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Abstract: The paper presents the concept of controlling the designed optoelectronic scanning and
tracking seeker. The above device is intended for the so-called passive guidance of short-range
anti-aircraft missiles to various types of air maneuvering targets. In the presented control method,
the modified linear-quadratic regulator (LQR) and the estimation of input signals using the extended
Kalman filter (EKF) were used. The LQR regulation utilizes linearization of the mathematical model
of the above-mentioned seeker by means of the so-called Jacobians. What is more, in order to improve
the stability of the seeker control, vector selection of signals received by the optoelectronic system
was used, which also utilized EKF. The results of the research are presented in a graphical form.
Numerical simulations were carried out on the basis of the author’s own program developed in the
programming language C++.

Keywords: simulation; mechatronics; control systems; guided missile; flight dynamics; LQR control;
Kalman filter

1. Introduction

One of the most important components of an anti-aircraft self-guiding infrared missile
is the optoelectronic self-guiding seeker. This type of device is still the subject of intensive
research in many scientific centers around the world [1–15]. The issue of this article refers
to the publications [16,17] and is a continuation of the research conducted on the designed
optoelectronic scanning and tracing seeker, presented in Figure 1.

The drive system of the designed scanning and tracking seeker is the rotor shown
in Figure 1a. It is suspended in two rotating housings forming the so-called Cardan joint
(Figure 1c). The rotor axis is the optical axis of the search and tracking system for a detected
target. By means of the motors mounted in the individual housings (Figure 1b), control
moments are applied to the rotating rotor, which makes it possible to change the position
of its axis in space and thus to control the seeker. Figure 1d shows a 3D visualization of the
complete seeker. Thanks to the 3D software, the mathematical and dynamics model and
problem of moving parts are easier to solve [18]. Figure 2 shows the seeker set in the first
operating mode in which the device scans the air space with the so called large angle of
scanning β = 1.92

◦
.

Figure 3 shows the area of the airspace scanned by the seeker set in the first operating
mode (the plane is scanned perpendicularly to the head axis).

Figure 4 shows the seeker set in the second operating mode, where the device scans
the air space with a so-called small scanning angle β = 0.28

◦
.

Figure 5 shows the area of air space scanned by the seeker set in the second operating
mode (the plane scanned is perpendicular to the seeker axis).
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Figure 1. 3D view of the designed scanning and tracking seeker, where: (a) gyro rotor of scanning 
system; (b) sensors and control motors of the seeker; (c) spherically-shaped forming a cardan ar-
rangement; (d) complete scanning head. 
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system; (b) sensors and control motors of the seeker; (c) spherically-shaped forming a cardan
arrangement; (d) complete scanning head.
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The detailed principle of operation and innovation of the seeker is presented in [16,19].
At the present stage of research, a mathematical model of the dynamics of the presented
device has been developed, various algorithms of control of the seeker’s optical axis have
been analysed in [16,20–23], and optimal operating parameters of the seeker have been
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determined while maintaining the stability conditions specified by the so-called Lapunov
method [24]. In the course of the above-mentioned research, problems with precise control
of the device axis in the so-called second operating mode of the seeker (Figure 4), in
which the seeker tracks the previously detected air target with the small scanning angle
(Figure 5).It should be noted that this type of solution for detection (space scanning) and
tracking of the maneuvering air target is not described in the available literature. After a
deeper analysis of the problem, it turned out that it is caused by too many pulses from
infrared radiation emitted by the target that are received by the optoelectronic system. Too
many detection pulses cause unfavorable overdriving of the seeker axis. It was, therefore,
advisable to carry out additional filtering of signals received by the optoelectronic system.
For this purpose, the so-called vector selection of signals received by the optoelectronic
system was used, with a Kalman filter added [25–28]. Moreover, the so-called modified
LQR control method was used to increase the precision of the seeker axis control. The
results of this work are presented in subsequent points of this paper.
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2. Mathematical Model of the Scanning Seeker

Figure 6 shows the scanning seeker diagram together with the adopted coordinate
systems and markings of individual angles of rotation of the respective systems in relation
to each other. The origins of all coordinate systems are located at the intersection of the
axis of rotation of the outer housing with the axis of rotation of the inner housing of the
seeker. The movement of the seeker axis can be induced by moments of external forces MZ
and MW forces generated by control motors or by moments of friction forces MTW and
MTZ forces generated in the bearings of particular seeker housing as a result of angular
displacement of the missile deck.

Angular movements of a missile are treated as external disturbances and are deter-
mined by the angular ωxP , ωyP , ωzP velocities that cause the missile to rotate around the
individual axes of the system xP yP zP at the appropriate angles αx αy αz. Angles ψ, ϑ
are measured with fiber optic sensors (Figure 4) and angle ϕ is measured with the rotor
position sensor (Figure 2).
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The following coordinate systems have been introduced:

xK yK zK—a coordinate system associated with the reference direction established in space;
xR yR zR—a mobile coordinate system associated with the rotor;
xCW yCW zCW—a mobile coordinate system associated with the inner housing;
xCZ yCZ zCZ—a mobile coordinate system associated with the outer housing;
xP yP zP—a mobile coordinate system associated with a missile;

The following marking of the angles of rotation has been adopted:

ψ-angle of rotation xCZ yCZ zCZ relative to xK yK zK around axis zCZ;
ϑ-angle of rotation xCW yCW zCW relative to xK yK zK around axis xCW ;
ϕ-angle of rotation xR yR zR relative to xK yK zK around axis yR;
αx-angle of rotation xP yP zP relative to xK yK zK around axis xP;
αy-angle of rotation xP yP zP relative to xK yK zK around axis yP;
αz-angle of rotation xP yP zP relative to xK yK zK around axis zP;

The following were assumed as given values:

JxCZ , JyCZ , JzCZ —moments of inertia of the complete outer housing,
JxCW , JyCW , JzCW —moments of inertia of the complete inner housing;
JxR , JyR , JzR —moments of inertia of the rotor;
→
MZ—the moment of forces of control motor’s action on the outer housing;
→
MW—the moment of forces of control motor’s action on the inner housing;
→
ωP
(
ωxP , ωyP , ωzP

)
—angular velocity of the missile;

n-rotational speed of the rotor;
→
MTW ,

→
MTZ—the moments of the friction forces in the bearings of the inner and outer

housing, hereby:
→
MTW = cw

.
ϑ,
→
MTZ = cz

.
ψ, here: cw is a coefficient of friction in the inner

bowl bearing and cz is a coefficient of friction in the outer bowl bearing.

Using the Lagrange II equation, the following gyroscope motion equations have been
derived [29]:

(JxCW + JxR)
..
ϑ + (JxCW + JxR)

.
ωxCZ −

(
JyCW − JzCW − JzR

)
ωyCW ωzCW+

−JyR nωzCW = MW −MTW
(1)
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[
JzCZ + JzCW + JzR +

(
JyCW − JzCW − JzR

)
sin2 ϑ

] .
ωzCZ+

+ 1
2
(

JyCW − JzCW − JzR

)
sin 2ϑ

(
ωzCZ

.
ϑ +

.
ωyCZ

)
+

−
[

JzCW + JzR +
(

JyCW − JzCW − JzR

)
sin2 ϑ

]
ωyCZ

.
ϑ− (JzCW + JzR)ωzCW ωxCW sin ϑ+

+JyCW ωyCW ωxCW cos ϑ + JyR nωxCW cos ϑ−
(

JxCZ − JyCZ

)
ωxCZ ωyCZ+

−(JxCW + JxR)ωxCW ωyCZ = MZ −MTZ

(2)

where the components of the angular velocity of the outer housing:

ωxCZ = ωxP cos ψ + ωyP sin ψ
ωyCZ = −ωxP sin ψ + ωyP cos ψ

ωzCZ =
.
ψ + ωzP

and the components of the angular velocity of the inner housing:

ωxCW = ωxCZ +
.
ϑ

ωyCW = ωyCZ cos ϑ + ωzCZ sin ϑ
ωzCW = −ωyCZ sin ϑ + ωzCZ cos ϑ

Assuming that external kinematic impacts are negligible, we will obtain the following
system of equations of motion of the seeker:

(JxCW + JxR)
..
ϑ− 1

2
(

JyCW − JzCW − JzR

) .
ψ

2
sin 2ϑ− JyR n

.
ψ cos ϑ + cw

.
ϑ = MW (3)

[
JzCZ + JzCW + JzR +

(
JyCW − JzCW − JzR

)
sin2 ϑ

] ..
ψ +

(
JyCW − JzCW − JzR

) .
ψ

.
ϑ sin 2ϑ+

+JyR n
.
ϑ cos ϑ + cz

.
ψ = MZ

(4)

3. LQR Control of the Scanning Seeker

In this article, the authors proposed to control the seeker axis by means of a modified
linear-quadratic regulator (LQR). This method can be used to determine such control that
minimizes the integral quality indicator, given by the formula:

J =
∞∫

0

[x TQx + uT Ru]dt (5)

where Q = matrix of state variable weights, R = matrix of control weights, x=state vector, u
= [MW −MTW ]T– control vector.

Q and R matrices are diagonal weight matrices that can be used to change the influence
of particular state variables and controls on the presented quality criterion. The advantage
of this method is that the entire state vector is the set point value, not just its selected values,
as is the case with other controllers (e.g., PID) [30–33].

LQR regulation requires linearization and discretisation of state equations. Jacob’s
matrix—a matrix of successive partial derivatives—was used in the process of linearization.

To Equations (3) and (4), we introduce the signs:

Js1 = JxCW + JxR , Js2 = JyCW − JzCW − JzR , Js3 = JzCZ + JzCW + JzR

x1 = ϑ, x2 =
.
ϑ, x3 = ψ, x4 =

.
ψ (6)

thanks to which we get a nonlinear system of equations:

.
x = f (x) (7)

where:
.
x =

[ .
x1

.
x2

.
x3

.
x4
]T
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
.
x1.
x2.
x3.
x4

 =



x2
1
2

Js2
Js1

x2
4 sin 2x1 +

JyR
Js1

nx4 cos x1 − cwx2
Js1

+ MW
Js1

x4

− Js2x4x2 sin 2x1
(Js3+Js2 sin2 x1)

− JyR nx2 cos x1

(Js3+Js2 sin2 x1)
− czx4

(Js3+Js2 sin2 x1)
+

+ MZ
(Js3+Js2 sin2 x1)


Then, in the above system, the components dependent on the so-called owndynamics

of the system (state variables) and the components dependent on external actions (control
moments) will be separated, as shown below:

.
x1.
x2.
x3.
x4

 =


f1
f2
f3
f4

+


z1
z2
z3
z4

 =

=


x2

1
2

Js2
Js1

x2
4 sin 2x1 +

JyR
Js1

nx4 cos x1

x4

− Js2x4x2 sin 2x1
(Js3+Js2 sin2 x1)

− JyR nx2 cos x1

(Js3+Js2 sin2 x1)

+

+


0

− cwx2
Js1

+ MW
Js1

0
− czx4

(Js3+Js2 sin2 x1)
+ MZ

(Js3+Js2 sin2 x1)



(8)

where:

fi = a component dependent on the own dynamics of the system,
zi = a component dependent on control and external interference:

The control law takes the form:

u = K(x Z − x) (9)

where xZ is the matrix of set state variables, while the matrix of amplification is calculated
from the dependency:

K = (R + BT PB)
−1

BTPA (10)

where P matrix is the solution to Riccati discrete equation [34,35]:

ATP + PA− PBR−1BTP = 0 (11)

Selection of LQR regulator settings consists in the determination of the Q and R
weights matrices. The LQR algorithm does not have a universal method for selecting the
above parameters and they are usually iteratively selected. In this paper, when selecting
the initial values of Q and R matrices, the authors used the Bryson [36] rule, which suggests
the selection of the following input parameters:

Qii =
1

x2
ii

(12)

Rii =
1

u2
ii

(13)

where i-means another element of the state vector; xii—these are the maximum values for
individual elements of the state vector x; uii—these are the maximum control moments.
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The maximum operating parameters of the seeker were determined using the Lapunov
method [24], and they are respectively:

u11 = u22 = 1.5 (N · m), x11 = 0.5(
◦
), x22 = 40 (

◦
/s), x33 = 0.5(

◦
), x44 = 40(

◦
/s)

Q and R weights matrices:

Q =


1

0.52 0 0 0
0 1

402 0 0
0 0 1

0.52 0
0 0 0 1

402



R =

[
1

1.52 0
0 1

1.52

]
The P matrix was determined by numerically solving Riccati discrete equations ac-

cording to the formula:

Pj−1 = Q + AT(P j − PjB(R + BT PB)−1BT P)A (14)

Matrix Pj−1, according to the above formula, is calculated iteratively from the back. Pj
= Q is assumed as the input value. Jacobians were used to determine the state matrix A
and control matrix B [37]. The individual elements of the matrix A are given according to
the dependency:

A =


∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f1
∂x4

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

∂ f2
∂x4

∂ f3
∂x1

∂ f3
∂x2

∂ f3
∂x3

∂ f3
∂x4

∂ f4
∂x1

∂ f4
∂x2

∂ f4
∂x3

∂ f4
∂x4

 (15)

After calculating the partial derivatives, further elements of the matrix A were deter-
mined, represented by the following equations:

∂ f1

∂x1
= 0,

∂ f1

∂x2
= 1,

∂ f1

∂x3
= 0,

∂ f1

∂x4
= 0 (15a)

∂ f2

∂x1
=

Js2x2
4 cos 2x1 − JyR nx4 sin x1

Js1
,

∂ f2

∂x2
= 0,

∂ f2

∂x3
= 0 (15b)

∂ f2

∂x4
=

Js2x4 sin 2x1 + JyR n cos x1

Js1
(15c)

∂ f3

∂x1
= 0,

∂ f3

∂x2
= 0,

∂ f3

∂x3
= 0,

∂ f3

∂x4
= 1 (15d)

∂ f4
∂x1

=
−2Js2x2x4 cos 2x1+JyR nx2 sin x1

(Js3+Js2 sin2 x1)
+

+
J2
s2x2x42 sin x1 cos x1 sin 2x1+Js2 JyR nx2 cos2 x12 sin x1

(Js3+Js2 sin2 x1)
2

(15e)

∂ f4

∂x2
=
−Js2x4 sin 2x1 − JyR n cos x1

(Js3 + Js2 sin2 x1)
(15f)

∂ f4

∂x3
= 0 (15g)

∂ f4

∂x4
=
−Js2x2 sin 2x1

(Js3 + Js2 sin2 x1)
(15h)



Energies 2021, 14, 3109 9 of 17

The individual elements of the matrix B are given according to the dependency:

B =


∂z1
∂u1

∂z1
∂u2

∂z1
∂u1

∂z1
∂u2

∂z1
∂u1

∂z1
∂u2

∂z1
∂u1

∂z1
∂u2

 (16)

After calculating the partial derivatives, the individual elements of the control matrix
B were obtained, represented by the following equations:

∂z1

∂u1
= 0,

∂z1

∂u2
= 0, (16a)

∂z2

∂u1
= 0,

∂z2

∂u2
=

1
Js1

, (16b)

∂z3

∂u1
= 0,

∂z3

∂u2
= 0, (16c)

∂z4

∂u1
=

1
(Js3 + Js2 sin2 x1)

,
∂z4

∂u2
= 0. (16d)

4. Vector Filtration of Control Signals by Means of the Extended Kalman Filter

The accurate angle measurement of the detected object has a significant impact on the
accuracy of its tracking [38–42]. In order to correctly determine the angular position of the
detected object, it should be determined the law of airspace scanning by the optoelectronic
system.

The law of airspace scanning by the optoelectronic system of the seeker is presented in
the paper [19]. On its basis, linear equations describing the model of the scanning process
were derived:

βX(t) = a tan(tan(β(t)) · cos(a sin(zzp(t)/
√

xzp(t)
2 + zzp(t)

2)) (17)

βZ(t) = a tan(tan(β(t)) · sin(a sin(zzp(t)/
√

xzp(t)
2 + zzp(t)

2)) (18)

where:

βX(t), βZ(t)-angular coordinates of the detected target relative to the axis of the scanning
seeker;
β(t)-resultant angle of deflection of the light beam from the optical axis:
xzp , zzp-the components of the position of the light beam on the plane of the original
mirror.

Angular coordinates of the detected target βX , βZ are measured with respect to the
optical axis of the seeker. These coordinates are the position desired to control the axis of
the seeker so that it tracks the detected target.

Due to the high scanning density, especially in the second operating mode of the
seeker (see Figure 5), there is a large number of pulses received from the infrared detector,
which causes an unfavorable overdriving of the seeker axis. For the reasons mentioned
above, it was necessary to apply appropriate filtration. Although a large number of control
signals do not cause losing track of the target, it has a negative effect on the precision of the
control. The method of filtering signals received by the optoelectronic system of the seeker
presented in the paper is divided into two stages:

- selecting the maximum signal (pulse),
- performing additional filtration of the determined maximum signals using the EKF.

Figure 7 shows a diagram of filtering the signals received by the optoelectronic system
of the seeker.
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movement; Ra, corrective lens system visual field radius; ∆β, variable coefficient depending on the
speed vector value of the detected VWC target.

Based on the series of pulses from the infrared detector, only those for which the
voltage value is the highest, i.e., theoretically the closest to the source of infrared radiation,
are taken into account. These are the so-called maximum pulses marked in Figure 7 with
the symbol B. At the next stage of selection, the Kalman filter was used, in which a variable
coefficient ∆β was adopted as one of the quality criteria (see Figure 7), depending on the
value of the VWC velocity vector. The coefficient ∆β varies from 1.5 Ra to 6 Ra, where
Ra is the radius of the visual field of the seeker corrective lens system. The algorithm
according to which the Kalman filter works is divided into two stages. The first stage is
called prediction and the second stage is called correction. During prediction, the velocity
vector of the detected target is estimated based on the previous coordinates of the detected
target [43–45].

Estimated values of the direction and orientation of the target velocity vector are
additional quality criteria for filtering those maximum signals whose vectors have the
opposite direction and orientation compared to the VWC vector. Vectors of measurement
signals are marked with the “ri” symbol in Figure 7.

The prediction of the direction and orientation values of the target velocity vector is
based on the matrix of coordinates of the detected target:

β =


βX(t0) βZ(t0)
βX(t1) βZ(t1)
βX(t2) βZ(t2)

. . . . . .
βX(ti) βZ(ti)

 (19)

where i = number of target detection pulses.
Equations describing the estimated velocity vector of a detected air target:

νWC(t) =

√
(tg(βX(ti)− βX(ti − ∆t)))2 + (tg(βZ(ti)− βZ(ti − ∆t)))2

ti − ∆t
(20)
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γWC(t) =
arccos(tg(βXSR)√

(tg(βXSR − βX(ti)))
2 + (tg(βZSR − βZK (ti)))

2
(21)

βXSR =

(
i

∑
1

βXi

)
i

(22)

βZSR =

(
i

∑
1

βZi

)
i

(23)

where: νWC = estimated value of the target velocity vector, γWC = estimated direction of
the target velocity vector, ti = time of measurement of consecutive pulses from the infrared
detector, ∆t = reverse time interval (in numerical simulations, it is the time of about 10
detection pulses).

In the next stage of filtration, called correction, the final control signal is determined
(Figure 7, point E), for which the value of the determined “ri” vector is greater than or
equal to the quality ∆β coefficient. Signals selected in this way βX , βZ have been used to
control the seeker axis and thereby track the detected air target, as described in the next
chapter of the paper.

5. Results

The studies were carried out for different air situations. Numerical simulations were
carried out on the basis of the author’s own program developed in the C++ language.

5.1. Scanning Seeker Parameters

Moments of rotor inertia:

JxR = 0.00114143 (kg ·m2
)

; JyR = 0.00157911 (kg ·m2
)

; JzR = 0.00158234 (kg ·m2
)

Moments of inertia of the complete inner housing:

JxCW = 0.0016663 (kg ·m2
)

; JyCW = 0.0011666 (kg ·m2
)

; JzCW = 0.0011463 (kg ·m2)

Moments of inertia of the complete outer housing:

JxCZ = 0.0003383 (kg ·m2) ; JyCZ = 0.0002213 (kg ·m2
)

; JzCZ = 0.0002583 (kg ·m2)

Rotational speed of the rotor:

n = 600(rad/s) (The speed and torque of the motor depend on the strength of the magnetic
field generated by the energized windings of the motor, which depends on the current
through them-may slightly differ from the fixed value [46]).

The coefficient of friction in the inner housing bearing:

cw = 0.05 (N ·m · s)
The coefficient of friction in the outer housing bearing:

cz = 0.05 (N ·m · s)

5.2. Results of the Simulation

Figure 8 shows a computer simulation image of the tracking of an air target moving at
a speed of 350 m/s, located at a distance of 1600 m from the firing position, without the
use of a filtration of pulses received by the optoelectronic system of the seeker.

Figure 9 shows a computer simulation image of tracking the same air target but using
the signal filtering presented in Chapter 4. In both cases, the seeker axis is controlled by
the method described in Chapter 3, using a modified linear-quadratic regulator (LQR).
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Figure 9. Tracking a detected air target using signal filtering.

For a better comparison of the simulations shown above, Figure 10 shows the set
trajectory TZ and the trajectory TR pursued by the seeker axis when tracking a detected air
target without signal filtering.

Figure 11 shows the same trajectories after signal filtering.
Figure 12 shows a computer simulation image of the seeker axis control in the airspace

search phase and in the phase of tracking the detected target. Target speed: 250 m/s, target
distance from fire station: 1100 m.

Description of the markings used in Figures 12–14:
A, scanning lines; B, trajectory of seeker axis motion in the programmatic airspace

search phase; C, phase of seeker axis shifting to the detected target; D, tracking of the
detected target.

Figure 13 shows the differences between the set trajectory and the trajectory pursued
by the seeker axis when controlled with the use of the PID method, while Figure 14 shows
the differences between the set trajectory and the trajectory pursued by the seeker axis
when controlled with the use of modified LQR method.
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6. Conclusions

The paper presents the application ofmodified LQR control and the estimation of
input signals using Kalman filter for the process of detection and tracking of air targets.

LQR regulation uses linearization of the mathematical model of the tested scanning
seeker with the use of the so-called Jacobians, while in order to improve the stability of the
seeker’s operation, vector selection of signals received by the optoelectronic system, which
utilizes, among others, an extended Kalman filter, was used.

Computer simulations have shown that tracking of the maneuvering air target by
the seeker being studied, using a Jacobian in a closed-loop control, is more precise than
using the classical PID control method. The results also confirm the effectiveness of the
developed method of filtering the signals received by the optoelectronic system of the
presented seeker. After applying the vector selection of signals and Kalman’s linear filter,
we can clearly see a significant improvement in the stability of the trajectory of seeker
axis motion.

In further research, statistical results will be presented and analyzed, which will be
compared with the results obtained in this article. Moreover, in the future, it is planned to
conduct research on the use of a more powerful filter, the “unscented Kalman filter”, which
was widely discussed in articles [47–51].
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