameter optimization case was performed as a preliminary task to confirm
the optimization performance of the sizing algorithm and to determine the range in the
three-parameter optimization case. For this, we set parameter ranges that best show the
algorithm’s optimization performance and trend.

Table 2. Lower and upper ranges of parameters.

Gear Types Case 1 Case 2 Case 3

GB 1.8–3.0 2.0–3.5 -
TC 2.5–4.0 - 2.5–3.6
FD - 2.0–3.6 2.5–3.6
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The result of component-sizing optimization for Case 1 follows. Figure 4 shows the
resulting values of acceleration time and fuel consumption within a given parameter range
in the proposed component-sizing optimization process. By dividing each parameter range
by seven points, a total of 49 points were obtained. In order to confirm the optimization
performance of the POUNDERS algorithm, we obtained fuel consumption and acceleration
performance results in all domains for only two parameter cases. As required constraints,
points that satisfy the acceleration time and profile speed of the driving cycle speed are
indicated as feasible points. As Figure 4a shows, the GB value does not have a significant
effect on the acceleration performance, and the larger the TC value, the better the accel-
eration performance. When the value of the TC ratio acting as the reduction gear ratio of
the motor is large, the torque increases during the initial acceleration situation, and the
acceleration performance tends to be improved. Figure 5. Cost function value contour and
parameter optimization history versus TC and GB. shows the optimization history through
the component-sizing process using POUNDERS. In order to confirm the optimality of
the POUNDERS result, the value of the cost function h(r, s) is derived in Figure 5 through
Equation (8) using the fuel consumption values in Figure 4b and the acceleration time
value in Figure 4a. The optimized values are 2.525 and 3.563 for the GB and TC ratios,
respectively (Figure 6). Table 3 shows the optimized parameter values for Case 1, and
Table 4 summarizes the fuel consumption results, SOC changes, and acceleration perfor-
mance results for all cases. To adjust the fuel consumption results resulting from the SOC
difference, the adjusted fuel consumption was calculated by interpolation using linear
approximation as described in Figure 3. The fuel consumption for Case 1 is 3.511 L/100 km
for the combined cycle, which is an improvement compared to 3.527 L/100 km for the
non-sized case.
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consumption results.

Table 3. Component-sizing results and acceleration performance for Case 1.

Parameters Non-Sized Case 1

MG1 pwr (kW) 78.7 78.9
MG2 pwr (kW) 63.7 63.9

GB ratio 2.6 2.525
TC ratio 3.117 3.563
FD ratio 3.296 -

Vehicle mass (kg) 1813 1813
Acceleration time (s) 9.13 9.18



Energies 2021, 14, 3147 8 of 15
Energies 2021, 14, 3147 8 of 16 
 

 

 

Figure 5. Cost function value contour and parameter optimization history versus TC and GB. 

 

Figure 6. Optimization results for the TC(orange, asterisk) and GB(blue, cube) ratios. 

Table 3. Component-sizing results and acceleration performance for Case 1. 

Parameters Non-Sized Case 1 

MG1 pwr (kW) 78.7 78.9 

MG2 pwr (kW) 63.7 63.9 

Figure 5. Cost function value contour and parameter optimization history versus TC and GB.

Energies 2021, 14, 3147 8 of 16 
 

 

 

Figure 5. Cost function value contour and parameter optimization history versus TC and GB. 

 

Figure 6. Optimization results for the TC(orange, asterisk) and GB(blue, cube) ratios. 

Table 3. Component-sizing results and acceleration performance for Case 1. 

Parameters Non-Sized Case 1 

MG1 pwr (kW) 78.7 78.9 

MG2 pwr (kW) 63.7 63.9 

Figure 6. Optimization results for the TC(orange, asterisk) and GB(blue, cube) ratios.



Energies 2021, 14, 3147 9 of 15

Table 4. Fuel consumption and acceleration time results for UDDS and HWFET and combined.

Fuel Consumption (L/100 km) UDDS HWFET Combined Acceleration (0–100 kph)

Non–sized F.C./delta SOC (%) 3.36/ + 0.11% - 3.74/ − 0.23% - 3.529 - 9.13 -
adj. F.C. 3.35 - 3.74 - 3.527 -

Case 1–Sized,
GB/TC

F.C./delta SOC (%) 3.32/ + 0.25% −1.2% 3.75/ − 0.23% 0.3% 3.512 −0.5% 9.18 0.5%adj. F.C 3.31 −1.4% 3.76 0.6% 3.511 −0.5%
Case 2–Sized,

GB/FD
F.C./delta SOC (%) 3.34/ + 0.28% −0.4% 3.70/ − 0.45% −1.0% 3.505 −0.7% 9.20 0.7%adj. F.C 3.33 −0.6% 3.71 −0.6% 3.505 −0.6%

Case 3–Sized,
TC/FD

F.C./delta SOC (%) 3.36/ − 0.11% 0.2% 3.64/ − 0.02% −2.6% 3.489 −1.1% 9.17 0.4%adj. F.C 3.37 0.4% 3.64 −2.6% 3.492 −1.0%
Case 4–Sized,
GB/TC/FD

F.C./delta SOC (%) 3.36/ + 0.27% −0.1% 3.67/ − 0.24% −1.9% 3.495 −0.9% 9.20 0.7%adj. F.C 3.34 −0.3% 3.67 −1.7% 3.493 −1.0%

The result of parameter optimization in Case 2 is as follows. As with Case 1, Figure 7
shows the 49 acceleration time (a) and fuel consumption (b) results in the entire parameter
range, and Figure 8 shows the cost function value and tracking history of the optimization
process in all areas. Similar to Case 1, the GB value does not have a significant effect on
the acceleration performance, and the results show that the larger the FD value, the better
the acceleration performance. Not only the TC value but also the FD value should be
large so that the wheel torque increases during the initial acceleration, and the acceleration
performance tends to be improved. The optimized values are 2.838 and 3.028 for the GB
and FD ratios, respectively (Figure 9). Tables 4 and 5 show the optimized parameter values
for Case 2 and fuel consumption results for all cases, respectively. The fuel consumption is
3.505 L/100 km for combined cycle, which is an improvement compared to 3.527 L/100 km
for the non-sized case.

Energies 2021, 14, 3147 9 of 16 
 

 

GB ratio 2.6 2.525 

TC ratio 3.117 3.563 

FD ratio 3.296 - 

Vehicle mass (kg) 1813 1813 

Acceleration time (s) 9.13 9.18 

Table 4. Fuel consumption and acceleration time results for UDDS and HWFET and combined. 

Fuel Consumption (L/100 km) UDDS HWFET Combined 
Acceleration (0–100 

kph) 

Non–sized 
F.C./delta SOC (%) 3.36/ + 0.11% - 3.74/ − 0.23% - 3.529 - 

9.13 - 
adj. F.C. 3.35 - 3.74 - 3.527 - 

Case 1–Sized, GB/TC 
F.C./delta SOC (%) 3.32/ + 0.25% −1.2% 3.75/ − 0.23% 0.3% 3.512 −0.5% 

9.18 0.5% 
adj. F.C 3.31 −1.4% 3.76 0.6% 3.511 −0.5% 

Case 2–Sized, GB/FD 
F.C./delta SOC (%) 3.34/ + 0.28% −0.4% 3.70/ − 0.45% −1.0% 3.505 −0.7% 

9.20 0.7% 
adj. F.C 3.33 −0.6% 3.71 −0.6% 3.505 −0.6% 

Case 3–Sized, TC/FD 
F.C./delta SOC (%) 3.36/ − 0.11% 0.2% 3.64/ − 0.02% −2.6% 3.489 −1.1% 

9.17 0.4% 
adj. F.C 3.37 0.4% 3.64 −2.6% 3.492 −1.0% 

Case 4–Sized, GB/TC/FD 
F.C./delta SOC (%) 3.36/ + 0.27% −0.1% 3.67/ − 0.24% −1.9% 3.495 −0.9% 

9.20 0.7% 
adj. F.C 3.34 −0.3% 3.67 −1.7% 3.493 −1.0% 

The result of parameter optimization in Case 2 is as follows. As with Case 1, Figure 

7 shows the 49 acceleration time (a) and fuel consumption (b) results in the entire 

parameter range, and Figure 8 shows the cost function value and tracking history of the 

optimization process in all areas. Similar to Case 1, the GB value does not have a 

significant effect on the acceleration performance, and the results show that the larger the 

FD value, the better the acceleration performance. Not only the TC value but also the FD 

value should be large so that the wheel torque increases during the initial acceleration, 

and the acceleration performance tends to be improved. The optimized values are 2.838 

and 3.028 for the GB and FD ratios, respectively (Figure 9). Tables 4 and 5 show the 

optimized parameter values for Case 2 and fuel consumption results for all cases, 

respectively. The fuel consumption is 3.505 L/100 km for combined cycle, which is an 

improvement compared to 3.527 L/100 km for the non-sized case. 

Figure 8 shows that there can be multiple locally optimal solutions for this 

optimization problem. Moreover, if the grid is set to be denser than 7 by 7, more locally 

optimal solutions can exist. This result shows that, although the POUNDERS algorithm 

cannot always guarantee the globally optimal point, it does find a locally optimal point 

that is quite similar to the globally optimal point. 

  

(a) (b) 

Figure 7. Results on entire range versus GB and FD and feasible points: (a) acceleration results; and (b) fuel
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Table 5. Component-sizing results and acceleration performance for Case 2.

Parameters Non-Sized Case 2

MG1 pwr (kW) 78.7 80.6
MG2 pwr (kW) 63.7 62.9

GB ratio 2.6 2.838
TC ratio 3.117 -
FD ratio 3.296 3.028

Vehicle mass (kg) 1813 1814
Acceleration time (s) 9.13 9.20
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Figure 9. Optimization results for GB(blue, cube) and FD(orange, asterisk) ratios.

Figure 8 shows that there can be multiple locally optimal solutions for this optimization
problem. Moreover, if the grid is set to be denser than 7 by 7, more locally optimal solutions
can exist. This result shows that, although the POUNDERS algorithm cannot always
guarantee the globally optimal point, it does find a locally optimal point that is quite
similar to the globally optimal point.

The result of parameter optimization in Case 3 is as follows. Similar to Cases 1
and 2, the greater the TC and the FD values, the better the acceleration performance
(Figures 10 and 11). Tables 4 and 6 show the optimized parameter values for Case 3 and
the fuel consumption results for all cases, respectively. The optimized values are 3.468
and 2.556 for the TC and FD ratios, respectively (Figure 12). The fuel consumption is
3.492 L/100 km for combined cycle, which is an improvement compared to 3.527 L/100 km
for the non-sized case.
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Table 6. Acceleration performance for Case 3.

Parameters Non-Sized Case 3

MG1 pwr (kW) 78.7 86.3
MG2 pwr (kW) 63.7 63.7

GB ratio 2.6 -
TC ratio 3.117 3.468
FD ratio 3.296 2.556

Vehicle mass (kg) 1813 1818
Acceleration time (s) 9.13 9.17
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In the two parameter cases, the GB ratio has no correlation with acceleration per-
formance, and the larger the TC or FD values, the better the acceleration performance.
Because the maximum torque is the most important factor in acceleration performance
from a standstill position, it is clear that, in general, the higher the gear ratio, the better
the acceleration performance. However, if the gear ratio is too large, it may not reach
100 kph because of the maximum speed limit of the engine or motor. On the other hand, the
correlation between fuel economy and parameters is not linear because of the nonlinearity
of the engine and motor efficiency maps, and the fact that the objective is to minimize the
fuel consumption of the two driving cycles, the UDDS and HWFET. However, all three
cases showed results that converged close to the optimal point, and based on these results,
we were finally able to conduct optimization of the three parameters.

We determined the parameter search range in Case 4, which runs the three-parameter
optimizations and performed the following optimization. As shown in Table 7, all three
parameters were set as optimization variables, and the proposed optimization process was
performed in the same manner as in the previous cases.

Table 7. Lower and upper ranges of Case 4 parameters.

Gear Types Case 4

GB 2.0–3.0
TC 2.2–3.2
FD 2.5–3.5

Figure 13 shows how the parameter value changes during the optimization process.
In a three-parameter optimization such as Case 4, the acceleration time, fuel consumption,
and cost function value map for all areas is not shown because the computational load
increases exponentially as the number of parameters increases.

Tables 4 and 8 show the optimized parameter values and fuel consumption results for
all cases, respectively. The fuel consumption is 3.493 L/100 km for combined cycle, which
is an improvement compared to 3.527 L/100 km for the non-sized case. The optimized
values are 2.995, 3.337 and 2.780 for the GB, TC and FD ratios, respectively.
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Table 8. Component-sizing results and acceleration performance for Case 4.

Parameters Non-Sized Case 4

MG1 pwr (kW) 78.7 82.7
MG2 pwr (kW) 63.7 62.4

GB ratio 2.6 2.995
TC ratio 3.117 3.337
FD ratio 3.296 2.780

Vehicle mass (kg) 1813 1814
Acceleration time (s) 9.13 9.20

In this study, the fuel consumption results for three gear ratios of a power-split hybrid
vehicle were minimized using the proposed sizing algorithm.

The vehicle specification of the non-sized case is the specification currently released
on the market. The optimization result using the proposed sizing algorithm shows better
results than that of the non-sized case. Although the proposed sizing algorithm uses an
optimization algorithm, there is a limitation that it cannot guarantee global optimization.
In addition, the parameters of the non-sized case, which is the base-line case, still use the
specifications of the vehicle currently released on the market. This value has already been
optimized to some extent by the carmaker, so there is not much room for optimization.
For this reason, the result of Case 4, which optimizes three parameters, has higher fuel
consumption than the result of Case 3, which optimizes two parameters. On the contrary,
in the process of vehicle development, the near optimal value of each parameter can be
obtained through the proposed algorithm.

5. Discussion and Conclusions

This paper proposes a component-sizing optimization process using a derivative-free
optimization algorithm because of the high nonlinearity and complexity of vehicle pow-
ertrain systems. This process finds the component size set to minimize fuel consumption
while satisfying dynamic requirements. Applying PMP as an optimal control for the energy
management strategy ensures a fair comparison with respect to energy management for
different component sizes. Although the algorithm does not guarantee finding the global
optimal, it converges to a point that is quite close to the optimum point and shows good
optimization performance. In addition, when using a brute-force method, as the number of
design parameters increases, the number of cases to be considered increases exponentially,
which requires a significant amount of time and effort. In contrast, using the proposed
process to find the optimal component sizes can save researchers a significant amount of
time and effort. As mentioned in the introduction, POUNDERS, a sizing algorithm, was
developed for the black-box optimization problem, so it can be applied to all powertrain
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structures. It is also applicable to conventional vehicles [17]. In addition, it is possible to
optimize not only the gear ratio, but also all parameters for which data can be input, such
as engine or motor size. Thanks to this applicability of the algorithm, the methodology
presented in this study can be used for almost all types of vehicle.
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Nomenclature

Acronyms Description
BEV Battery Electric Vehicle
DP Dynamic Programming
EMS Energy Management strategy
FD Final Drive gear
GB Planetary gear
HEV Hybrid Electric Vehicle
HWFET Highway Fuel Economy Test
MG Motor/Generator
PHEV Plug-in Hybrid Electric Vehicle
PMP Pontryagin’s Minimum Principle
POUDERS Practical Optimization Using NO Derivatives for sums of Squares
TC Motor reduction gear
THS system Toyota Hybrid System
UDDS Urban Dynamometer Driving Schedule
Sub-scripts
0 Initial value
f Final value
Symbols Description
c Constraint
Cd Drag coefficient
h Cost function
H Hamiltonian
l Lower limit
mf Fuel consumption
p Costate
Pb Battery power
r Design variable
s Slack variable
SOC State of charge
t Time
u Upper limit
µ Penalty parameter
λ Lagrangian multipliers

http://energy.gov/downloads/doe-public-accessplan
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