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Abstract: As the complexity of automated driving systemss (ADSs) with automation levels above
level 3 is rising, virtual testing for such systems is inevitable and necessary. The complexity of testing
these levels lies in the modeling and calculation demands for the virtual environment, which consists
of roads, traffic, static and dynamic objects, as well as the modeling of the car itself. An essential
part of the safety and performance analysis of ADSs is the modeling and consideration of dynamic
road traffic participants. There are multiple forms of traffic flow simulation software (TFSS), which
are used to reproduce realistic traffic behavior and are integrated directly or over interfaces with
vehicle simulation software environments. In this paper we focus on the TFSS from PTV Vissim in a
co-simulation framework which combines Vissim and CarMaker. As it is a commonly used software
in industry and research, it also provides complex driver models and interfaces to manipulate and
develop customized traffic participants. Using the driver model DLL interface (DMDI) from Vissim
it is possible to manipulate traffic participants or adjust driver models in a defined manner. Based on
the DMDI, we extended the code and developed a framework for the manipulation and testing of
ADSs in the traffic environment of Vissim. The efficiency and performance of the developed software
framework are evaluated using the co-simulation framework for the testing of ADSs, which is based
on Vissim and CarMaker.

Keywords: automated driving; scenario-based testing; software framework

1. Introduction

The use of TFSS in automotive engineering has significantly improved the scope of
the virtual testing of ADS. It is mostly used in co-simulation with other software tools
for vehicle testing and simulation. There are various co-simulation platformss (CSPs)
for the testing of ADSs in complex traffic environments. Hallerbach presented in [1] a
simulation-based tool-chain to identify critical scenarios using a SUMO and a vehicle
dynamic software. A framework coupling SUMO with vehicle dynamic software VTD
for the development of ADSss is presented in [2]. In [3], a human-driven car from SILAB
interacted over an interface with SUMO traffic participants in order to evaluate human
interactions and the effect of ADSs in traffic. Implementing automated driving functions in
MATLAB and coupling this with Vissim, an impact analysis of ADSs is performed in [4].
The CSP used in this work is based on the co-simulation between Vissim and CarMaker
and is explained in greater detail below; see [5]. Common to all these interfaces is the fact
that the vehicle under test has been developed separately from a certain vehicle simulation
software. The traffic is created externally and imported by means of TFSS. In this study, the
vehicle being tested is referred to as an EGO vehicle.

As a form of TFSS, Vissim provides comprehensive traffic flow modeling options
and the possibility to manipulate traffic participants, making it suitable for the testing
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of ADSs and the generation of safety-relevant scenarios. The term "scenario" is defined
in [6]. Focusing on safety-critical scenarioss (SCSs), a variety of research works have offered
possible definitions and approaches to determining the criticality and safety relevance
of a given scenario, for example [7–9]. The aim of generating and finding SCSs in the
realistic and stochastic traffic environment of Vissim is based on the idea that the EGO
vehicle drives through the traffic simulated by the TFSS and possibly encounters situations
that cannot be resolved by the implemented ADS. The approach based on this idea is
beneficial for the virtual testing of an EGO vehicle, since it reflects normal driving in traffic
and takes in account all the effects and factors which could potentially occur during a
ride. The difficulty of using Vissim or any other TFSS is that it is not guaranteed that
a significant amount of SCSs for ADS testing will be generated. To provide a reference
and an approximate estimation of the amount and relevance of SCSs, that will occur,
distance-based approaches can be used. In [10,11], distance-based testing approaches for
ADS are introduced. Based on accident data, the average distance between two accidents
was statistically analyzed in order to determine how many kilometers an ADS should be
tested in order to achieve the same safety level as a human driver. In both works, the
number of kilometers, depending on the accident considered, lies in millions of real-world
testing kilometers, which are needed to prove the safety of ADS compared to a human
driver. In [12], the distance-based testing is reduced to scenario-based testing. In [12] a
statistical method is introduced in order to calculate the number of scenarios required
for the same evidence as the approaches presented in [10,11]. These accident rates and
scenario amounts can hardly be reached via Vissim because the Vissim driver model relies
on tactical driving behavior. This is due to the fact that traffic participants plan their
actions with a temporal and spatial horizon; see [13]. In such trajectory planning, the
neighboring vehicle is taken into account, as well as vehicles that are far in front of the
EGO vehicle. This means that the vehicles in the Vissim traffic simulation have enough
of a planning horizon to avoid conflict areas and conflict situations, which is comparable
to human driving behavior. Due to this face, the cars collide with each other extremely
rarely, and do not make unpredictable movements and maneuvers, which corresponds
to the real-life situation. Nonetheless, human driving behavior is in rare cases incorrect,
resulting in conflict situations and accidents. Accident statistics suggest that up to 90%
of police-reported accidents are mainly caused by human drivers [14]. On the one hand,
TFSS-based driving behavior correspondsto the realistic planning of real drivers. However,
on the other hand, if we use, e.g., Vissim as a TFSS for the testing and validation of ADSs,
as described in [5,15], this would not yield a satisfactory number of SCSs. Another recent
study in [16] introduced a method based on deep reinforcement learning to train traffic
participants with naturalistic driving data. The main goal of this approach is to train traffic
participants in such a way that they produce SCSs and reach accident rates corresponding
to those occurring in the real world. With a similar approach and objective, but using
a more deterministic approach, we present a software framework for researchers using
Vissim for the generation of SCSs.The main objective of this software framework is to
offer an appropriate and adjustable environment for testing purposes of ADSs and, more
specifically, for the generation of SCSs. The so-called driver model framework (DMF) is
based on the DMDI software code provided by Vissim. This code allows Vissim users to
manipulate traffic participants in a defined manner. Since the provided Vissim interface and
the code lacks explanations, it is complex to use. Therefore, the DMF provides a structured
C++ code with a class architecture and useful methods for accessing and setting different
vehicle parameters for traffic participants. This provides an optimized environment for
the testing and development of ADSs in the complex traffic environment of Vissim. As
the main case study to describe the functionality of the DMF, the co-simulation between
CarMaker and Vissim described in [4] was used in this study. This framework was adjusted
by means of the DMF to utilize the co-simulation for the generation of SCSs. This utilization
was carried out by implementing the stress testing method (STM) presented in [17]. The
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DMF code itself can also be used independently of Vissim and is available to users for
testing purposes and other related applications.

2. Software Description

For the DMF, we used the DMDI provided by PTV Vissim (see [18]). This C++ code
contains three essential functions from Vissim: DriverModelSetValue, DriverModelGet-
Value and DriverModelExecuteCommand. These functions are used by Vissim to provide
and retrieve the data from the DMF. The Vissim participants, which are controlled by
the DMDI, are called DLL driver modelss (DDMs) hereinafter. The Vissim DriverMod-
elExecuteCommand value is passed upon each simulation step, denoting the action to be
taken, such as initialization, driver creation, driver deletion and the driver movement of
each traffic participant controlled by the DMDI in the TFSS. In between the commands,
multiple calls of DriverModelSetValue and DriverModelGetValue are made for each vehicle
controlled by the DDM. The function DriverModelSetValue provides the DDM with the
current vehicle values, which can be stored, processed and modified. In order to provide
Vissim with new values, which will be used for the vehicle’s movement, multiple calls
of DriverModelGetValue for each traffic participant are necessary. Building on top of the
provided DMDI, DriverModelSetValue and DriverModelGetValue are encapsulated into
setInjectorData and getInjectorData, member functions of InjectorAbstract which is further
described in the software architecture section.

In these functions, all the necessary logic for extracting, storing and updating of
selected vehicles is contained. As the DMF has been created to manipulate traffic partici-
pants in the surrounding area of the EGO vehicle, one vehicle in the Vissim traffic is set
to be the EGO vehicle by means of the vehicle ID, which is provided by the DMDI. This
vehicle has an individual ID, which can be freely defined and set. Using the DMDI in
the testing framework presented in [5], the EGO vehicle ID equals 1 and is fixed within
the co-simulation between Vissim and CarMaker. For the DMF, which is described in
this paper, the area of interest is the surrounding area of the EGO vehicle, which consists
of other traffic participants, referred to as nearby vehicles in this work. The DMF con-
cept is depicted in Figure 1. First, all the surrounding area has to be defined, stored and
updated continuously through each Vissim simulation step. This is done with the DMF
method capture, in which certain nearby vehicles are selected as target vehicles by means
of user-defined rules. To manipulate the traffic participants around the EGO vehicle, an
action method is defined, which activates a user-defined critical maneuver for the Vissim
vehicle. This critical maneuver is performed by the traffic participant from Vissim, which
is referred to as the target vehicle and is activated close to the EGO vehicle. The software
implementation of the process logic of the DMF is shown in Figure 2. Each Vissim call to
the setInjectorData or getInjectorData method passes multiple arguments, one of which
always denotes the value which is going to be sent or achieved. After setInjectorData is
executed for each value of the EGO vehicle, multiple setInjectorData calls follow, with
the values of the nearby vehicles. Thus, information about EGO vehicles and detected
nearby vehicles is obtained and can be processed and prepared if needed. The whole
setInjectorData and getInjectorData routine is performed for each vehicle controlled by the
DMF in each simulation step. The DMF provides the user with the basic methods necessary
to read and manipulate the traffic participants relevant to the EGO vehicle being tested. The
user has to implement two DMF methods, capture and action, in order to create a usable
DLL. A description of the methods capture and action is given in the following points:

• In the capture method, it is guaranteed that nearby vehicles in relation to the EGO
vehicle with current values can be queried. The user then defines the rules by which
certain or all nearby vehicles are selected as target vehicles and which action is applied
during defined time intervals. Duration and pauses between those intervals are also
user-configurable.

• In the action method, the user defines an action which will be applied to the target
vehicles. Examples of such actions can be a braking maneuver carried out by a traffic
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participant which is directly in front of the EGO vehicle, or a cut-in maneuver by the
traffic participant in front of the EGO vehicle.

The obvious advantage of the DMF is that the user does not care about monitoring all
nearby vehicles, taking care of vehicle IDs, or observing if the nearby vehicles have current
values. The tasks of the user are merely to select vehicles of interest and define the action
that will be applied.

Vehicle Under Test
1. Vehicle Config.
2. ADS Config.
3. Visulisation

Traffic Flow Model
1. Traffic Config.
2. DMF Config.

Co-simulation CarMaker - Vissim

Multi-Body Simualtion

Traffic Simulation Driver Model Framework (DMF)

EGO
EGO

Capture Action

EGO

Vissim - Driver Model DLL Interface (DMDI)

Figure 1. The co-simulation between Vissim and CarMaker of the framework concept in [5] is adapted
with the DMF.

2.1. Software Architecture

The DMF is written in C++, encapsulates the provided Vissim code, and provides
a simple interface for the user. The class hierarchy can be seen in Figure 3. The Injec-
torAbstract class comprises the majority of the DMF logic, including setInjectorData and
getInjectorData methods, which are called from Vissim. They are required to be a part of
InjectorAbstract, since the whole DMF logic depends on them, reading out the data, storing
it, scheduling the execution of capture and action methods and passing new data to Vissim.
The Injector class is a child class of the InjectorClass, which implements the pure virtual
methods capture and action. This inheritance serves to keep users away from the basic
Vissim DLL code of the framework and provides them with simple vehicle manipulation.
The user-code is separated from the DMF logic, and it is simple for the user to write and
organize. Aside from that, the user is free to extend the functionality of NearbyVehicle and
EgoVehicle classes, which contain the data of the respective vehicle categories.
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setInjectorData

capture()action

action
currently
running

true

false

traffic
conditions
satisfied

observe current
traffic

Setter from perspectiv
of Vissim. Input of DMF.

Getter from perspectiv
of Vissim. Output of DMF.

select nearby
vehicles of

interest
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interval
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selected vehicles

get injector data

action()

false

true

Figure 2. The process logic and the main components of the DMF.

DriverModel

DriverModelSetValue

DriverModelGetValue

DriverModelExecuteCommand

InjectorAbstract

setInjectorData

getInjectorData
capture = 0
action = 0
getAllNearbyVehicles
getVehiclesUpstream
getVehiclesDownstream
getCurrentSimulationTime

...

EgoVehicle

vehicle ID

current velocity
acceleration
color

...

1 *

1
1

Vissim Driver Model DLL Interface

Stress Testing Framework

Injector

getIstance

capture

action

1 NearbyVehicle

setAsTarget()

vehicle ID

relative distance

relative position

relative velocity

...

*

Figure 3. A simplified view of the framework class hierarchy.
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2.2. Software Functionalities

As mentioned in the software description, the user has to fill in the code for the capture
and action methods. The methods provided by the DMF upon which the user depends are:

• getAllNearbyVehicles
• getVehiclesDownstream
• getVehiclesUpstream
• getCurrentSimTime

The first three methods return a vector containing nearby vehicles either all of them or
only vehicles in front of vehicles behind the EGO vehicle. Each vehicle is represented by the
NearbyVehicle object, which contains all the relevant information about the vehicle, such
as relative distance and speed to the EGO vehicle, acceleration, relative position, and other
vehicle states or parameters. These methods are meant to be used in the capture method,
in which the user is observing the traffic and labeling relevant vehicles as target vehicles.
When the user-defined criteria are fulfilled, the startAction method is to be implemented,
with a specified action duration time and an optionally selected pause time after the action’s
end. During the time of the respective action, the takes control of the target vehicles. After
the action time expires, the TFSS internal model takes back the control of the target vehicles.
Through these methods, the DMF provides the user with the following main functionalities:

• Providing the user with the updated list of nearby vehicles;
• Offering the user the ability to select target vehicles and manipulate them;
• Keeping the list of target vehicles updated during the action;
• Scheduling the capture and action methods in time;
• Taking and releasing the control of the vehicles from and to the user;

Another essential feature of the DMF is that it has two separate modes of operation.
In both of these modes, previously defined functionalities are present, but they require
different approaches and implementations for different modes of operation. The DMF can
operate both in Vissim only and in co-simulation between CarMaker and Vissim.

3. Use Case Application of the DMF

As introduced in Section 2, the use case for the DMF refers to the co-simulation
between CarMaker and Vissim software, adjusting Vissim with the use of the DMF. The
concept of the co-simulation framework is depicted in Figure 4 and the adjustment of
Vissim using the DMF has already been introduced in Figure 1.

Matlab Apllication
1. CarMaker parameter
configuration
2. Traffic parameter
configuration

1. Signal Processing
2. Scenario selection
3. Report Generation

Corner cases
Reports
Evaluation

Postprocessing

Co-simulation Controller

Vehicle Under Test
1. Vehicle Conf.
2. ADS Config.
3. Visulisation

Traffic Flow Model
1. Traffic Config.
2. DMF Config.

Co-simulation CarMaker - Vissim

Multi Body Simualtion

Traffic Simulation Driver Model Framework (DMF)

Capture Action

DMF extension for [5]

Concept from [5]

Figure 4. The concept of the co-simulation framework from [5] adjusted with the DMF from Figure 1.
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This adjustment using the DMF was realized by implementing the STM which was
introduced in [17]. Defined maneuvers were provoked in the vicinity of an EGO vehicle in
order to force the tested vehicle into a challenging situation for the ADS. Using statistical
data from accidents in Austria, the maneuvers which were provoked were classified
into lateral and longitudinal maneuvers. These longitudinal and lateral maneuvers were
implemented using the DMF, in which they could be parameterized and used for the
generation of SCSs in the vicinity of the EGO vehicle. In [17] the comparison between a
testing procedure with and without the STM is shown. In this testing procedure, an EGO
vehicle equipped with adaptive cruise control and an automated lance change algorithm
was tested on 10,000 simulation kilometers. The SCSs considered for evaluation purposes
were collisions, and the criticality assessment criteria were those defined in [8]. It was
observed that collisions could be generated, and very critical and critical scenarios from [8]
increased by 1859 and 2320 over the course of 10,000 simulation kilometers, respectively.
The second use case of the framework involves using the DMF only with Vissim. As a result
of this, a vehicle with automated driving functions could be developed and implemented in
the traffic environment, using the same DMDI from Vissim. In [19], a longitudinal control
unit was developed using the Vissim DMDI in order to test the performance of automated
vehicles on a single-lane road. A similar approach is presented in [20], where the impact
of an emergency control function on mobility and safety was evaluated. The research
work presented in [21,22] emphasizes the usage of the DLL interface for the analysis and
evaluation of connected and autonomous vehicles in traffic. Using it for the purpose of
testing an ADS, the advantage of this approach lies in the avoidance of couplings with
other vehicle simulation software tools, such as CarMaker, VTD and others. In this case,
the simulation times, implementation efforts and the need for additional tools could be
decreased. A possible disadvantage of this approach is the simple point mass models of
vehicles provided in Vissim. This issue can also be solved by developing and integrating
single-track or more complex vehicle models using the same DMDI interface. Table 1
provides the software specifications of the the DMF in the default version. For the DMF
with the implementation of the STM, the code information is provided in Table 2. The first
use case requires IPG CarMaker, and for the second use case it is possible to implement the
provided DMDI directly in Vissim on any test road. The simple braking example with the
STM and DMF are provided for research and development purposes.

Table 1. DMF software information and code link for the default DMF.

Nr. Code Metadata Description Description

C1 Current code version v1

C2 Permanent link to code/repository
used for this code version

https://github.com/ftgTUGraz/
DriverModel_Framework

(accessed on 14 February 2021)

C3 Code Ocean compute capsule none

C4 Legal Code License GPL-3.0 License

C5 Code versioning system used git

C6 Software code languages, tools,
and services used C++, PTV Vissim 11.00-14

C7 Compilation requirements, operating
environments & dependencies Visual Studio 2019

https://github.com/ftgTUGraz/DriverModel_Framework
https://github.com/ftgTUGraz/DriverModel_Framework
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Table 2. DMF software information and code link for the implementation of the STM.

Nr. Code Metadata Description Description

C1 Current code version v1

C2 Permanent link to code/repository
used for this code version

https://github.com/ftgTUGraz/
DriverModel_STM

(accessed on 14 February 2021)

C3 Code Ocean compute capsule none

C4 Legal Code License GPL-3.0 License

C5 Code versioning system used git

C6 Software code languages, tools,
and services used

C++, IPG CarMaker 8.1.1 (optional),
PTV Vissim 11.00-14

C7 Compilation requirements, operating
environments, & dependencies Visual Studio 2019

4. Conclusions

With the presented driver model framework, the user can implement and adjust driver
models for traffic participants using the traffic flow simulation software Vissim. By that,
traffic participants for testing purposes of a particular automated driving system of the
vehicle under test can be tested on a virtual basis. Using the co-simulation between Vissim
and CarMaker, a use case of the presented software framework was shown. An upgrade of
the co-simulation with the presented framework for testing automated driving systems
increases the benefit of the Vissim and CarMaker co-simulation environment. For future
research, the software framework will be adjusted for implementing more realistic vehicle
dynamics to the neighboring traffic vehicles, including vehicle based environment sensors
as well for improved model validity and Vehicle-to-X communication for impact analysis
of automated driving systems on traffic.
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