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Abstract: This paper examines the environmental Kuznets curve (EKC) in Vietnam between 1977
and 2019. Using the autoregressive distributed lag (ARDL) approach, we find an inverted N-shaped
relation between economic growth and carbon dioxide emissions in both the long- and short-run.
The econometric results also reveal that energy consumption and urbanization statistically positively
impact pollution. The long-run Granger causality test shows a unidirectional causality from energy
consumption and economic growth to pollution while there is no causal relationship between energy
consumption and economic growth. These suggest some crucial policies for curtailing emissions
without harming economic development. In the second step, we also employed the back-propagation
neural networks (BPN) to compare the work of econometrics in carbon dioxide emissions forecasting.
A 5-4-1 multi-layer perceptron with BPN and learning rate was set at 0.1, which outperforms the
ARDL’s outputs. Our findings suggest the potential application of machine learning to notably
improve the econometric method’s forecasting results in the literature.

Keywords: backpropagation neural network; energy consumption; environmental Kuznets curve;
pollution; urbanization; Vietnam

1. Introduction

Vietnam is a developing country with notable economic growth during the last four
decades. Since 1986, there have been some critical political and social reform milestones.
The government has adopted open-door policies toward international trade and investment,
and industrial activity in large cities has become increasingly active. As a result, Vietnam
has risen from a low-income country to lower-middle-income status, with an average
Gross Domestic Product (GDP) of US $ 2700 with more than 45 million people lifted out of
poverty since 1986 [1]. Vietnam has also developed strategies to pursue economic growth
associated with sustainable development. In particular, Vietnam has ratified international
treaties, namely, the Kyoto Protocol (2002) and the Paris Agreement (2016), to adapt to
climate change and reduce carbon emissions. Vietnam has amended the national law on
environmental protection since 2014. The legislation focuses on three pillars, i.e., cap and
trade, industrial emissions reporting provisions, and a database of all carbon and mitigation
steps. For instance, cap and trade concentrate on creating a domestic carbon credit market
where companies are limited in their emissions, so if they do not reach the cap, they could
trade the surplus with other companies to optimize the cost of emissions. On the other
hand, companies also regularly report their emissions to the authorized agency to monitor
the quota.

Regarding renewable energies, the primary objective is to accelerate the production
towards the maximal replacement of fossil energy sources. In particular, renewable electric-
ity sources account for 15–20% of overall primary energy production in 2030 [2], biomass
power, wind power, and solar power reach 6.3%, 2.7%, and 6% of total electricity output,
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respectively [3]. Furthermore, the government establishes a framework for fostering and
attracting non-state investment in the nation’s power transmission system [2]. These steps
are expected to create a free energy market and efficiently monitor environmental policies.

Although those attempts have been recognized to serve sustainable development,
Vietnam faces the over fossil fuel consumption to hardly obtain the low carbon economy
by 2030. Coal consumption accounts for between 65% and 75% of overall CO2 emissions
from the entire electricity sector, and oil consumption increases an average of 2.73% from
1977 to 2013 [4]. The excessive demand for natural resources and fossil-fuel energy due
to the significant economic transformation has increased air pollution, especially in big
cities where traffic congestion and industrial issues have become more serious [5,6]. For
example, according to Our World in Data [7] and Euromonitor Passport Database [8], the
average increase in carbon dioxide (CO2) emissions reached 5.14%, along with the 6.53%
increase in energy consumption and a 4.62% increase in real income for the period 1977 to
2019. Additionally, for the period 2007 to 2017, the total economic development by 6.1%
resulted in a 9.3% growth of the industrial sector’s energy consumption (Electricity and
Renewable Energy Authority in Vietnam and Danish Energy Agency-EREA and DEA [9]).
The evidence suggests that economic expansion is related to a rise in Vietnam’s energy
consumption and environmental deterioration. The CO2 emissions and economic growth
were normalized and presented in Figure 1.

Figure 1. Evolution of carbon dioxide emissions and economic growth (normalized values), 1977–2019.

As shown in Figure 1, the trend is not a linear relationship. While real income saw
a steadily upward trend after 1981, the CO2 emissions line has fluctuated with several
decreased points, for instance, 1983–1985, 2011–2013, and 2017–2018. In other words,
these historical data suggest the possibility that an environmental Kuznets curve (EKC)
hypothesis existed during the period 1977 to 2019. Although the EKC hypothesis has
been widely examined in both developing and developed countries, few studies have been
conducted in the context of Vietnam. Accordingly, we are interested in gaining insight into
the EKC pattern for a specific developing economy since environmental issues have been
seriously concerned in Vietnam recently.

Furthermore, recent studies have applied advanced techniques in environmental
issues [10–13]. One primary reason is that forecasts of CO2 emissions are difficult due to
nonlinear regression. Therefore, the econometric method may not accurately capture the
complicated behavior of analyzed variables [10,14]. As a result, finding a reliable model that
can predict CO2 emissions patterns could be used to formulate policies that will mitigate
environmental problems [10]. Although previous studies have adopted artificial neural
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networks (ANN) on this topic, few studies test benchmarks between econometrics and
machine-learning approaches. In this study, once the form of EKC trajectory is determined
for the long run, we apply the back-propagation algorithm (BPN) to ANN to calculate
the forecast results and compare them to the econometric results. We aim to fill this gap
by adding to the literature an empirical study that presents the predictive effectiveness
of BPN.

From the analysis above, the study’s first aim is to validate the EKC in Vietnam from
1977 to 2019. We employed the autoregressive distributed lag (ARDL) method to examine
the cointegration between analyzed variables. We also investigate the long- and short-run
estimations to ascertain the parameters of the EKC curve in the sample. We further analyze
the Granger causality to determine the directional effects between variables to raise reliable
policy implications. The second aim of the paper is to enhance the predictive results by the
machine learning method. We suppose that a machine learning approach is suitable for
the complex predictive task than the econometrics approach. To conduct the comparison,
we employed BPN to show the CO2 emissions forecasting results and then compare the
results to the ARDL’s by examining benchmarked indicators. We expect that the BPN has
outperformed results due to capturing the complex behaviors between variables. Based
on our findings, we add to the literature an improvement of CO2 emissions forecasting
by BPN.

The rest of the paper is organized as follows: Section 2 provides a review of the EKC
literature. Sections 3 and 4 present the proposed model and data sources. Section 5 demon-
strates the framework of ARDL, BPN, and comparative forecasting indicators between the
ARDL and the BPN approaches. The empirical results and discussions are presented in
Sections 6–8 discusses the conclusion and future research.

2. Related Literature

The fundamental idea of EKC is understandable and intuitive. The EKC reveals the
inverted quadratic linkage between economic growth and environmental degradation, in
which high economic growth initially leads to environmental deterioration due to scale
effects. Then the economy reaches a certain level of average economic development when
the environmental quality starts to improve because of the technical effects [15,16]. Since
Grossman and Krueger [17] and Panayotou [18] had pioneering endeavors to investigate
the EKC hypothesis, a considerable number of empirical studies have focused on this issue.
The studies that tested the hypothesis of the EKC used multiple variables of environmen-
tal deterioration, i.e., CO2 [19–21], nitrous oxide (N2O) emission [22,23], ecological foot-
prints [24–26], electronic waste [27], water quality [28–30], and chromium emissions [31].
Regarding explanatory variables, previous studies used a range of indicators, such as
economic growth [20,31,32], energy consumption [33–37], trade openness [31,38,39], ur-
ban population [40–42], financial development [43–45], technological development [22,46],
and education expenditure [47,48]. Regarding econometric approaches, several studies
employed the semiparametric method as alternatives to the parametric method [49–51]
because the results obtained from the semiparametric approach avoid the parametric func-
tional form assumptions [50]. The summary of empirical studies published from 2015 to
2020 is presented in Appendix A. The review shows that 48% of studies find appropri-
ate evidence while 52% of ones find mixed or no evidence of the EKC hypothesis in the
analyzed sample. Therefore, the evidence has not converged [15].

The empirical evidence of the EKC hypothesis is found in developed economies in,
for instance, the USA [49], the UK [52], the EU [25], Canada [53], Australia [48], and
Singapore [31,45]. Whereas it is not widely supported in developing countries such as Cam-
bodia [54], Malaysia [55], Myanmar [41], Sri Lanka [56], and African countries [39,57,58].
The differences in environmental awareness may explain the significant reason for this
phenomenon. While awareness is driven mainly by environmental protection perceptions
in developed countries, protections are lax in developing countries due to their primary
focus on achieving economic growth [15,59]. In other words, developed countries have
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reached their turning point; they have passed the phase of using technological efficiency to
enhance economic growth while keeping in place environmental protections, whereas de-
veloping countries are in the early stage of scale effects in economic development [15,16,18].
However, several empirical studies show the opposite trend. The presence of the EKC
hypothesis is confirmed in developing countries such as Pakistan [32,43], Indonesia [60],
South Africa [61], India [62,63], and China [40,64]. Meanwhile, several empirical studies
provide no existence of the EKC hypothesis in developed countries, for example, the
USA [50,65], Australia [66], the EU [67,68], and the OECD [16,69]. The main reasons be-
hind the mixed results may be due to scaling factors employed in models [70], datasets,
timespan, economic specifications in a country, and methods used to investigate the EKC
hypothesis [12,30,71]. For these previous practical experiences, in this paper, we focus
on studies that examine the EKC in developing countries which have similar conditions
to Vietnam to find out the relationship between environmental deterioration and related
explanatory factors.

Shahbaz et al. [72] employed the ARDL technique to examine the EKC trajectory
of Pakistan from 1971 to 2009 and confirms the presence of EKC both in the long- and
short-run. In addition, energy consumption also significantly increases CO2 emissions.
The study emphasizes the country’s effort to mitigate CO2 emissions based on a national
environmental law released in 2005 and suggests a green tax to support the law in protecting
the environment. For China and India, Pal and Mitra [73] confirm the N-shaped pattern of
the EKC hypothesis rather than the inverted U-curve. The N-shaped curve indicates that
environmental degeneration will increase in both economies, increasing population growth,
urban congestion, and industrial emissions. The results suggest that Indian policymakers
could direct their efforts toward renewable energy sources such as hydropower, nuclear
power, windmills, and solar power to replace coal in producing electric power. Meanwhile,
the policymakers in China should consider the speed of urbanization to reduce the high
electricity demand and encourage technological enhancement in the energy supply.

In Southeast Asia, Saboori and Sulaiman [74] find the EKC hypothesis for both long-
and short-run in Malaysia. Moreover, the results also show the unidirectional causality
from economic growth to CO2 emissions in the long run. As a result, the government
could implement policies that reduce emissions without harming economic growth to
obtain sustainable development in the long run. Similarly, Sugiawan and Managi [60] also
confirm the EKC hypothesis in Indonesia, with the turning point occurring outside the
period from 1971–2010. Energy consumption has a significantly positive effect on CO2
emissions, whereas electricity production from renewable energy is a statistically negative
sign for both the long- and short-run. These indicate the necessity for switching to CO2
emission-free energy shortly. However, Ozturk and Al-Mulali [54] find no EKC hypothesis
in Cambodia. Similarly, Al-Mulali et al. [75] find a monotonically positive relationship
between income and environmental degradation in Vietnam. The EKC hypothesis does not
exist because these economies are still in their early stages, so environmental degradation
has not reached the turning point yet.

Meanwhile, Shahbaz et al. [76] found N-shaped EKC in the long run and suggest some
policies to prevent the economy from reaching the second turning point. For developing
countries, mixed results could raise arguments over the presence of the EKC hypothesis.
The divergent results are found even in the same country, i.e., using the example of China,
Jalil and Mahmud [77] find the inverted U-shaped EKC while Pal and Mitra [73] find the
N-shaped EKC; in the case of Malaysia, Lau et al. [78] confirmed the EKC hypothesis
whereas Gill, Viswanathan and Hassan [55] showed the monotonically increase of EKC.
Therefore, our work investigates the existence of the EKC hypothesis in Vietnam, a country
that has undergone notable changes in economic growth.

Regarding ANN application in the literature, Acheampong and Boateng [10] em-
ployed BPN to predict carbon emissions intensity with nine explanatory inputs and five
nodes in the hidden layer. A 9-5-1 multilayer perceptron (MLP) system shows that the
predictive errors are trivial. More specifically, the mean absolute deviations and the mean
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squared errors are close to zero. In addition, some factors such as urbanization, energy
consumption, and population have the most significant impact on CO2 emissions, espe-
cially in the USA, India, and China. Aydin, Jang and Topal [11] also used BPN to establish
a system of four attributes, i.e., population, GDP, exports, and imports, to forecast energy
consumption in the top-10 highest energy-consuming countries. The 4-10-1 MLP shows
that correlation coefficients in the training set and testing set are over 0.96 and 0.89, re-
spectively. Meanwhile, the performance values such as mean absolute percentage error
and root mean square error are insignificant. These indicate that the BPN adopted in this
study could suggest adequate predicting results within the analyzed economies. Bildirici
and Ersin [12] proposed the Markov-switching vector autoregressive MLP approach to
investigate the nonlinear relationship between emissions, petrol prices, and economic
growth in the USA and the UK. The proposed approach has values of Mean Squared Errors
(MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) that are less
than the approach without MLP in both expansion and recession regimes. These indicate
that the complicated nonlinear connection between analyzed variables may be adequately
explained using neural networks.

From the analysis of the related literature, few studies focus on this topic in Vietnam
even though the EKC hypothesis could affect economic development for the last four
decades. Second, we emphasize the importance of energy consumption and urbanization
variables, which significantly affect CO2 emissions in developing countries like Vietnam.
Third, finding a reliable model of CO2 emissions prediction is needed to formulate effective
environmental protection policies. Therefore, in the first stage, we employed the ARDL to
examine the presence of the EKC hypothesis in Vietnam by investigating the relationship
between CO2 emissions and the explanatory variables. In the second stage, once the long
run EKC form is determined, we applied the BPN method to predict CO2 emissions. We
then compare the predicted outcome between BPN and ARDL by using the comparative
indicators. Our work further analyzes the forecasting improvement of BPN and will show
potential approaches for future studies.

3. Proposed Model

The shape of the EKC hypothesis has always varied. Some studies initially assumed
the monotonic relationship between economic growth and CO2 emissions [75,79,80], some
favored the quadratic function [55,64,65,71] to test the presence of the EKC hypothesis.
This study initially examines the cubic form of the EKC hypothesis in Vietnam because
this assumed function is the general form, including linear and quadratic functions. Based
on some recent models such as Pal and Mitra [73], Onafowora and Owoye [81], and
Neve and Hamaide [82], we propose a general cubic form that shows the relationship
between CO2 emissions, economic growth, energy consumption, and urbanization. We
transformed all variables into the natural logarithm before testing for less non-normality
and heteroscedasticity (for a similar approach, see [44,73,83,84]). The proposed model is
specified as:

CO2t = β0 + β1GDPt + β2GDP2
t + β3GDP3

t + β4ECt + β5UrBt + ut (1)

where CO2 represents environmental degradation, GDP denotes economic growth. EC
stands for energy consumption, UrB depicts urbanization, and ut is independent and
identically distributed. The specific functional form is determined by the Beta coeffi-
cients [15,81,85] as follows:

• β1 6= 0, β2 = β3 = 0: linear relationship between CO2 and growth
• β1 < 0, β2 > 0, β3 = 0: U-shaped CO2-growth nexus
• β1 > 0, β2 < 0, β3 = 0: inverted U-shaped CO2-growth nexus
• β1 > 0, β2 < 0, β3 > 0: N-shaped CO2-growth nexus
• β1 < 0, β2 > 0, β3 < 0: inverted N-shaped CO2-growth nexus
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The only turning point is calculated by t* = exp(−β2/3β3) if the first derivative
function of Equation (1) has one solution, or two turning points are computed by t∗1,2 =
exp([−β2 ± (β2

2 − 3β2β1)1/2]/3β3) if the first derivative function of Equation (1) has two
solutions (Appendix B).

4. Data Sources

We test the validating of the EKC hypothesis in Vietnam between 1977 and 2019. With
data for analysis, CO2 emissions and energy consumption are collected from Our World in
Data [7], real GDP data are compiled from Euromonitor Passport Database [8], and data on
urbanization are collected from World Development Indicators [86]. CO2 emissions are
measured by kilograms per capita. Energy consumption is measured by kilowatt-hours per
capita and compiled from seven sources: oil, coal, gas, hydropower, solar, wind, nuclear,
and other renewables. GDP refers to economic growth measured per capita in 1977 of
constant Vietnam currency. Urbanization is measured by the population ratio in urban
agglomerations of more than one million of the total population. The descriptive statistics
for all the analyzed variables were presented in Table 1.

Table 1. Descriptive Statistics of the data of Vietnam, 1977–2019.

Variables Mean Std. Dev. Median Maximum Minimum

Gross Domestic Product 253.80 187.64 174.34 642.29 68.42
Carbon Dioxide Emissions 855.45 626.92 587.70 2091.61 259.54

Energy Consumption 3523.48 3025.53 2264.72 10861.72 828.33
Urbanization 10.48 3.00 9.06 17.35 7.61

5. Methodological Framework
5.1. Auto Regressive Distributed Lag Approach

In this study, we employ the ARDL, developed by Pesaran et al. [87], to determine CO2
behavior and other explanatory variables in the Vietnamese context. The ARDL method
is widely applied compared to other cointegration approaches, such as those suggested
by Engle and Granger [88], Johansen and Juselius [89]. The ARDL method is a good fit
for our research purposes and the data we collected because the ARDL can be applied for
integration at different orders whether the latent variables are a mixture of I(0) and I(1).
Second, the ARDL distinguishes long- and short-run effects between independent and de-
pendent variables. Third, this method eliminates endogenous problems by adding lags for
independent and dependent variables and selecting the optimal lag length for each variable.
Fourth, and more importantly, in applying the bounds testing proposed by Narayan [90],
this approach allows the cointegration testing of small samples [75,91,92]. More specifically,
our analyzed sample is relatively small, containing forty-two observations, so applying this
method within this study is a reasonable choice. The relationship between environmental
degradation, economic growth, energy consumption, and urbanization is presented in the
cubic form as follows:

∆CO2t= α0+∑
p
i=1 β0i∆CO2t−i+∑

q1
i=0 β1i∆GDPt−i+∑

q2
i=0 β2i∆GDP2

t−i+

∑
q3
i=0 β3i∆GDP3

t−i+∑
q4
i=0 β4i∆ECt−i+∑

q5
i=0 β5i∆Urbt−i+ρ0CO2t−1+ρ1GDPt−1

+ρ2GDP2
t−1+ρ3GDP3

t−1+ρ4ECt−1+ρ5UrBt−1+εt

(2)

where CO2, GDP, EC, and UrB are represented for CO2 emissions, economic growth, energy
consumption, and urbanization. ∆, α0, and εt are the differenced operator, the intercept,
and the white noise, respectively. The parameters β0i, β1i, β2i, β3i, β4i, and β5i represent
the short-run dynamics while the parameters ρ0, ρ1, ρ2, ρ3, ρ4, and ρ5 indicate the long-run
relationship between these variables.
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5.1.1. ARDL Bounds Testing for Cointegration Approach

In the ARDL bounds testing method, to examine long-run associations, the null
hypothesis of no cointegration was examined, H0: ρ0 = ρ1 = ρ2 = ρ3 = ρ4 = ρ5= 0 against
the alternative of H1: ρ0 6= ρ1 6= ρ2 6= ρ3 6= ρ4 6= ρ5 6= 0. The F-statistic was compared
with the upper critical bound (UCB) for the mixed of I(1) or/and I(0). This study used
the UCB derived from Narayan [90] due to the small sample size. If the F-statistic is
higher than the UCB, we reject the null hypothesis of no cointegration. The Akaike
information criterion (AIC) was used to determine the optimal lag length before testing for
cointegration [55,65,71]. We choose AIC(p) because of its ability to correctly determining
the true lag length (refer to Liew [93] for seeing the experimental testing on those criteria).
After confirming long-run cointegration, we then analyzed the function to identify the
existing state of EKC in Vietnam. We also presented the short-run estimation to confirm
the persistence of the proposed model. The robustness of the long run ARDL model could
be investigated for both diagnostic and stability tests. More precisely, we employed the
Jarque-Bera test for residual normality Jarque and Bera [94], the Breusch-Godfrey Lagrange
multiplier test for serial correlation [95,96], the White test for heteroscedasticity [97], the
Ramsey reset test for the correct form of the chosen model [98], the cumulative sum of
recursive residuals (CUSUM), and the cumulative sum of squares of recursive residuals
(CUSUMSQ) [99] (for similar approach see [32,45,48,60,100]). We also obtain the predicted
CO2 emissions values by replacing the actual values of explanatory variables in the long-
run form. We then compare the predicted CO2 values to actual CO2 values by applying
three comparative indicators for ARDL’s and artificial neural networks’ results.

5.1.2. The VECM Granger Causality Analysis

The causal relationship between the variables determines the framework of policy
analysis. We, therefore, applied the vector error correction model (VECM) to investigate the
causality between CO2 emissions, energy consumption, economic growth, and urbanization
in the context of Vietnam. The results derived from the VECM could suggest policies to
reduce environmental degradation by increasing/decreasing determinant factors for both
the short run and long run. Once the long-run relationship is confirmed, the lagged error
correction term (LECTt−1) derived from the long-run relationship was added into the
VECM to examine the long- and short-run Granger causality between these variables as
follows:

∆CO2t
∆GDPt
∆GDP2

t
∆GDP3

t
∆ECt
∆Urbt

=


α1
α2
α3
α4
α5
α6

+ ∑
p−1
i=1



γ11,i γ12,i γ13,i γ14,i γ15,i γ16,i
γ21,i γ22,i γ23,i γ24,i γ25,i γ26,i
γ31,i γ32,i γ33,i γ34,i γ35,i γ36,i
γ41,i γ42,i γ43,i γ44,i γ45,i γ46,i
γ51,i γ52,i γ53,i γ54,i γ55,i γ56,i
γ61,i γ62,i γ63,i γ64,i γ65,i γ66,i

×


∆CO2t−1
∆GDPt−1
∆GDP2

t−1
∆GDP3

t−1
∆ECt−1
∆Urbt−1

+



ϕ1
ϕ2
ϕ3
ϕ4
ϕ5
ϕ6

(LECTt−1) +



ε1t
ε2t
ε3t
ε4t
ε5t
ε6t

 (3)

The coefficient of LECTt − 1, which lies between −1 and 0, for each equation (ϕi)
should be significantly negative to indicate the speed of adjustment to long-run equilib-
rium. Furthermore, the significant ϕi also implies the long-run Granger causality from
independent variables to dependent variable in each equation. For the short-run relation-
ship, the significance of the first difference for each variable confirms the short-run Granger
causality between variables. For instance, if γ15,i 6= 0 ∀i is significant, energy consumption
Granger-causes CO2 emissions, and vice versa for γ51,i 6= 0 ∀i [101].

5.2. Backpropagation Neural Networks Algorithm

The ARDL method could confirm the pattern of the EKC in Vietnam, and the ARDL
could predict the CO2 emissions based on the relationship between analyzed variables.
However, our aim is not to stop at the econometrics approach for predicting. We further
investigate the ability of the machine learning technique in forecasting. We suppose that
advanced techniques such as machine learning could enhance the forecasting results be-
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cause those methods could capture the complicated fluctuation patterns between variables,
especially nonlinear relationships. Recently, several previous studies have applied ANN to
examine environmental problems [10–12,14]. ANN has several advantages in the regress-
ing task. There is no need to determine mathematical relations between the inputs and
corresponding outputs [14,102]. ANN is also free from statistical assumptions and captures
complex nonlinear behavior in analyzed attributes [103–105]. Additionally, ANN does
not require steady data and could learn from data [106]. These advantages motivate us to
employ ANN as a valuable method compared to the econometrics approach. In this study,
we implement the backpropagation neural networks algorithm (BPN), which is the essence
of neural network training, developed by Rumelhart et al. [107], Werbos [108], Parker [109].

Generally, a predicted output is computed in a feed-forward procedure based on the
chosen activation function, which transfers information from inputs to hidden nodes and
then from hidden nodes to the predicted output. The output is then compared to the actual
value to compute the error, which is calculated using a back-propagated procedure to
update all weight-connected inputs. Afterward, the next iteration proceeds until the stop
condition is met. In this study, the BPN we set up includes the framework of an MLP,
which has one hidden layer between the input layer and the output layer. The five-neuron
input denotes the five independent variables, and the one-neuron output represents the
dependent variable, as shown in Figure 2.

Figure 2. Illustration for the BPN procedure with three hidden nodes.

The number of nodes in the hidden layer could affect the output error. The opti-
mal number of nodes in the hidden layer should avoid overfitting and satisfy minimal
error [110]. Additionally, the optimum number of hidden-layer neurons generally has to be
found via trial and error [11,111], and the number of hidden layers changes depending on
the complexity of data [112]. Several previous studies show the different optimal hidden
nodes [10,110,113]. In other words, there is no theoretical assumption to expect the number
of hidden nodes needed to obtain the specific performance of the model [114]. Therefore,
we tested several hidden nodes according to previous studies [110,115–118].

To reduce computational consumption during training due to unstable later layers [119,120]
and expedite the sigmoid function’s application for both hidden layer and output layer [10],
we normalized data to feed into the neural networks. We also note that the sigmoid
function was chosen due to better performance than the tanh function. In addition, data
normalizing could eliminate the dominance of any large-scale variable [121] and improve
the precision of consecutive numeric calculations [110]. We then de-normalized data to the
original for analysis. The algorithm was coded by Python language. The BPN flowchart is
shown in Figure 3.
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Figure 3. Flowchart of back-propagation neural networks procedure.

5.3. Criteria for Comparison

To evaluate the accuracy for either the ARDL or BPN approach, we used comparative
indicators such as Mean Relative Error (MRE), MSE, and MAE as the following formulas:

MSE =
1
n

n

∑
t=1

(At − Ft)
2 (4)

MRE =
1
n

n

∑
t=1

∣∣∣∣At − Ft

Ft

∣∣∣∣ (5)

MAE =
1
n

n

∑
t=1
|At − Ft| (6)

where n is the number of input data; At and Ft, are actual and forecasted values of CO2. All
three indicators measure the performance of point forecasts; hence the smaller the values
are, the better the forecasting is [110]. Additionally, the MAE indicator is used to reduce
the effect of heavily weighted outliers [122].

Concerning the number of iterations, we set 200 epochs to converge on the minimum
values of these indicators due to our small sample. Additionally, BPN randomly produces
connecting weights until convergence, and the output value is also different for each
whole procedure. This study tried five different numbers of hidden nodes introduced
by [110,115–118] and three different learning rates, which are 0.01, 0.1, and 0.9. We ran
each combination between hidden node and learning rate ten times to obtain stable results.
Therefore, for each criterion of MSE, MRE, and MAE, we have a total of 10*3*5 = 150 cells
for the training set (the period from 1977 to 2010, equal to 80% of the sample size) and also
150 cells for the testing set (the period between 2011 and 2019, equal to 20% of the sample
size). We then select the minimum value of each MSE, MRE, and MAE indicator in the
testing set for comparison with the ARDL method.
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6. Empirical Results
6.1. Auto Regressive Distributed Lag approach
6.1.1. Unit Root Test

The first step aims to check the order of integration for each variable to confirm
whether the data series is stationary. The ARDL bounds testing cointegration approach can
be used to identify the possible long-run cointegration among the variables, which have
mixed order I(0) and/or I(1). In this study, we employed the Zivot and Andrews [123]
and the Perron [124] tests to examine the unit roots due to the probability of the presence
of structural breakpoints in the analyzed variables [83,125]. More specifically, the Zivot
and Andrews [123] test with a one-unknown structural break which allows for a one-time
change in both intercept and trend function of the variables as the following equation:

yt = β0+β1t + β2DUt + β3DTt + β4yt−1 +
k

∑
i=1

ρi∆xt−i + ut (7)

where DUt is the intercept dummy, representing a mean shift; DUt = 1 if t ≥ Time break
(Tb), and 0 otherwise. DTt is the slope dummy, which denotes a trend shift; DTt = t −
Tb if t > Tb, and 0 otherwise. The Tb is determined by the minimum t-Statistic of the
autoregressive variable (tα), and the Schwartz Information Criterion determines the lag
length (k).

The Perron [124] test is based on Zivot and Andrews [123] except for the time shock
dummy variable D(TB)t:

yt = β0+β1t + β2DUt + β3DTt + β4yt−1 + β5D(TB)t +
k

∑
i=1

ρi∆xt−i + ut (8)

where the indicator D(TB) = 1 if t = TB + 1. The Perron test chooses the breakpoint where the
t-statistic for testing β4 = 1 is the minimum as explained for Zivot and Andrews [123] test.

The results from both tests with intercept and trend are presented in Table 2. Over-
all, the time break for the series is found about 1986–1992. The break also refers to the
1986–1990 transformation from centrally planned to the open-door economy. Due to the
stagflation issue, i.e., hyperinflation (average of 497%) and high unemployment (13%)
from 1986–1989 [126], the industrial sector dramatically decreased. As a result, the fuel
fossil consumption and the emissions were reduced to approximately 19.12% and 14.46%,
respectively, from 1986 to 1989 [7]. These facts explain why the computed CO2 emissions
and economic growth results are consistent with the downward trend for 1986–1989, as
shown in Figure 1.

Table 2. Unit root test with structural break: Intercept and time trend included.

Variable

Zivot-Andrews Unit Root Test Perron Unit Root

Levels First Differences Levels First Differences

t-Statistic Time Break t-Statistic Time Break t-Statistic Time Break t-Statistic Time Break

CO2 −3.66 (2) 1989 −7.82 (1) b 1990 −3.82 (2) 1995 −8.97 (1) a 1989
GDP −3.90 (4) 2012 −4.39 (2) b 1993 −3.86 (4) 2012 −6.26 (2) b 1992
GDP2 −3.84 (4) 1987 −4.27 (2) a 1993 −3.55 (4) 2012 −6.23 (2) b 1992
GDP3 −4.04 (4) 1987 −4.94 (3) b 1993 −4.09 (4) 1986 −6.13 (3) b 1992

EC −4.21 (2) c 1988 −8.07 (1) a 1992 −4.27 (2) 1994 −6.67 (1) a 2006
UrB −4.72 (1) c 1986 −9.62 (1) a 1990 −4.88 (1) 1985 −10.2 (1) a 1989

Note: a, b, c indicate statistical significance at 1%, 5%, and 10%. The number in parentheses are the lag orders chosen based on Schwarz
Information Criterion (SC). The critical values are derived from Table 4 in Zivot and Andrews [123].

The results show that CO2 emissions and GDP are I(1) while energy consumption
and urbanization are I(0). We note that all the series are stationary after the first difference.
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The result indicates the ARDL approach is appropriate for testing cointegration for mixed
integrated variables. Readers may refer to Appendix D to extend the discussion about the
breakpoint that existed within our data sample.

6.1.2. ARDL Bounds Testing for Cointegration Test

According to all of the criteria used and presented in Table 3, the maximum lag
order is chosen at 2 to minimize the possible loss in degrees of freedom [61]. The optimal
ARDL(p,q1,q2,q3,q4,q5) model for Equation (2) was then chosen by the Akaike information
criteria (AIC) from (k + 1)n regressions, where k is the maximum number of lags, and n is
the number of variables [127].

Table 3. Selection of optimal lag order.

Lag LogL LR FPE AIC SC HQ

0 85.89 NA 1.21*10−8 −4.04 −3.83 −3.97
1 412.65 555.48 3.42*10−15 −19.13 −17.87 a −18.67
2 450.76 55.27 a 1.88*10−15 a −19.79 a −17.47 −18.95 a

a indicates lag order selected by the criterion. LR: sequential modified LR test statistic (each test at 5% level), FPE:
Final prediction error, AIC: Akaike information criterion, SC: Schwarz information criterion, HQ: Hannan-Quinn
information criterion.

Table 4 reports the ARDL bounds testing approach. When CO2, GDP, and UrB are
dependent variables, the F-statistics are 5.71, 8.23, and 3.75, respectively. These values
are greater than the upper bounds testing developed by Narayan [90] at 5%, 1%, and
10% significance levels, respectively. In other words, the empirical evidence indicates the
existence of cointegration between CO2 emissions, economic growth, energy consumption,
and urbanization in the case of Vietnam between 1977 and 2019.

Table 4. ARDL bounds test for cointegration.

Dependent Variable, Independent Variables. Optimal ARDL Model F-Statistic Cointegration

CO2, GDP, GDP2, GDP3, EC, UrB 1, 0, 0, 0, 0, 1 4.84 b Yes
EC, GDP, GDP2, GDP3, CO2, UrB 1, 0, 0, 0, 1, 0 0.83 No
GDP, CO2, EC, GDP2, GDP3, UrB 2, 2, 1, 2, 2, 2 10.9 a Yes
UrB, CO2, GDP, GDP2, GDP3, EC 2, 2, 2, 0, 0, 1 4.14 c Yes

Significant level Lower Bound (I0 bound) l Upper Bound (I1 bound) u

10% 2.483 3.708
5% 2.962 4.338
1% 4.045 5.898

l, u The critical values are derived from case III: unrestricted intercept and no trend, k = 5, N = 40 in Narayan [90]. a, b, and c indicate
significance at 1%, 5%, and 10%, respectively.

6.1.3. Long- and Short-Run Estimations

The result of the long-run relationship between variables is reported in Table 5. The
optimal ARDL bounds testing (1, 0, 0, 0, 0, 1) specification indicates that explanatory
variables have a long-run relationship with CO2 emissions. Energy consumption positively
affects CO2 at a 1% level of significance. This finding is in line with [74,75,81]. Overall, the
increase in energy consumption at 1% increases CO2 by 0.5%. We also note that the energy
consumption coefficient is larger in the long run than in the short run. In other words,
Vietnam tends to consume more energy in the long run. Because fossil energy consumption
accounts for 84.7% of total energy consumption in Vietnam, and fossil energy consumption
is a well-known cause of CO2 emissions (especially coal consumption) and contributes
65% to 75% of total CO2 emissions [9]. Thus, our findings show that Vietnam may face
an increase in CO2 emissions in the future if fossil energy consumption continues at the
current rate.
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Table 5. Long run and short run estimations.

Variables Coefficient t-Statistic

Long-run relationship (dependent variable CO2)
EC 0.477 a 2.789

GDP −20.332 a −3.265
GDP2 4.086 a 3.628
GDP3 −0.269 a −3.962
UrB 1.338 c 1.999

Intercept 32.94 a 2.812

Short-run relationship (dependent variable ∆CO2)
∆EC 0.359 a 2.983

∆GDP −15.287 a −2.755
∆GDP2 3.072 a 2.995
∆GDP3 −0.202 a −3.246
∆UrB −1.757 −0.783

LECT(t-1) −0.752 a −5.242

Residual Diagnostics F-Statistic (Prob.)
Jarque-Berra 2.664 (0.264)

Correlation LM 0.674 (0.517)
Heteroscedasticity test (White) 1.155 (0.379)

Stability Diagnostics F-Statistic (Prob.)
Ramsey reset 1.432 (0.239)

CUSUM Portrayed by two lines b

CUSUMSQ Portrayed by two lines b

a, b and c indicate significance at 1%, 5%, and 10%, respectively.

Second, CO2 emissions are positively associated with urbanization at a 10% level
of significance. The elasticity of CO2 emissions related to urbanization is 1.338, which
implies that with each 1% growth in urbanization, CO2 emissions increase by 1.338%. This
finding is in line with Refs. [10,42,76,128]. The results are consistent with the reality of
a developing country like Vietnam, where cities of more than a million people continue
attracting migrants. The phenomenon may be because these cities have better hospitals,
schools, and businesses than in other areas. This continuous flow of people into the cities
inevitably leads to the rise in CO2 emissions because of either industrial activities or
transportation [5,129–132].

Third, both linear and nonlinear coefficients of income support the presence of an
inverted N-curve between CO2 emissions and economic growth. Specifically, the coefficient
signs of GDP, GDP2, and GDP3 are negative, positive, and negative at 1% level of signif-
icance. The negative effect of the cubic coefficient validates the trend of environmental
degradation decreasing when income is higher. Additionally, according to logarithms (see
the calculation in Appendix B), the two estimated turning points are per capita incomes
of 4.413 and 5.706, equal to 82.49 and 300.55 in exponential values. Both are between the
sample minimum value (68.42) and the maximum value (642.29), as shown in Table 1. The
values indicate that the monotonic increase in pollution appears when the income lies
between the turning points, and pollution decreases to monotonic levels when the income
exceeds the threshold level of the second turning point (5.706). These findings confirm that
the CO2 and economic growth nexus in Vietnam is the inverted N-shaped function rather
than the inverted U-shaped trajectory. However, the cubic form could probably support a
bell-shaped performance for the CO2-GDP nexus if the income lies between the first and
the second turning point [81]. In contrast to Al-Mulali, Saboori and Ozturk [75], this result
shows the monotonic increase between CO2 emissions and economic growth in the context
of Vietnam. Our finding is in line with previous studies for Iran [85], Tunisia [133,134], and
South Korea [81].

The short-run dynamic relationship based on the ARDL cointegration is also presented
in Table 5. The results show that the cubic form of EKC remains steady in the short
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run. In sum, the inverted N-shaped function exists for both long- and short-run in the
context of Vietnam. It is notable that in the long run, the negative cubic term, which
is the dominant factor of the EKC trend, is smaller than that of the short-run (−0.269
versus -0.202). Specifically, in the long run, 1% of income will decrease by every 0.269%
of CO2 emissions while the ratio is 1:0.202 in the short run. The results indicate that the
environment has improved over time along with incremental income. Additionally, energy
consumption statistically affects CO2 emissions, whereas urbanization does not. This
finding suggests that energy consumption is the cause of environmental degradation, while
urbanization has an insignificant effect on the environment in the short run.

The diagnostic results of residual normality, serial correlation, and heteroscedasticity
are shown in the lower part of Table 5. More precisely, the critical F-statistics are 2.664,
0.674, and 1.155, with all p-values greater than 10%. These results are failed to reject the
null hypotheses. In other words, residuals are normality distributed, no serial correlation
in the residuals, and the variances for the errors are equal. Regarding the stability test, the
critical F-statistic of the Ramsey reset test is 1.432, with a p-value greater than 10%. This
means the null hypothesis of no misspecification of functional form cannot be rejected.

Furthermore, Figure 4 shows the plot of CUSUM and CUSUMSQ converge between
the boundary lines at the 5% level of significance. The results imply all the coefficients of
the model are stable. In sum, the EKC curve in Vietnam is the inverted N-shaped form in
both the long- and short-run.

Figure 4. (a) The cumulative sum of recursive residuals; (b) the cumulative sum of squares of recursive residuals.

6.1.4. Granger Causality Analysis

The long- and short-run Granger causalities based on VECM were shown in Table 6.
In the long run, the coefficient of LECTt-1 when CO2 emissions as the dependent variable is
−0.765 and statistically significant at the 1% level. The significant LECTt−1 confirms the
long-run relationship of CO2 emissions with economic growth, energy consumption, and
urbanization in Vietnam. Additionally, the result also indicates that 76.5% of changes in
CO2 emissions are adjusted by deviations in the short run toward long-run equilibrium
each year. In other words, short-run deviations in CO2 emissions converge with long-run
equilibrium after approximately one year and four months.

In the long run, the results in Table 6 also suggest an existing bidirectional causal
relationship between urbanization and CO2 emissions. We find that economic growth
and energy consumption have a unidirectional causality relationship with CO2 emissions,
and we also find that economic growth and energy consumption have a unidirectional
causality relationship with urbanization. Our findings are supported by Shahbaz, Lean
and Shabbir [72] and Onafowora and Owoye [81].
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Table 6. Granger causality analysis.

Short-Run Granger Causality Wald Test (p-Value) Long Run
Granger Causality

∆CO2 ∆EC ∆GDP ∆GDP2 ∆GDP3 ∆UrB LECTt-1 (t-Stats)

∆CO2 - 2.73 (0.011) b −1.78 (0.084) c 1.69 (0.098) c −1.60 (0.119) 0.68 (0.509) −0.765 (−3.822) a

∆EC 4.08 (0.026) b - −0.38 (0.700) 0.35 (0.725) −0.29 (0.766) 0.43 (0.666) -
∆GDP 1.89 (0.161) 0.52 (0.601) - 44.02 (0.000) a 92.48 (0.000) a 4.22 (0.029) b −0.087 (−0.986)
∆GDP2 1.88 (0.174) 1.196 (0.320) 4268 (0.000) a - 2907 (0.000) a 0.37 (0.691) −0.079 (−0.923)
∆GDP3 1.89 (0.173) 1.26 (0.299) 883.1 (0.000) a 2883 (0.000) a - 0.40 (0.671) −0.072 (−0.851)
∆UrB 3.59 (0.027) b 0.87 (0.431) −0.83 (0.414) 0.436 (0.729) −0.775 (0.445) - −0.116 (−2.877) a

Values are from the Wald test based on the Chi-square distribution; a, b and c indicate significance at 1%, 5%, and 10%, respectively.

In the short run, the empirical evidence shows the bidirectional relationship between
energy consumption and CO2 emissions. Meanwhile, the unidirectional causality relation-
ship is found from CO2 emissions to urbanization, from urbanization to economic growth,
and from economic growth to CO2 emissions. Our findings are consistent with Dogan and
Turkekul [65] and Saboori and Sulaiman [74]. All the Granger causality test results are
summarized in Figure 5.

Figure 5. Pairwise Granger causality flows.

6.2. Back-Propagation Neural Networks

Table 7 shows the minimum values of MSE, MRE, and MAE for all five hidden node
approaches employed by BPN compared with the ARDL’s results. First, almost all values of
MSE, MRE, and MAE in the testing set (approximately 86%) are lower than in the training
set. The results indicate that the proposed model overcomes the overfitting problem, which
occurs when the training data fits well, but the testing is poor [131]. The results also imply
that the model is reliable to be an appropriate approach for forecasting CO2 emissions.
Second, BPN generally outshines ARDL in predicting CO2 emissions. More precisely, with
the MSE indicator, values ranged from 0.00356 to 0.00434, from 0.00676 to 0.00754 for the
MRE indicator, and from 0.05081 to 0.056655 for the MAE indicator. These values are
smaller than ARDL’s, which are 0.014639, 0.015693, 0.104254, respectively. The results show
that the predictive errors of BPN’s are trivial than the ARDL’s. In other words, BPN’s
approach is more precise than that of ARDL. Third, we find that the hidden nodes, as
followed by Tamura and Tateishi [118], led to minimum MSE, MRE, and MAE compared
with other approaches. Specifically, a 5-4-1 MLP has the better performance in which
values of MSE, MRE, and MAE are 0.003565, 0.006761, and 0.050809, respectively. Fourth,
concerning the learning rate, if the learning rate is set at 0.1, all the comparative criteria are
the minimum compared to the others that are 0.01 and 0.9.
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Table 7. Criteria for comparison.

Data Method Hidden Nodes
MSE MRE MAE

0.01 0.1 0.9 0.01 0.1 0.9 0.01 0.1 0.9

Training set

[115] Nh = 2n + 1 = 11 0.00700 0.00401 0.00554 0.01133 0.00844 0.01004 0.06836 0.05065 0.06013
[116] Nh = (n + n p)/2 = 3 0.00681 0.00517 0.00386 0.01086 0.00929 0.00796 0.06551 0.05556 0.04785
[117] Nh = 2n/(n + 1) = 5 0.00727 0.00492 0.00365 0.01151 0.00900 0.00711 0.06979 0.05389 0.04333
[118] Nh = n − 1 = 4 0.00667 0.00463 0.00450 0.01114 0.00871 0.00853 0.06673 0.05214 0.05085
[110] Nh = (4n2 + 3)/(n2 − 8) = 6 0.00729 0.00465 0.00440 0.01183 0.00898 0.00836 0.07092 0.05396 0.05014

Testing set

[115] Nh = 2n + 1 = 11 0.00367 0.00370 0.00409 0.00676 0.00687 0.00739 0.05081 0.05164 0.05555
[116] Nh = (n + n p)/2 = 3 0.00362 0.00360 0.00394 0.00710 0.00680 0.00736 0.05328 0.05108 0.05528
[117] Nh = 2n/(n + 1) = 5 0.00370 0.00368 0.00356 0.00687 0.00697 0.00706 0.05159 0.05232 0.05295
[118] Nh = n−1 = 4 0.00387 0.00370 0.00434 0.00720 0.00694 0.00754 0.05408 0.05214 0.05665
[110] Nh = (4n2 + 3)/(n2 − 8) = 6 0.00371 0.00381 0.00376 0.00707 0.00695 0.00730 0.05310 0.05219 0.05491

ARDL n/a 0.01464 0.01569 0.10425

Nh, n, and n p indicate the number of hidden nodes, the number of inputs, and the number of output, respectively.



Energies 2021, 14, 3144 16 of 38

The predictive results for both the ARDL and the BPN approaches were shown in
Figure 6. Specifically, the ARDL’s outputs are derived from the long-run form of EKC
trajectory, while the BPN’s outputs are obtained by setting a 5-4-1 MLP with the learning
rate at 0.1. Figure 6 also illustrates that the BPN’s results are closer to the actual outputs
than the ARDL’s, especially for 2011–2019, represented for the testing set. We also present
all the best predictive results of each combination between hidden nodes and learning rates
in Appendix C.

Figure 6. CO2 emissions predicting results for both BPN and ARDL methods.

6.3. Sensitivity Analysis

The sensitivity analysis aims to analyze the extent of the crucial input variable of the
model and quantify the effect of input instability [10,135,136]. We applied two approaches
to examine the sensitivity analysis, i.e., partial Spearman’s rank correlation [137] and partial
Kendall’s rank correlation [138], to test the sensitivity weight between CO2 emissions and
each explanatory variable. The former is suitable for describing the degree of monotonicity
instead of linear relationship [135,139], while the latter is appropriate for relaxing of normal
distribution assumption [140] (the intuitive correlation between each pair of analyzed
variables and the distribution of each variable are illustrated in Figure A5).

The partial Spearman’s rank correlation results show that energy consumption (0.951),
urbanization (0.917), and economic growth (0.906) (refer to Figure 7a). The partial Kendall’s
rank correlation results also reveal that energy consumption (0.852), urbanization (0.798),
and economic growth (0.787) (refer to Figure 7b). To summarize, both methods indicate
that energy consumption has the highest sensitivity weight with CO2 emissions, followed
by urbanization and economic growth. The results are consistent with Granger causality
when these explanatory variables statistically affect the CO2 emissions in the long run. On
the other hand, the findings of the sensitivity analysis implied that each input variable
had a substantial and different effect on the level of the CO2 emissions in the context of
Vietnam. Therefore, in our proposed model, omitting these input variables could bias the
actual CO2 emissions.
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Figure 7. The partial correlation coefficient between CO2 emissions and each input variable: (a) partial Spearman’s rank
correlation; (b) partial Kendall’s rank correlation.

7. Discussion

First, the inverted N-shaped curve between CO2 and real income for both long- and
short-run shows the recovery of environmental quality in the context of Vietnam. The
results are strictly related to increasing renewable consumption in recent years. In particular,
we record an upward trend in the use of renewable energy sources in Vietnam. Specifically,
the average increase of renewable energy use from 1977 to 2019 is 5.66% compared to the
average decrease of 0.24% of fossil consumption [7] (see Figure A4). The results are also
consistent with the vision of national energy development strategies, in which replacing
fossil consumption with renewable use as much as possible and towards the ratio of
25–30% renewable use in 2045. By 2030, Vietnam aims to enhance renewable energies,
i.e., hydroelectricity, wind, biomass, and solar, account for 15.5%, 2.1%, 2.1%, and 3.3%
in total electricity generation [141]. To obtain this target, Vietnam prioritizes wind and
solar energy production for electricity generation and plans to create a renewable energy
center in Ninh Thuan province with geographical advantages for wind and solar energies.
At the end of 2020, the center contributed 2473 MW electricity, equal to 25.9% of total
renewable energies in the nation [142]. The trend indicates the Vietnam government aims
to reduce CO2 emissions and opens to eco-friendly environmental projects in the long run.
The inverted N-shaped relationship between CO2 emissions and economic growth also
indicates that Vietnam may currently benefit from a reduction in CO2 emissions. However,
CO2 emissions could increase in a new cycle of the EKC when fossil fuel sources still
account for approximately 84.53% of energy consumption [7] (see Figure A4). This fact
poses a challenge to mitigate fossil fuel energy to help preserve the environment. Therefore,
to keep the current flow for reducing CO2 emissions, lawmakers should keep the attractive
price for buying electricity made from renewable sources. As a result, the policy could
encourage private companies who invest capital to build the infrastructure served green
electricity production.

Second, the Granger causality test shows a unidirectional causality relationship be-
tween energy consumption and CO2 emissions in the long run. Moreover, the sensitivity
analysis also reveals that energy consumption is the most significant factor that affects
CO2 emissions among analyzed variables. The result reinforces that the primary energy
source in Vietnam is fossil fuels, which directly cause environmental degradation. Vietnam
is an oil- and coal-producing country, and the national energy strategy serving economic
development based on fossil fuels is understandable. Consequently, the environment is
seriously degraded by industrial and residential activities. Another issue is that fossil fuels
are non-renewable energy sources so that overexploitation will lead to depleting these
sources, then the economic development scenarios based on fossil fuels will be failed. Thus,
policymakers in Vietnam have set the goal of “roadmap to reduce the share of coal-fired power”
and “reducing greenhouse gas emission from energy activities 15% by 2030” [2]. To obtain those
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objectives, lawmakers create and develop the carbon credit market to optimize emissions
from economic activities (National Assembly of Vietnam—NAV [143]). Furthermore, re-
search and development utilizing new technologies should be prioritized to replace fossil
fuels producing in the future. Therefore, minimizing fossil fuel use will decrease CO2
emissions as expected.

On the other hand, energy consumption and economic growth do not have causal
effects in the short and long run. One possible explanation for this finding is that the
economy has relied on agricultural operations, which are only carried out with a small
number of energy-consuming equipment [76]. Thus, Vietnam could encourage policies
to lower fossil fuels, which account for most energy consumption ratio, without harming
economic growth. In other words, Vietnam has a potential period to transform the economy
based on fossil fuels into an economy that relied on renewable energies. As a result, Vietnam
could achieve both goals of improving economic growth and reducing CO2 emissions.

Third, GDP has a unidirectional causality relationship to CO2 emissions in the long-
and short-run. This finding is in line with Saboori and Sulaiman [74] for Malaysia. Our
finding also indicates that CO2 emissions will not affect income in Vietnam in the long
run. In other words, causing less pollution will not impair economic growth and could
be a way for Vietnam to pursue sustainable development in the long run. These numbers
may suggest that renewable energy can likely replace fossil fuel energy to achieve a more
environmentally friendly form of energy without harming economic growth. This target is
within reach since the government has developed policies for sustainable energy expansion
based on four main pillars: energy efficiency, renewable energy, energy market, and climate
change [9]. Our findings reconfirm that Vietnam has an opportunity to adopt renewable
energy sources to reduce CO2 emissions without slowing down economic development.

Fourth, the urban population is an essential factor affecting CO2 emissions. Our
findings imply that densely populated cities lead to increases in CO2 emissions in the long
run. When CO2 emissions in certain regions rise, it can signal that economic opportunity
and infrastructure in the bigger cities in these regions are more attractive than in other
areas. The signal promotes migration to the larger cities in Vietnam. Only the impact of
CO2 on urbanization is statistically significant in the short term. This empirical evidence
may suggest that the government may focus on CO2 emissions reduction policies by
disintegrating industrial activities [131], reducing private vehicles [6], and collecting carbon
taxes on automobiles and motorbikes [76] in large cities in the short term. As a result, these
urbanization restrictions will improve environmental quality in the long run.

Fifth, the results show BPN is a reliable method for reducing prediction errors com-
pared with ARDL’s results. Moreover, the sensitivity reveals that all inputs have high
sensitivity weights with CO2 emissions. Hence, these variables, i.e., energy consumption,
economic growth, and urbanization, could be considered the most affecting factors to
air pollution in Vietnam. Our findings suggest that the government could control the
environmental degeneration by adjusting explanatory inputs based on the BPN frame-
work. The forecasting improvement also makes the policy more practical, minimizing the
overestimation or underestimation of the link between income and carbon emissions.

8. Conclusions and Future Research

In this study, we employed the ARDL method developed by Pesaran, Shin and
Smith [87] to validate the EKC hypothesis from 1977 to 2019 in Vietnam. The cointegration
result reveals the long-run relationship between CO2 emissions, real income, energy con-
sumption, and urbanization. The long- and short-run results show an inverted N-curve
with two-income turning points equal to 82 and 300 (constant 1977 Vietnam currency
prices). The diagnostic tests confirm that our finding is stable. Furthermore, the indepen-
dent variable’s coefficients in the short run are statistically smaller than those in the long
run. The results indicate that if the economy reduces fossil fuel consumption, the environ-
ment shows signs of recovery. The possible reason, in our opinion, is the recent increase
in the rate of renewable energy use in Vietnam. Several projects investing in renewable
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energies have been deployed in Ninh Thuan province, planned as a renewable energy cen-
ter in Vietnam [142]. Overall, Vietnam may benefit from an inverse N-shaped relationship
between CO2 emissions-economic growth nexus. However, we also note that, with the char-
acteristics of the industrial based on fossil energy consumption, Vietnam may face a new
cycle of the EKC curve, i.e., an upward emissions trend in the future without the successful
transition to a renewable energy-based economy. Therefore, Vietnam needs to consistently
pursue environmental objectives by 2030 as approved by legislation [2,141,143].

The long- and short-run estimations show that urbanization factors significantly
positively influence CO2 emissions. The results are consistent with the densely populated
cities phenomenon, which cause air pollution in Vietnam. To decrease the harmful effects
of urbanization, Vietnam should consider redistribution of industrial factories to satellite
towns. It could lessen citizens to free air pollution. Also, lawmakers could consider the
carbon taxes on vehicles and encourage people to use public transportation to save the
environment.

When CO2 emissions play the role of the dependent variable, the LECTt − 1 is statis-
tically negative and less than −1, as expected. The coefficient confirms the cointegration
between variables and shows the long-run Granger causality that ties income, energy
consumption, and urbanization to CO2 emissions. The result of long-run Granger causality
shows that energy consumption has a unidirectional effect on CO2 emissions. The result
means that policies aiming to lessen energy consumption could reduce CO2 emissions.
Additionally, the Granger analysis also reveals that economic growth and energy consump-
tion have no causal relationship. Our findings suggest that Vietnam has a possible chance
to transform the fossil fuel-based economy to the one based on renewable energies without
diminishing income.

We also adopted BPN to compare the results of econometrics predictions. The compar-
ative criteria show that the BPN method outperforms the ARDL approach in forecasting.
Our experiment provides a practical approach to shed light on how to improve these
forecasting results. More precisely, the econometrics approach provides the background of
the relationship between analyzed variables while the BPN performs well on forecasting
results. This combination could enhance the reliable model and the predicting accuracy.
The results suggest that BPN and other machine-learning approaches could be applied
as practical tools for predicting CO2 emissions in future studies, such as support vector
regression (SVR). In particular, the SVR approach attempts to match the best line inside the
threshold value, which is the distance from the hyperplane to the boundary line, instead of
minimizing errors like the BPN procedure does within our study. Since the nonparametric
method estimation has been considered [144], SVR combines the advantages of nonpara-
metric and parametric methods, in which it could reflect complicated behaviors between
variables, also avoid overfitting [145]. This approach is expected to provide more accurate
predictions for the CO2 emission, thereby amending the environmental protection policies
to avoid the under/over estimation of the practical situation.
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Appendix A

Table A1. Summary of previous empirical studies on the EKC hypothesis.

No. Author Period Country/Region Methodologies Dependent(s)/Explanatory
Variables

Support the EKC
Hypothesis?

Country-specific studies

1 [146] 1960–2009 Turkey
Dynamic OLS and
Error Correction

Model

CO2 emissions/energy
consumption, income,
tourism development

Yes

2 [125] 1980–2009 Tunisia ARDL
CO2 emissions/income,

energy consumption,
population, exports, imports

No

3 [147] 1911–2010 South Africa Co-summability CO2 emissions/income No

4 [148] 2000–2012 China
Generalized Least
Square method of

random effect

CO2 emissions/income,
environmental regulation,

technical progress,
population, trade

Yes

5 [28] 1985–2009 South Korea Fixed-effects Water quality/income,
trade, population

Mixed (Yes for
Geum, Nakdong,

and Yeongsan
rivers.

No for Han river)

6 [60] 1971–2010 Indonesia ARDL

CO2 emissions/income,
electricity production,

energy consumption, total
factor productivity

Yes

7 [40] 1996–2012 China
Generalized
Method of

Moments, ARDL

CO2, industrial waste water,
industrial waste solid

emissions/income, energy
consumption, trade,

urbanization

Yes

8 [43] 1972–2013 Pakistan ARDL CO2 emissions/income,
trade, financial development Yes

9 [44] 1980–2011 Qatar ARDL

CO2 emissions, ecological
footprint/income, energy

consumption, financial
development, trade

Mixed (Yes for
ecological
footprint.

No for CO2
emissions)

10 [41] 1970–2014 Myanmar ARDL

CO2, CH4, N20
emissions/income, trade,

financial openness,
urbanization

No

11 [83] 1971–2011 Saudi Arabia ARDL CO2 emissions/income,
road energy consumption No

12 [66] 1960–2014 Australia
Fully Modified

OLS, and
Non-nested tests

CO2 emissions/income No

13 [63] 1971–2015 India ARDL

CO2 emissions/income,
trade, renewable energy

generation, electric power
consumption

Yes

14 [53] 1990–2014 Canada Fixed-effects

Greenhouse Gas
emissions/income, trade,

dummy interaction between
GDP and province/territory

Yes
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Table A1. Cont.

No. Author Period Country/Region Methodologies Dependent(s)/Explanatory
Variables

Support the EKC
Hypothesis?

15 [48] 1950–2014 Australia ARDL CO2 emissions/income,
index of education Yes

16 [21] 1995–2014 France VECM CO2 emissions/income,
tourism Yes

17 [33] 1980–2011 Peru ARDL

CO2 emissions/income,
renewable electricity, dry

natural gas, and petroleum
consumption

No

18 [45] 1971–2011 Singapore ARDL

CO2 emissions/income,
energy consumption,

population density, financial
development, trade

Yes

19 [20] 2000–2018 USA Dynamic OLS
CO2 emissions/income,
industrial production,

renewable consumption
Yes

20 [32] 1980–2015 Pakistan ARDL
CO2 emissions/income,
biomass energy, foreign
direct investment, trade

Yes

21 [31] 1900–2017 Singapore Vector Error
Correction model

Chromium
emissions/income, foreign

direct investment, trade,
environmental regulation

Yes

22 [50] 1988–2017 USA
Partial linear

semiparametric
model

Total waste/real income No

23 [49] 1929–1994 USA
Semiparametric
partially linear

model

Sulfur dioxide, nitrogen
oxide/income Yes

Multi-countries Studies

24 [149] 1990–2011 14 Asian
countries

Generalized
Method of
Moments

CO2 emissions/income,
population density, industry

share, political stability,
government effectiveness,
quality of regulation, and

corruption

Yes

25 [150] 1960–2010 Arctic
countries ARDL CO2 emissions/income,

energy consumption No

26 [30] 2003–2008
149 countries,

30 OECD
countries, & 48

US States

Generalized Least
Square Water withdrawals/income Yes

27 [51] 1981–1998 17 OECD
countries

Semiparametric
smooth coefficient

model

CO2 emissions/income
(deflator), labor, capital,

energy consumption
Mixed

28 [151] 1980–2008 93 countries
Fixed effects and

Generalized
Method of
Moments

Ecological footprint/income,
energy consumption,
urbanization, trade

openness, and financial
development

Mixed (Yes for
upper middle-

and high-income
countries.

No for low- and
lower

middle-income
countries)

29 [42] 1992–2010
15 new

European
Union

countries

Panel
co-integration and

Panel Causality
tests

CO2 emissions/income,
energy consumption, trade
openness, urban population

Yes

30 [152] 1998–2000

84 cities in
both

developed and
developing
countries

Panel
co-integration

CO, VHC, and
NOx/income, urbanization,

population, fuel price
Yes
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Table A1. Cont.

No. Author Period Country/Region Methodologies Dependent(s)/Explanatory
Variables

Support the EKC
Hypothesis?

31 [153] 2005–2013

34 developed
and

developing
countries

Principal
Component

Analysis

CO2 emissions/income,
tourism, energy

consumption, health
expenditure

Yes

32 [69] 1990–2012 17 OECD
countries Fixed-effects

CO2 emissions/income,
renewable energy

consumption, public
consumption for energy

development

No

33 [154] 1980–2011 5 African
countries

Fully Modified
OLS

CO2 emissions/income,
energy intensity, energy
structure, urbanization

No

34 [155] 1990–2011
22 Latin

American and
Caribbean
countries

Generalized Least
Square

Energy
consumption/income,

agriculture employment
No

35 [156] 1977–2010 17 OECD
countries

Fully Modified
OLS and Dynamic

OLS

CO2 emissions/income,
renewable energy

consumption
Yes

36 [157] 1990–2012 56 countries
Generalized
Method of
Moments

CO2 emissions/income,
energy consumption,

financial development, trade
Yes

37 [35] 1970–2012
4 countries:

India,
Indonesia,

China, Brazil
ARDL CO2 emissions/income,

energy consumption, trade

Mixed (Yes for
Indonesia and

Brazil.
No for India)

38 [67] 1995–2009 27 EU
countries

Feasible
Generalized Least

Squares

Total, household, productive
transport energy

consumption/gross value
added, energy prices

No

39 [23] 1990–2015 BRICS
countries Fixed-effects

N2O, Greenhouse gas
emissions/income, finance,
transport, renewable energy

consumption

Yes

40 [58] 1980–2012 25 African
countries

Dynamic OLS,
system GMM,

Dynamic Fixed
effects

CO2 emissions/income, oil
consumption, electricity

consumption, population
growth

No

41 [158] 1960–2010 50 US States

Augmented Mean
Group, Common
Correlated Effects

Mean Group
Estimator

CO2 emissions/income,
energy consumption,
population growth

Mixed (Yes for
AMG method.

No for CCEMG
method)

42 [159] 1980–2010
26 OECD and
52 emerging

countries
Panel Data
Estimation

CO2 emissions/income,
energy consumption No

43 [24] 1975–2007 15 MENA
countries

Fully Modified
OLS, and

Dynamic OLS

Ecological footprint/income,
energy consumption,

urbanization, political index,
fertility, life expectancy at

birth

Mixed (Yes for
oil-exporting

countries.
No for

non-oil-exporting
ones)

44 [160] 1970–2013 ASEAN-4
Fully Modified

OLS and Dynamic
OLS, panel VECM

CO2 emissions/income,
renewable, non-renewable

energy consumption,
agricultural value added

No

45 [29] 1996–2005 94 countries OLS estimation

Water footprint/income,
agriculture, income level
binary, coastal country

binary

No
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Table A1. Cont.

No. Author Period Country/Region Methodologies Dependent(s)/Explanatory
Variables

Support the EKC
Hypothesis?

46 [25] 1980–2013 EU countries
Fully Modified

OLS, and
Dynamic OLS

Ecological footprint/income,
renewable and

non-renewable energy
consumption, trade

openness

Yes

47 [46] 1994–2012 74 countries Quantile
regression

CO2 emissions/income,
renewable energy

consumption, technological
development, trade,
institutional quality

No

48 [161] 1970–2016 14 Asia-Pacific
countries

Fully Modified
OLS, and

Augmented mean
group

CO2 emissions/income,
natural gas consumption Yes

49 [162] 1980–2017
Gulf

Cooperation
Council

Fully Modified
OLS, pooled

mean group, and
Dynamic common
correlated effects

CO2 and SO2
emissions/income,

electricity consumption,
financial development,

export

Mixed (No for
Oman.

Yes for other
5 countries)

50 [163] 2005–2013 64 developing
countries

Generalized
Method of
Moments

Ecological footprint, CO2
emissions/income, energy
consumption, corruption,

trade, foreign direct
investment

No

51 [164] 1990–2016 28 EU
countries Fixed-effects

Greenhouse gas
emissions/income, energy
consumption, renewable

energy consumption

Mixed (Yes for
17/28 countries)

52 [165] 1990–2014 86 countries
Generalized
Method of
Moments

CO2 emissions/income,
energy consumption, forest

area, agricultural area

Mixed (Yes for the
whole sample and

Africa. No for
other groups)

53 [166] 2000–2017 24 emerging
countries

Generalized
Method of
Moments

CO2 emissions, fossil fuel
energy consumption, and

nitrous oxide
emissions/income,

industrial index, domestic
credit, transport services,

renewable energy
consumption

Mixed (Yes for
nitrous oxide

emissions.
No for carbon

dioxide emissions
and fossil fuel

energy
consumption)

54 [167] 1960–2014 121 countries Fixed-effects
CO2 intensity, CO2

permission per capita, CO2
in total/income

Mixed (Yes for
95/121 countries)

55 [34] 1995–2014 14 countries Fixed-effects

CO2 emissions/income,
energy consumption,
globalization index,

international tourism
arrivals

Yes

56 [168] 1995–2015 27 EU
countries

Fully Modified
OLS, and

Dynamic OLS

CO2 emissions/income,
renewable energy

consumption, biomass
energy

Yes

57 [169] 1995–2015 18 OECD
countries

Fully Modified
OLS, and

Generalized
Method of
Moments

CO2 emissions/income,
nuclear electricity output,

non-renewable
consumption, trade

Yes
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Table A1. Cont.

No. Author Period Country/Region Methodologies Dependent(s)/Explanatory
Variables

Support the EKC
Hypothesis?

58 [26] 1970–2014 G7 countries Bootstrap panel
causality test

Ecological footprint (carbon,
cropland, grounds, forest

products, and grazing
land)/income

Mixed (Yes for
USA and Japan.

No for other
5 countries)

59 [68] 1995–2011
27 EU

countries and
12 major
countries

Fixed-effects

CO2 emissions/income,
energy efficiency,

intermediate inputs,
primary, secondary, and

tertiary, trade

No

60 [22] 1990–2015 16 APEC
countries

Generalized
Method of
Moments

N2O emissions/income,
technological development,

population
No

61 [170] 1995–2017 25 EU
countries

Fully Modified
OLS, and

Dynamic OLS

CO2 emissions/economic
complexity index, energy

intensity

Mixed (Yes for the
whole sample and

6 countries. No
for the rest
countries)

62 [27] 2000–2016 30 EU
countries

Generalized
Method of
Moments,

Two-stage least
square, and OLS

Electronic waste/income,
ICT exports, population Yes

63 [19] 1992–2015 12 OPEC
countries

Panel corrected
standard errors

CO2 emissions/income,
energy consumption, trade,

oil prices
Yes

64 [47] 1995–2015 G7 countries Random-effects

CO2 emissions/income,
tourism, education

expenditures, health
expenditure, GINI index,
foreign direct investment

Yes

65 [38] 1990–2016 34 Annex I
countries

Fully Modified
OLS, and

Dynamic OLS

CO2 emissions/income,
trade, fossil fuel

consumption
No

66 [39] 1970–2017 West African
States

Panel Quantile
regression

CO2 emissions/income,
trade, financial

development, trade, human
capital, bio capacity.

No

67 [171] 1990–2016 3 NAFTA
countries

Vector
Autoregression

CO2 emissions/income,
fossil fuel consumption,

exergetic renewable, exergy
intensity, trade, human

development

Mixed (Yes for
USA and Mexico.
No for Canada)

68 [172] 1980–2014 BRICST
countries

Fully Modified
OLS, Dynamic

OLS, and
Augmented Mean

Group

Ecological footprint/income,
energy structure, energy

intensity, population
No

69 [173] 1995–2013

98 developed
and

developing
countries

Generalized
Method of

Moments, Pooled
Mean Group

CO2 emissions/income,
export diversification Yes

70 [174] 1980–2016 USA, Mexico,
and Canada

Moments
Quantile

Regression

Ecological footprint/income,
trade, patents applied Yes

71 [175] 1990–2014
18

Sub-Saharan
African

countries

Panel
cointegration

CO2 emissions/income,
energy consumption, trade. Yes

Appendix B

The general cubic form is as follows:

Y = β1X + β2X2 + β3X3 (A1)
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In order to find out the turning points, we find the solution(s) for the first derivative
of Equation (A1):

δY
δX

= 3β3X2 + 2β2 X + β1 (A2)

Equation (A2) is the quadratic function, so the solution(s) depends on the value of
delta (∆):

∆
(

δY
δX

)
= (2β2 )

2 − 4 ∗ (3β3β1) (A3)

If ∆ = 0: Equation (A2) has only one solution that is the turning point of equation (A1):

X = −
4β2

2
12β3β1

= −
β2

2
3β3β1

(A4)

In this case, the variation of Equation (A1) as follows:

Table A2. β3 > 0.

X −∞ − β2
2

3β3 β1
+∞

δY
δX + 0 +

Y Y1
+∞

−∞

Table A3. β3 < 0.

X −∞ − β2
2

3β3 β1
+∞

δY
δX − 0 −

Y
+∞

Y2 −∞

Figure A1. The cubic shape when equation (A1) has one turning point: (a) β3 < 0; (b) β3 > 0.

If ∆ > 0: Equation (A2) has two solutions that are the turning points of Equation (A1):

X1, 2 =
−2β2 ±

√
4
(

β2
2 − 3β3β1

)
6β3

=
−β2 ±

√
β2

2 − 3β3β1

3β3
(A5)

Table A4. β3 < 0.

X −∞ −β2+
√

β2
2−3β3 β1

3β3

−β2−
√

β2
2−3β3 β1

3β3
+∞

δY
δX − 0 + 0 −

F(X) +∞ Y2
Y1 −∞
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Table A5. β3 > 0.

X −∞ −β2−
√

β2
2−3β3 β1

3β3

−β2+
√

β2
2−3β3 β1

3β3
+∞

δY
δX + 0 − 0 +

f(X) Y1 +∞
−∞ Y2

Figure A2. The cubic shape when Equation (A1) has two turning points: (a) β3 < 0; (b) β3> 0.

In our study, from the long-run cubic form between GDP and CO2, we have:

Y = − 20.332387X + 4.085637X2 − 0.269191X3 + k (A6)

where Y, X, and k represent CO2, GDP, and other variables, respectively.

β3 = −0.269191 < 0, and ∆(
δY
δX

) = 8.1712742 − 4 × (−0.80757) × (−20.332387) = 1.09 > 0. (A7)

Hence, the two turning points are computed:

X1 =
−β2 +

√
β2

2 − 3β3β1

3β3
= 4.413 and X2 ==

−β2 −
√

β2
2 − 3β3β1

3β3
= 5.706 (A8)

Figure A3. The inverted N-shaped of the EKC in Vietnam, 1977–2019.
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Figure A4. The ratio of total energy consumption in Vietnam, 1977–2019.

Figure A5. The illustration of the correlation between each pair of analyzed variables and the
distribution of each variable.

Appendix C

The ARDL’s outputs were calculated based on the long-run form between CO2 and
independent variables. Meanwhile, the BPN was tested by five different numbers of hidden
nodes and three different learning rates, which are 0.01, 0.1, and 0.9, respectively. We ran
this procedure ten times and the best results were shown in Table A6.
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Table A6. The output values from the ARDL and BPN approaches.

Year
CO2

(Actual)
ARDL

(Output)

Artificial Neural Networks with Back-Propagation Algorithm—BPN (Output)

Hecht-Nielsen [112] Turban, Sharda, Delen,
Aronson, Liang and King [113] Zhang, Ma and Yang [114] Tamura and Tateishi [115] Sheela and Deepa [107]

0.01 0.1 0.9 0.01 0.1 0.9 0.01 0.1 0.9 0.01 0.1 0.9 0.01 0.1 0.9

1977 5.7025 5.6766 5.7068 5.6924 5.6107 5.6985 5.6780 5.6595 5.7485 5.6860 5.7470 5.8315 5.6701 5.6318 5.7830 5.6993 5.6325
1978 5.6899 5.6871 5.7104 5.7141 5.6736 5.7011 5.6993 5.6813 5.7373 5.6993 5.7399 5.7969 5.6965 5.6802 5.7366 5.7088 5.6891
1979 5.7223 5.7389 5.7605 5.7666 5.7406 5.7496 5.7545 5.6964 5.7833 5.7493 5.7538 5.8369 5.7514 5.7379 5.7717 5.7585 5.7525
1980 5.7324 5.7726 5.7668 5.7938 5.8152 5.7596 5.7789 5.7427 5.7642 5.7708 5.7478 5.7694 5.7841 5.8064 5.7229 5.7719 5.8243
1981 5.7621 5.7683 5.6969 5.7513 5.7844 5.6937 5.7229 5.8320 5.6760 5.7190 5.7311 5.6515 5.7426 5.8039 5.6086 5.7149 5.8035
1982 5.7745 5.7607 5.7173 5.7583 5.7890 5.7148 5.7357 5.7911 5.7012 5.7330 5.7344 5.6798 5.7493 5.7976 5.6522 5.7294 5.8050
1983 5.8003 5.7526 5.7221 5.7542 5.7751 5.7206 5.7343 5.7734 5.7094 5.7339 5.7367 5.6904 5.7446 5.7837 5.6750 5.7306 5.7913
1984 5.6799 5.7278 5.7135 5.7343 5.7345 5.7125 5.7165 5.7481 5.7094 5.7195 5.7370 5.7032 5.7227 5.7465 5.6940 5.7182 5.7520
1985 5.8438 5.6999 5.6946 5.7074 5.6881 5.6941 5.6899 5.7315 5.6976 5.6966 5.7345 5.7026 5.6937 5.7064 5.6976 5.6969 5.7082
1986 5.7959 5.7229 5.7241 5.7269 5.6979 5.7252 5.7129 5.7238 5.7288 5.7218 5.7455 5.7315 5.7131 5.7172 5.7453 5.7221 5.7183
1987 5.8970 5.7514 5.7282 5.7441 5.7440 5.7331 5.7278 5.7666 5.7144 5.7367 5.7432 5.6802 5.7338 5.7638 5.7158 5.7308 5.7648
1988 5.8644 5.7272 5.7111 5.7204 5.7038 5.7165 5.7042 5.7523 5.7032 5.7164 5.7408 5.6781 5.7085 5.7294 5.7176 5.7119 5.7270
1989 5.5589 5.6858 5.6831 5.6838 5.6417 5.6873 5.6675 5.7242 5.6878 5.6825 5.7359 5.6867 5.6688 5.6731 5.7167 5.6817 5.6671
1990 5.7374 5.7364 5.7395 5.7361 5.6988 5.7418 5.7238 5.7240 5.7455 5.7347 5.7530 5.7473 5.7220 5.7208 5.7732 5.7350 5.7202
1991 5.7161 5.7523 5.7542 5.7566 5.7330 5.7545 5.7446 5.7307 5.7576 5.7510 5.7548 5.7583 5.7438 5.7473 5.7710 5.7513 5.7513
1992 5.6922 5.8092 5.8086 5.8140 5.8053 5.8079 5.8047 5.7568 5.8065 5.8060 5.7727 5.7980 5.8035 5.8101 5.8085 5.8051 5.8198
1993 5.7413 5.9119 5.9079 5.9046 5.8868 5.9069 5.9005 5.8197 5.9082 5.8992 5.8271 5.9022 5.8949 5.8890 5.9180 5.8995 5.9011
1994 5.8540 6.0155 5.9984 5.9885 5.9607 5.9975 5.9865 5.9010 6.0029 5.9846 5.8973 6.0045 5.9785 5.9642 6.0214 5.9870 5.9769
1995 5.9383 6.1288 6.0938 6.0857 6.0657 6.0943 6.0858 6.0060 6.0925 6.0812 5.9802 6.0828 6.0778 6.0651 6.1056 6.0817 6.0813
1996 6.0992 6.2501 6.1923 6.1844 6.1659 6.1948 6.1848 6.1226 6.1896 6.1799 6.0925 6.1771 6.1771 6.1652 6.2035 6.1799 6.1827
1997 6.3493 6.3774 6.2942 6.2883 6.2734 6.2993 6.2884 6.2510 6.2887 6.2835 6.2263 6.2711 6.2817 6.2726 6.3023 6.2823 6.2913
1998 6.3859 6.4618 6.3633 6.3610 6.3508 6.3689 6.3608 6.3333 6.3566 6.3541 6.3186 6.3386 6.3552 6.3471 6.3635 6.3526 6.3681
1999 6.3762 6.5219 6.4135 6.4143 6.4071 6.4182 6.4134 6.3846 6.4092 6.4046 6.3873 6.3988 6.4087 6.4007 6.4092 6.4045 6.4240
2000 6.4798 6.6505 6.5158 6.5200 6.5152 6.5235 6.5164 6.5121 6.5118 6.5096 6.5364 6.5023 6.5139 6.5109 6.5129 6.5093 6.5338
2001 6.5980 6.7654 6.6090 6.6177 6.6170 6.6187 6.6127 6.6270 6.6029 6.6060 6.6568 6.5905 6.6119 6.6122 6.6000 6.6046 6.6358
2002 6.7308 6.8603 6.6875 6.7007 6.7038 6.6978 6.6951 6.7187 6.6794 6.6872 6.7457 6.6647 6.6957 6.6967 6.6688 6.6847 6.7218
2003 6.8263 6.9519 6.7656 6.7818 6.7859 6.7777 6.7725 6.8010 6.7620 6.7674 6.8349 6.7562 6.7752 6.7821 6.7543 6.7667 6.8056
2004 6.9576 7.0989 6.8942 6.9141 6.9184 6.9137 6.8982 6.9571 6.8939 6.9021 6.9597 6.8903 6.9042 6.9248 6.9042 6.9018 6.9423
2005 7.0257 7.1607 6.9563 6.9791 6.9851 6.9762 6.9608 7.0123 6.9600 6.9661 7.0138 6.9636 6.9682 6.9925 6.9697 6.9672 7.0093
2006 7.0605 7.1476 6.9689 6.9939 7.0031 6.9877 6.9701 6.9786 6.9891 6.9785 7.0381 7.0233 6.9798 7.0148 7.0020 6.9868 7.0297
2007 7.0656 7.2132 7.0402 7.0676 7.0785 7.0599 7.0424 7.0485 7.0620 7.0524 7.0975 7.0973 7.0531 7.0911 7.0752 7.0607 7.1050
2008 7.1747 7.3427 7.1469 7.1745 7.1822 7.1650 7.1543 7.1905 7.1545 7.1603 7.1735 7.1637 7.1631 7.1889 7.1576 7.1623 7.2048
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Table A6. Cont.

Year
CO2

(Actual)
ARDL

(Output)

Artificial Neural Networks with Back-Propagation Algorithm—BPN (Output)

Hecht-Nielsen [112] Turban, Sharda, Delen,
Aronson, Liang and King [113] Zhang, Ma and Yang [114] Tamura and Tateishi [115] Sheela and Deepa [107]

0.01 0.1 0.9 0.01 0.1 0.9 0.01 0.1 0.9 0.01 0.1 0.9 0.01 0.1 0.9

2009 7.2462 7.3799 7.1890 7.2168 7.2246 7.2037 7.1976 7.2185 7.1977 7.2014 7.2129 7.2095 7.2060 7.2286 7.1923 7.2039 7.2456
2010 7.3385 7.4420 7.2657 7.2927 7.2985 7.2804 7.2731 7.2967 7.2749 7.2789 7.2810 7.2850 7.2813 7.3042 7.2751 7.2813 7.3193
2011 7.3913 7.5036 7.3420 7.3668 7.3689 7.3552 7.3481 7.3757 7.3496 7.3545 7.3494 7.3547 7.3553 7.3750 7.3536 7.3563 7.3888
2012 7.3110 7.5248 7.3884 7.4115 7.4127 7.3993 7.3932 7.4065 7.3995 7.3999 7.3982 7.4086 7.3999 7.4188 7.4039 7.4029 7.4319
2013 7.3362 7.5766 7.4390 7.4579 7.4548 7.4436 7.4433 7.4506 7.4455 7.4461 7.4446 7.4481 7.4478 7.4571 7.4406 7.4481 7.4717
2014 7.4534 7.6215 7.4954 7.5093 7.5015 7.4945 7.4975 7.4991 7.4989 7.4981 7.4963 7.4965 7.5000 7.5018 7.4911 7.4999 7.5166
2015 7.5867 7.6674 7.5531 7.5607 7.5472 7.5459 7.5522 7.5478 7.5528 7.5504 7.5468 7.5442 7.5523 7.5455 7.5426 7.5519 7.5604
2016 7.6457 7.7182 7.6006 7.6012 7.5816 7.5845 7.5966 7.5827 7.5943 7.5906 7.5859 7.5786 7.5939 7.5762 7.5745 7.5915 7.5925
2017 7.6406 7.6947 7.6376 7.6344 7.6146 7.6196 7.6300 7.5960 7.6393 7.6262 7.6243 7.6320 7.6270 7.6110 7.6269 7.6296 7.6255
2018 7.6933 7.7264 7.6988 7.6859 7.6588 7.6730 7.6856 7.6427 7.6964 7.6796 7.6687 7.6825 7.6795 7.6539 7.6870 7.6835 7.6681
2019 7.6343 7.7279 7.7329 7.7124 7.6794 7.6978 7.7157 7.6636 7.7238 7.7056 7.6900 7.7029 7.7070 7.6712 7.7042 7.7089 7.6867
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Appendix D

To investigate the possible effect of the breakpoint on the outputs, we re-examined
Equation (1) by adding the Dummy and the interactive variables:

CO2t = β0+β1GDPt + β2GDP2
t +β3GDP3

t +β4ECt + β5UrBt + Dt (β∗0 + β∗1 ∗GDPt) + ut (A9)

CO2t = β0+β1GDPt + β2GDP2
t +β3GDP3

t +β4ECt + β5UrBt + Dt

(
β∗0 + β∗3∗GDP3

t

)
+ ut (A10)

CO2t = β0+β1GDPt + β4ECt + β5UrBt + Dt (β∗0 + β∗1 ∗GDPt) + ut (A11)

where Dt is the dummy year variable (Dt = 1 for t = 1989, . . . 2019, and Dt = 0
otherwise). Dt*GDPt and Dt*GDP3

t are the interactive variables representing the possible
effect of economic growth and the breakpoint to CO2 emissions. ECt represents energy
consumption, and UrBt denotes urbanization. The year 1989 was chosen for the breakpoint.

We separate the two terms Dt*GDPt and Dt*GDP3
t for each Equations (A9) and (A10)

to investigate the possible effect of the dummy variable on the linear and the cubic forms.
Meanwhile, the Equation (A11) shows the possible effect of the structural break on results
based on the linear model assumption.

The cointegration tests are presented in Table A7, the long- and short-run estimations
are shown in Table A8, and the cumulative sum of recursive residuals (CUSUM) and
cumulative sum of squares of recursive residuals (CUSUMSQ) are depicted in Figure A6.

Table A7. ARDL bounds test for cointegration.

Dependent Variable, Independent Variables. Optimal ARDL Model F-Statistic Cointegration

Equation (A7)

CO2, GDP, GDP2, GDP3, EC, UrB, D , D*GDP 1,0,0,0,0,0,2,0 4.70 a Yes

Significant level Lower Bound (I0 bound)l Upper Bound (I1 bound) u

10% 2.03 3.13
5% 2.32 3.50
1% 2.96 4.26

Equation (A8)

CO2, GDP, GDP2, GDP3, EC, UrB, D, D*GDP3 1, 0, 0, 0, 0, 0, 2, 0 4.71 a Yes

Significant level Lower Bound (I0 bound) l Upper Bound (I1 bound) u

10% 2.03 3.13
5% 2.32 3.50
1% 2.96 4.26

Equation (A9)

CO2, GDP, EC, UrB, D, D*GDP 1, 0, 0, 0, 0, 0, 2, 0 3.87 b Yes

Significant level Lower Bound (I0 bound) l Upper Bound (I1 bound) u

10% 2.26 3.35
5% 2.62 3.79
1% 3.41 4.68

a, b indicate significance at 1%, 5%. l, u The critical values are derived from case III: unrestricted intercept and no trend, k = 5, N = 40 in
Narayan [90].

The results from Table A7 reveal that the cointegration between analyzed variables
was confirmed at 5% level of significance.
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Table A8. The long- and short-run estimations.

Variables
Equation (A7) Equation (A8) Equation (A9)

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

Long-run relationship (dependent variable CO2)

GDP −18.807 b −2.105 −19.141 b −2.048 −0.432
0.565 k

−1.165
0.366

GDP2 3.757 b 2.183 3.776 b 2.209 − −
GDP3 −0.244 b −2.282 −0.241 b −2.459 − −

EC 0.822 a 3.653 0.827 a 3.627 0.738 a 2.851
UrB 0.411 0.593 0.408 0.555 1.115 2.902

D 0.8 0.304 0.161 0.174 −5.026 a −2.885
D*GDP −0.223 −0.384 − − 1.026 b 2.652
D*GDP3 − − −0.004 −0.402 − −
Intercept 30.065 b 2.122 30.892 c 2.015 4.959 b 2.546

Short-run relationship (dependent variable ∆CO2)
∆GDP −12.828 c −1.866 −13.058 c −1.829 −0.256 −1.201
∆GDP2 2.563 c 1.936 2.576 c 1.959 − −
∆GDP3 −0.167 c −2.028 −0.165 c −2.159 − −

∆EC 0.561 a 3.416 0.564 a 3.403 0.437 a 3.02
∆UrB 0.28 0.598 0.278 0.602 3.799 1.577

∆D 0.419 0.234 −0.017 −0.027 −3.035 a −2.762
∆D*GDP −0.152 −0.381 − − 0.608 b 2.454
∆D*GDP3 − − −0.003 −0.399
LECT(t-1) −0.682 a −5.311 −0.682 a −5.316 −0.592 a −5.155

Residual
Diagnostics

F-Statistic
(Prob.)

F-Statistic
(Prob.) F-Statistic (Prob.)

Jarque-Berra 2.833 (0.243) 2.849 (0.240) 1.466 (0.480)
Correlation LM 0.419 (0.662) 0.419 (0.661) 0.649 (0.530)

Heteroscedasticity
test (BPG) 0.511 (0.869) 0.532 (0.854) 0.653 (0.743)

Stability
Diagnostics

F-Statistic
(Prob.)

F-Statistic
(Prob.) F-Statistic (Prob.)

Ramsey reset 0.711 (0.406) 0.815 (0.426) 0.034 (0.085)

CUSUM Portrayed by
two lines b

Portrayed by
two lines b Cross two lines b

CUSUMSQ Portrayed by
two lines b

Portrayed by
two line b Cross two lines b

a, b, c indicate significance at 1%, 5%, 10%. k implies the sub-sample (1989–2019).

The results from Table A8 show that in the context of the cubic form (Equations
(A9) and (A10)), the terms of dummy time variables (D and D*GDP/D*GDP3) have a
statistically insignificant effect on CO2 emissions. The diagnostic and stability tests (lower
part of Table A8) confirm that the estimated results are stable. In other words, no difference
between the two periods (before and after breakpoint—the year 1989) given the cubic form
in the sample. Indeed, the cubic form could describe the change of slopes without breaking.

In the linear form context (Equation (A11)), the results reveal that the dummy time
variables have a statistically significant effect on CO2 emissions. The results are as expected
because the breakpoint separates two periods into two independent linearities with dif-
ferent slopes. The causality analysis (Table A9) shows the interactive variable positively
affects emissions in the long- and short run, indicating that economic growth from 1989
to 2019 positively affects emissions. However, we also note that the GDP regressor is
insignificant; the Ramsey reset test indicates the misspecification of the linear function
(Table A8); the CUSUM and CUSUMSQ cross the boundaries (Figure A6). In other words,
the linear form is not a good fit function to describe data in the sample.
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Figure A6. The breakpoint testing for the linear form assumption: (a) CUSUM; (b) CUSUMSQ.

Table A9. Granger causality analysis.

Short-Run Granger Causality Wald Test (p-Value)
Long-Run
Granger

Causality

Variables ∆CO2 ∆EC ∆GDP ∆UrB ∆D ∆D*GDP LECTt-1
(t-stats)

∆CO2 - 0.31 (0.080) c −0.29 (0.20) 2.79 (0.38) −3.56 (0.03) b 0.73 (0.046) b −0.703
(−4.405) a

∆EC 0.29 (0.031) b - 0.05 (0.805) −2.34 (0.419) −2.78 (0.071) c 0.63 (0.063) c -

∆GDP -0.11 (0.298) 0.03 (0.861) - 6.26 (0.010) b −3.93 (0.000) a 0.87 (0.000) a −0.411
(−2.451) b

∆UrB 0.01 (0.477) 0.01 (0.922) 0.06 (0.001) a - 0.14 (0.156) −0.03 (0.180) −0.004
(−0.234)

∆D - - - - - - -
∆D*GDP 0.14 (0.012) b 0.15 (0.031) b 0.62 (0.001) a −2.36 (0.107) 4.51 (0.001) a - -

a, b, c indicate significance at 1%, 5%, 10%.

Therefore, the proposed cubic function interpreting the EKC in Vietnam could reflect
the two distinct periods without breaking, while the structural change analysis is crucial for
the linear assumption. In any given case, an econometric investigation should be carefully
examined to describe data in the sample.
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