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Abstract: In this paper, a hybrid model that considers both accuracy and efficiency is proposed to
predict photovoltaic (PV) power generation. To achieve this, improved forward feature selection is
applied to obtain the optimal feature set, which aims to remove redundant information and obtain
related features, resulting in a significant improvement in forecasting accuracy and efficiency. The
prediction error is irregularly distributed. Thus, a bias compensation–long short-term memory (BC–
LSTM) network is proposed to minimize the prediction error. The experimental results show that
the new feature selection method can improve the prediction accuracy by 0.6% and the calculation
efficiency by 20% compared to using feature importance identification based on LightGBM. The
BC–LSTM network can improve accuracy by 0.3% using about twice the time compared with the
LSTM network, and the hybrid model can further improve prediction accuracy and efficiency based
on the BC–LSTM network.

Keywords: photovoltaic power generation; feature selection; bias compensation–long short-term
memory network; prediction accuracy; training time

1. Introduction

Currently, the consumption of fossil energy is increasing with societal developments.
Solar energy has received more and more attention from all over the world in the past
decade [1]. More and more PV power plants connected to the grid will bring great chal-
lenges to its security and stability [2,3]. In the case of the poor prediction accuracy of a PV
power outage, the spinning reserve of a conventional power supply has to be increased
to ensure the safety of the power system. As a result, the renewable energy consumption
space is crowded out, which results in an increase in the amount of abandoned sunlight.
Accurate forecasting of PV power generation can provide a reliable basis for peak load and
frequency regulation, power flow optimization, and equipment maintenance, as well as
technical support for the complementary and coordinated control of wind power, which is
one of the key technologies to improve the grid’s ability to accept PV power. Therefore,
accurate and reliable PV forecasting techniques are needed to optimize operation costs and
reduce uncertainties in power systems [4].

The approaches of PV power prediction are generally divided into two categories:
stepwise methods and direct methods [5]. The stepwise forecast consists of two steps. First,
solar radiation intensity [6–10] and temperature [11–13] are forecasted, which are then
applied as inputs to forecast the PV power. Unlike the stepwise forecast method, direct
forecast predicts PV power through the historical data of PV power and meteorological
information, and its approaches are divided into three categories: (1) statistical model
methods; (2) physical methods; and (3) artificial intelligent learning methods [14–16].
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One common method to improve prediction efficiency and accuracy is to select the
optimal feature set from the original data set [17–20]. One way to select the optimal
feature set is to use the Pearson correlation coefficient to analyze the influence of various
meteorological factors on the output of PV power generation [21]. The Pearson coefficient
can analyze linear relationships between features, but its ability to analyze nonlinear or
nonstationary problems is limited. To better solve nonlinear or nonstationary problems,
some researchers proposed an adaptive hybrid predictor subset selection strategy to obtain
the most relevant and nonredundant predictors for enhanced short-term forecasting [22].
The strategy chooses the optimal feature set through the following two aspects: (1) the
correlation between features and PV power to choose the most relevant feature set, and (2)
the correlation between features to select the nonredundant feature set. However, according
to our research, some features alone will not affect the prediction results, but a combination
of certain features can affect the prediction results. We call this feature a combination
relationship. Based on the existing research, we propose a new feature selection method,
designed in consideration of all three aforementioned aspects.

Another common method to improve prediction accuracy is to change the structure of
the model [23–28]. The convolutional neural network (CNN) embodies powerful capabili-
ties in image processing [29]. In recent years, more and more CNN-based models have been
used to forecast PV power and have achieved good results. The CNN network can extract
the features of the original data well, but it is not good at dealing with timing problems. A
recurrent neural network (RNN) is considered to be a more effective tool for time series
data prediction. In previous work, some researchers demonstrated that RNN has better
prediction performance than backpropagation NN (BPNN) and radial basis function NN
(RBFNN) [30,31]. Unlike the aforementioned studies, some researchers introduced the
concept of residuals into the model design [32]. By establishing an additional error predic-
tion model, the prediction error is added back to the prediction result to obtain the final
prediction result. This method cleverly introduces error compensation terms to improve
prediction accuracy. Based on this, and considering the superiority of LSTM networks in
time series problems, a hybrid model, the bias compensation–long short-term memory
(BC–LSTM) network, is used to perform the PV power forecasting.

However, traditional bias compensation networks have the following problems. The
actual power value and the power error term are generated inconsistently, and the influ-
encing factors are also different. Using the same meteorological data as the model input,
its prediction accuracy is poor, and its computational complexity is high. Therefore, a
framework with a hybrid method combining feature selection and the BC–LSTM network
is proposed where the feature selection method is applied to the two LSTM networks to
improve prediction accuracy and calculation efficiency. In this study, a new method based
on feature selection and the BC–LSTM network is proposed to forecast PV power. The
main contributions are outlined as follows:

(1) Unlike the existing research, improved forward feature selection is proposed to obtain
the optimal feature set.

(2) An LSTM network, in consideration of bias compensation, called BC–LSTM, is pro-
posed to optimize the performance of the model.

(3) A framework with a hybrid method combining feature selection and the BC–LSTM
network is used to perform the PV power forecasting.

(4) In addition to the RMSE and MAE indicators, the variance and skewness indicators
are introduced to evaluate the prediction model.

The remainder of this paper is organized as follows: In Section 2, the related methods
are introduced in detail; in Section 3, the hybrid method combines the feature selection,
and the BC–LSTM network is explained; in Section 4, the performance of the five models
are analyzed and compared; and in Section 5, the work of this paper is summarized, and
the conclusions are provided.
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2. Methods and Evaluation
2.1. Improved Forward Feature Selection

In the collected data set, some features may not be relevant or may have low correlation
with respect to the PV output. It is necessary to select an optimal feature set from the whole
data set. Based on the analysis of many existing studies, a new feature selection method
called improved forward feature selection (IFFS) is proposed, which consists of two steps,
as follows:

Step 1: Sort the importance of the original feature set using LightGBM.
Step 2: Select the optimal feature set according to the algorithm flow.
LightGBM is a machine-learning algorithm based on the gradient boosting decision

tree (GBDT) released by the Microsoft Corporation in 2017 [33].
A feature set is introduced with n instances {x1, . . . , xn}, where each xi is a vector.

In each iteration of gradient boosting, the negative gradients of the loss function with
respect to the output of the model are denoted as {g1, . . . , gn}. The specific training steps
for ordering the feature importance using LightGBM are as follows:

(1) Discretize continuous features into k values and then generate a histogram with k bins.
(2) Calculate the initial gradient, sort in descending order, select the first a × 100% large

gradient sample, and randomly select the remaining small gradient samples of (b × (1−a))
as a new sample (small gradient samples multiplied by [1−a]/b weight coefficient).

(3) Repeat the process in Step 2 until the specified number of iterations or convergence
is reached.

(4) Among all of the current leaves, split the leaf with the largest split gain until the
leaf nodes are no longer split. The formula for calculating the split gain is shown in
Equations (1) and (2).

Vj(d) =
1
n


(

∑ xi∈Al
gi+

1−a
b ∑ xi∈B

l
gi

)2

nj
l(d)

+
(∑ xi∈Ar gi+

1−a
b ∑ xi∈Br gi)

2

nj
r(d)

 (1)

Al =
{

xi ∈ A : xij ≤ d
}

, Ar =
{

xi ∈ A : xij > d
}

Bl =
{

xi ∈ B : xij ≤ d
}

, Br =
{

xi ∈ B : xij > d
}

nj
l(d) = ∑ I

[
xij ≤ d

]
, nj

r(d) = ∑ I
[
xij > d

] (2)

where Vj(d) represents the split gain of the jth feature at node d, A represents the large
gradient sample set obtained in step 2.3, B represents the small gradient sample set
obtained in step 2.3, d represents the node, a and b both represent the sampling rate,
and gi represents the gradient.

The feature importance is calculated based on the number of times the feature splits.
The more times a feature is used for node splitting, the more important the feature is.

Based on the sorted feature set, IFFS is proposed for the feature selection, which con-
siders the combination relationship between features and improves computing efficiency,
and is mainly achieved by the following:

a. F is the feature set sorted using LightGBM, and the more important features are more
likely to be useful features. Thus, n is the number of times of successively adding
features without improving metrics instead of cumulatively adding features without
improving metrics. This enables the more important features to be preferentially
selected, which can effectively improve the calculation efficiency while ensuring the
efficiency of the feature set.

b. The two thresholds Nmax and Kmax are used to control the calculation efficiency of
the algorithm. Reasonably selecting the threshold can ensure the validity of the
feature set while improving the calculation efficiency.

c. If the network’s metrics have not improved after a new feature is added, this feature is
not abandoned directly. Instead, it is saved to the useless feature set. Then, the useless
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feature set and unselected feature set together form a new feature set and enter the
next cycle, which ensures the selected feature set is more useful to some extent.

d. When K increases, the candidate feature set is randomly shuffled so that the probabil-
ity of all of the features to be selected is the same. This can consider the combination
relationship between strong and weak features, which ensures the feature selection
result is further optimized.

The pseudocode of IFFS is shown in Algorithm 1:

Algorithm 1: Feature selection in consideration of the feature combination relationship

Input: F: List of candidate features sorted by LightGBM algorithm;
X: Historical feature data set Y: Historical power data set
Model: Training model Metric: Evaluation metric
Nmax, Kmax: Threshold used for stopping feature selection
Output: Fuseful: List of selected features

Initialize:
L = size (F) // Total number of candidate features.
Fuseful = Ø // List of selected features.
Funsel = Ø // List of unused features.
N = 0, K = 0 // Counter for feature selection.
numFeatureSel = 0 // Number of the features selected.
metricMin = MAX_NUM // Minimum metric.

while numFeatureSel <= L do
// Get the first feature from the candidate features.
f = F.getHead()
// Add this feature and evaluate the model’s performance.
Feval = Fuseful.addTail(f )
// Train the forecasting model with the selected features.
Model.fit (X[Feval], Y, metric = Metric)
Ypred = Model.predict(X[Feval]) // Evaluate the forecasted output.
metricEval = Metric(Y, Ypred) // Calculate the model’s performance.
if metricEval <= metricMin then
// If the metric is improved, select this new feature for the useful features.

Fuseful = Feval // Increase the number of features selected.
numFeatureSel = numFeatureSel + 1

// Remove the selected feature from the candidate features.
F.removeHead()

metricMin = metricEval // Update the minimum metric.
N = 0 // Clear the counter.

else // The new feature does not improve the model’s performance.
Funsel.addTail(f ) // Save it to the unselected features.
N = N + 1 // Count the number of unselected features.
// If each of Nmax consecutive features does not improve,
if N >= Nmax then

if K <= Kmax then
// merge the unselected features into the rest of the candidates.

F.merge(Funsel)
Funsel = Ø // Clear the unselected features.

N = 0 // Clear the counter of unselected features.
// Randomly change the new candidate features’ order.

Shuffle(F)
// Count the number of times the candidate features are shuffled.

K = K + 1
Else // The Kmax times of shuffling do not improve.

break // The exit feature selection (while loop).
end if

end if
end while // End while loop.
return Fuseful
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2.2. BC–LSTM Network

The LSTM network was proposed by Hochreiter and Schmidhuber in 1997 to avoid
long-term dependencies through targeted design [34]. It is mainly composed of an input
layer, hidden layer, and output layer. Its specific structure is shown in Figure 1.
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The LSTM unit receives the current input Xt and the state ht−1 of the tuple and obtains
the state Ct−1 of the neuron at time t. We first determine which information to clear through
the forget gate, then add new information to the state of the cell through the input gate
and update the state of the cell. This process is mainly controlled by the Sigmoid function
and the Tanh function to form the neuron state Ct. Finally, the output gate determines
which information in the cell is finally output. The memory cell state Ct is calculated by the
activation function, and the output gate is dynamically controlled to form the final output
ht of the LSTM cell at time t.

According to Figure 1, Equation (3) can be obtained:{
ht = Ot ∗ tanh(Ct)
Ct = ft ∗ Ct−1 + it ∗ C̃t

(3)

where ‘*’ denotes the Hadamard product.
Further considering the weights W and the offsets b of the input, output, and forget

gates, Equation (4) can be obtained:
ft = σ(Wi,h · ht−1 + Wi,x · xt + bi)

it = σ
(

W f ,h · ht−1 + W f ,x · xt + b f

)
Ot = σ(Wo,h · ht−1 + Wo,x · xt + bo)
C̃t = tanh(WC,h · ht−1 + WC,x · xt + bC)

(4)

where σ() is the logistic sigmoid function; Wi,x, Wf,x,Wo,x, and WC,x are the four weight
matrices applied to the input; and Wi,h, Wf,h, Wo,h, and WC,h are the four weight matrices
applied at the previous time step to the output. Additionally, bi, bf, bo, and bC are four bias
vectors, and ft, it, and Ot refer to the activation functions of each gate.

Comparing the predicted PV power output and the actual power output, it can be
found that the prediction error is irregularly distributed. Based on this fact, BC–LSTM
is proposed, which builds an additional model (called the bias compensation network)
to predict the prediction bias to minimize the overall prediction error. This method uses
the error compensation term to improve the prediction accuracy. The structure of the
BC–LSTM network is shown in Figure 2.
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3. Performance of the Hybrid Method

The interest in using the framework of the hybrid method is demonstrated in this
section, combining the IFFS and the BC–LSTM network for PV forecasting purposes.

The BC–LSTM network uses two LSTM networks to predict the actual PV power
and PV power error, respectively. The biggest difference between the hybrid method
and traditional BC–LSTM network is that the new feature selection method is used to
select feature sets for the prediction network and bias compensation network, respectively.
The actual power value and the power error term are generated inconsistently, and the
influencing factors are also different. Using the same meteorological data as the model
input, its prediction accuracy is poor, and its computational complexity is high. Therefore, a
framework for the hybrid method combining the feature selection and BC–LSTM network is
proposed, where IFFS is applied to the two LSTM networks to improve prediction accuracy
and calculation efficiency. The specific implementation process is shown in Figure 3.

Step one: Collect raw data and perform the data processing. The data processing
procedure is composed of two sections: data cleaning and data preparation. In the first
section, data cleaning includes two aspects: an outlier detector and missing value filling.
The original data first uses isolation forests to detect outliers and remove outliers, then
uses KNN to fill in the missing values. In the second section, new features are constructed
based on the original features.

Step two: Construct the regression model based on LightGBM to obtain the feature
importance identification. Then, obtain the optimal feature set according to the algorithm
flow in Section 2.1.

Step three: Split the preprocessed data set into training and validation sets. Construct
the regression model based on the LSTM network and initialize the parameters. In the tth

state of the LSTM, update the cell state based on the input at time t and the state at the
previous time t−1. The target at the mth iteration is to update the parameters and minimize
the loss function, denoted as follows:

L( f ) =
n

∑
i=1

L(yi, f (xi)) (5)

where xi is the ith sample, and yi is the expected result of the ith sample.
Step four: After k iterations, or after the loss function no longer decreases, output the

final trained model, LSTM network 1, and the predicted results.
Step five: Subtract the predicted data from the original data to get the error set. The

error set and the processed feature set form a new data set. Repeat step two through four
for the new data set to get the final trained model, LSTM network 2, and the predicted
error results.
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Step six: The predicted results in step four and the predicted error results in step five
form the final prediction results, and then calculate the metrics.
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Figure 3. Flow chart of PV short-term power prediction based on feature optimization method and BC–LSTM network.

4. Case Study
4.1. Data Description and Implementation Environment

Two years’ (1 January 2017–31 December 2018) worth of NWP data from the no.
24 PV power plant located in Ningxia Zhongwei, China, were selected for this study. The
data resolution is 15 min, and the prediction horizon is one day ahead, with a total of
20-dimensional original features. All data have been preprocessed for performance (the
specific operations are shown in Section 3). The features after the data processing procedure
are shown in Table 1. To strengthen the results of the generalization ability, the data from
2017 and from January, February, April, May, July, August, October, and November of
2018 are used as the training data set, and the data from March, June, September, and
December of 2018 are used as the validation data set. Considering the power generation at
sunset is almost zero, the night data is excluded in the training and validation data set. All
experiments were run in the python3.6 environment in anaconda, accelerated by NVDIA
Geforce RTX2080Ti, CPU Intel(R) Xeon(R) CPU E5-2680 v3@2.50 GHz 2.5 GHz, memory
8 GB.
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Table 1. Data information.

Feature Label Meaning Unit/Scale Data Category/Raw Data or Not

F1 Hour 1–24

time/yesF2 Day 1–31
F3 Month 1–12
F4 Numerical forecast time s

F5 Period (15 min = 1 period) 1–96 time/yes

F6 Temperature ◦C
temperature/yesF7 Sensible heat flux W/m2

F8 Latent heat flux W/m2

F9 Temperature forward difference ◦C
temperature forward difference/noF10 Sensible heat flux forward difference W/m2

F11 Latent heat flux forward difference W/m2

F12 Surface wind speed m/s
wind/yesF13 Surface wind direction degree

F14 Momentum flux Kg/s2m

F15 Surface wind speed forward difference m/s
wind forward difference/noF16 Momentum flux forward difference Kg/s2m

F17 Surface pressure Pa pressure/yes
F18 Shortwave radiation W/m2

radiation/yes
F19 Lone-wave radiation W/m2

F20 Shortwave radiation forward difference W/m2
radiation forward difference/yes

F21 Lone-wave radiation forward difference W/m2

F22 Large-scale precipitation mm
precipitation/yesF23 Convective precipitation mm

F24 Humidity RH

F25 Large-scale precipitation forward difference mm
precipitation forward/noF26 Convective precipitation forward difference mm

F27 Humidity forward difference RH

F28 Cloud 0–100 cloud/yes
F29 Cloud forward difference −100–100 cloud forward difference/no
Y Power unit value 0–1 output/no

There are three tasks that need to be completed in this case study:

(1) Verify the effectiveness of IFFS.
(2) Verify the superiority of the BC–LSTM network compared to the traditional LSTM

network.
(3) Verify the superiority of the hybrid method compared to the BC–LSTM network.

4.2. Feature Selection
4.2.1. Feature Selection Result—LightGBM

According to the ranking results for feature importance in Figure 4, 23 features are
selected after excluding {F1, F16, F22, F23, F25, F26} to form a new feature set XI as the
comparative feature set.
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variables, the last six variables being the least important, including {F1, F16, F22, F23, F25, F26}).

4.2.2. Feature Selection Result—IFFS

The features applied to the forecasting model are selected on the basis of feature
importance ranking. The evaluation network used is an LSTM network, and the evaluation
metric is MAE. After many attempts, when Nmax is 5 and Kmax is 3, the prediction effect is
optimal. The specific metric change results are shown in Figure 5.
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Figure 5. MAE change chart (according to IFFS, only when the MAE value drops will the MAE and
the corresponding feature be recorded).

Sixteen features are selected after excluding {F1, F9, F10, F11, F15, F16, F21, F22, F23, F24,
F25, F26, F29} to form a new feature set XS as the optimal feature set.

To illustrate the effectiveness of IFFS, the following three experimental groups are set
up for comparative analysis:
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a. Feature set XO containing 29 original features.
b. Feature set XI containing 23 original features selected from the LightGBM feature

importance sorting results.
c. Feature set XS obtained using IFFS.

4.3. Comparing Different Methods

To solve the three problems mentioned in Section 4.1, the following experimental
schemes are designed for comparative analysis:

Scheme (1): The feature set XO is used as an input, and the network uses a standard
LSTM network, which will be referred to as the LSTM (XO) network.

Scheme (2): The feature set XI is used as an input, and the network uses a standard
LSTM network, which will be referred to as the LSTM (XI) network.

Scheme (3): The feature set XS is used as an input, and the network uses a standard
LSTM network, which will be referred to as the LSTM (XS) network.

Scheme (4): The feature set XS is used as the input, and the network uses the BC–LSTM
network, which will be referred to as the BC–LSTM (XS) network.

Scheme (5): The feature set XS and the feature set XR are, respectively, used as the inputs
of the BC–LSTM networks, which will be referred to as the BC–LSTM (XS + XR) network.

Note: XO, XI, and XS are the feature sets obtained in Section 4.2, where feature set XR
is the feature set selected for the error network using IFFS, and the result is XR: {F4, F5, F6,
F7, F8, F10, F14, F18, F19, F20, F21, F25, F29}. The evaluation metrics of the five schemes are
RMSE, MAE, and R2_adjusted, and the training and verification sets are divided as shown
in Section 4.1. RMSE, MAE, and R2_adjusted were defined as follows:

The root-mean-square error (RMSE) measures the difference between the actual values
and the forecasting values. It is defined as

RMSE =

√√√√ 1
N

N

∑
i=1

(
y f − ya

)2
(6)

The mean absolute error (MAE) is the average of the absolute errors. It is defined as

MAE =
1
N

N

∑
i=1

∣∣∣y f − ya

∣∣∣ (7)

The adjusted R-square (R2_adjusted) judges whether the predictive model is fitting
and reflects whether the prediction deviates from reality, which ranges from [0, 1]. If R2 = 0,
the model fits poorly, and if R2 = 1, the model has no errors. However, as the number of
independent variables increases, R2 will continue to increase. To eliminate the impact of
the number of features, we introduce the R2_adjusted indicator, which is defined as

R2
_adjusted = 1− (1−R2)(N−1)

N−p−1

R2 = 1− ∑(ya−y f )
2

∑(ya−ym)2

(8)

where N is the number of observations, p is the number of features, yf is the forecast value,
ya is the actual value, and ym is the mean value. For fairness of comparison, when the
evaluation metrics are RMSE and MAE, all network parameters are optimized by the
GridSearch method, as shown in Table 2. When the evaluation metric is training time, the
parameter settings of all the networks are the same.

(1) The x-axis represents the period, and the y-axis denotes the normalized power values.
To better illustrate the comparison of the effects between the different models, the
data from different months are selected for display, which is shown in Figure 6.
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(2) The histogram is used to show the forecast error distribution, and its skewness and
variance are calculated, which is shown in Figure 7. The calculation formula is shown
as follows: 

σx = E
[
(x− ux)

2
]

S(x) = E
[
(x−ux)

3

σ3
x

] (9)

where σx represents the variance of x, E represents expectations, and S(x) repre-
sents skewness.

Table 2. Feature selection result.

Feature Set Features

XO F1–F29

XI
F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F17, F18, F19, F20, F21, F24,

F25, F27, F28, F29
XS F2, F3, F4, F5, F6, F7, F8, F12, F13, F14, F17, F18, F19, F20, F27, F28
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Comparing the experimental results in Figure 6, for dates with relatively stable output
power, both LSTM and BC–LSTM networks can achieve satisfactory prediction results. For
dates with strong volatility or cloudy days, the BC–LSTM network has stronger prediction
capabilities than the traditional LSTM network. For weakly volatile dates, its power
has a strong regularity, and its error is small. Therefore, using the bias compensation
network to predict its accuracy improvement effect is limited. For dates with large power
fluctuations, the difference between the prediction result and the actual power is large.
Therefore, constructing a reasonable and effective error network to predict the error value
can effectively improve its prediction accuracy, and this is why BC–LSTM performs better
than traditional LSTM networks.

In the power system dispatch, the reserve capacity needs to be reduced as much as
possible. If the prediction power is greater than the true power, the reserve capacity must
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be increased; otherwise, some PV power electricity could be abandoned. Therefore, for the
same MAE and RMSE, the prediction result with skewness less than 0 is better. It can be
seen from Figure 7 that the skewness of the LSTM network is about 0, while the skewness
of the BC–LSTM network is less than 0, which means that the BC–LSTM network is more
conducive to power system dispatch and reserve capacity reduction.

The evaluation metrics of each experimental group were obtained in Section 4.3.
After further analysis of the experimental results (Table 3), the following conclusion can
be drawn.

Table 3. Results.

Parameter Settings Evaluation Metrics

MAE RMSE R2_Adjusted Training Time (s)

LSTM (XO) e:2, d:128, 64, η:0.01, dr:0.9, ds:10, ηmin:1 × 10−4,
Ep:100, dp:0.2, Es:10

0.0742 0.1318 0.5792 121.53

LSTM (XI)
e:2, d:96, 64, η:0.01, dr:0.9, ds:10, ηmin:1 × 10−4,

Ep:100, dp:0.2, Es:10
0.0676 0.1257 0.6646 110.88

LSTM (XS) e:2, d:80, 32, η:0.01, dr:0.9, ds:10, ηmin:1 × 10−4,
Ep:100, dp:0.1, Es:10

0.0602 0.1190 0.7542 97.61

BC–LSTM (XS)

LSTM network 1: e:2, d:80, 32, η:0.01, dr:0.9, ds:10,
ηmin:1 × 10−4, Ep:100, dp:0.1, Es:10LSTM network
2: e:2, d: 64,48, η:0.01, dr:0.9, ds:10, ηmin:1 × 10−4,

Ep:100, dp:0.1, Es:10

0.0593 0.1163 0.7829 203.27

BC–LSTM (XS + XR)

LSTM network 1: e:2, d:80, 32, η:0.01, dr:0.9, ds:10,
ηmin:1 × 10−4, Ep:100, dp:0.1, Es:10LSTM network
2: e:2, d:32, 16, η:0.01, dr:0.9, ds:10, ηmin:1 × 10−4,

Ep:100, dp:0.1, Es:10

0.0577 0.1075 0.8483 185.46

Comparing the results of Schemes (1)–(3), the results obtained by using IFFS have
improved the MAE, RMSE value, and time efficiency. To some extent, this can illustrate
the effectiveness of IFFS. Compared with the LightGBM method, IFFS can improve the
prediction accuracy by 0.67% and the calculation efficiency by 20%. Comparing feature sets
XI and XS, it is not difficult to find that the main difference between feature sets XS and XI
is that more feature-forward difference terms are excluded from feature set XS, considering
that PV power is mainly related to NWP data, and the forward difference of NWP data
is mainly related to power fluctuations. Thus, excluding these features can improve the
calculation efficiency and improve the prediction accuracy. This is consistent with the result
of IFFS, which, to a certain extent, can further illustrate the effectiveness of IFFS. Moreover,
the number of features used in this paper is 29. It is expected that, when the number of
features is improved, the improvement effect in terms of time efficiency and accuracy will
be higher.

In comparing Schemes (3)–(5), Scheme (4) slightly improves the accuracy compared
with Scheme (3) by about 0.27%, but its time efficiency is about half of Scheme (3). Com-
pared with Scheme (3), Scheme (5) takes less time than Scheme (4) to achieve a greater
improvement in accuracy. The superiority of BC–LSTM is that it uses two different network
structures to predict the power and power error values, respectively, and then obtains the
final prediction result. Thus, the accuracy of its prediction result depends on the accuracy
of the two networks. Compared with the experimental Scheme (3), Scheme (4) sacrifices a
large amount of computational efficiency but only exchanges this for a slight improvement
in accuracy. The reason is that the prediction accuracy of the error network is not good.
And the experimental results of Schemes (4) and (5) also show that the hybrid method, com-
bining IFFS and the BC–LSTM network, can achieve higher accuracy and computational
efficiency compared with the BC–LSTM network without the feature selection.
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5. Conclusions

A framework of the hybrid method combining feature selection and the BC–LSTM
network is used to perform PV power forecasting. The proposed methods are applied to
solve the actual forecast case at the Ningxia Zhongwei no. 24 PV Power Plant in China.
Three verification metrics, RMSE, MAE, and training time, are used to evaluate prediction
accuracy and calculation efficiency.

The conslusions are summarized as follows:

(1) The optimal feature set for PV power prediction could be selected based on IFFS.
Compared with LightGBM, IFFS can improve the prediction accuracy by 0.67% and
the calculation efficiency by 20%;

(2) The BC–LSTM network is an effevtive method for predicting fluctuating PV power.
Using the same feature set as input, the BC–LSTM performs better than traditional
LSTM networks in terms of prediction accuracy by about 0.27%, and the BC–LSTM
network is more conducive to power system dispatch and reserve capacity reduction,
but it takes more time for training and prediction than the LSTM method.

(3) The hybrid method combining IFFS feature selection and the BC–LSTM network
demonstrates significant advantages for PV power prediction, which can achieve
improving the prediction accuracy by 0.9% and the calculation efficiency by 10%
compared with the BC–LSTM network.

In summary, the hybrid method obtains high-precision prediction results with mini-
mal training time. These results fully demonstrate that the hybrid method has the ability
to obtain PV power prediction results with excellent performance for accuracy and calcula-
tion efficiency.

There are still many aspects that are worthy of further verification.

(1) In this article, IFFS is applied to a feature selection for PV power prediction, and the
prediction accuracy is improved. In the future, more transformation features for PV
power prediction could be constructed, and further feature selection could be carried
out based on the proposed method.

(2) Positive results have been achieved for PV power prediction based on the proposed
hybrid model. The hybrid model could also be applied to the forecast of photovoltaic
power plant clusters in the future.
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Nomenclature

XO Original feature set
XI Original feature set after feature importance sorting
XS Original feature set after feature selection
XR Feature set selected for error network using feature selection method
Y Historical power set
m Number of feature input
d Number of hidden layer nodes
e Number of hidden layer
η Decayed learning rate parameter: initial learning rate
ηmin Decayed learning rate parameter: minimum of learning rate
dr Decayed learning rate parameter: decay rate
ds Decayed learning rate parameter: decay steps
dp Dropout parameter: dropout rate
bs Mini-batch parameter: batch size
Es EarlyStopping rounds
Ep Mini-batch parameter: epochs of training
NWP Numeric Weather Prediction
tanh Activation function of tanh
σ(x) Activation function of sigmoid
ht Output of the hidden layer
ft Forget gates in the t-th period
it Input gates in the t-th period
Ct Neuron states in the t-th period
W Weight matrix
b Bias vector
GBDT Gradient Boosting Decision Tree
Kmax Threshold of feature selection
Nmax Threshold of feature selection
RNN Recurrent Neural Network
LSTM Long Short-Term Memory Network
BC–LSTM Bias Compensation–Long Short-Term Memory Network
CNN Convolutional Neural Network
IFFS Improved Forward Feature Selection
MAE Mean absolute error
RMSE Root-mean-square error
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