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Abstract: This paper presents the identification and classification of steel cord failures in the conveyor
belt core based on an analysis of a two-dimensional image of magnetic field changes recorded using
the Diagbelt system around scanned failures in the test belt. The obtained set of identified changes in
images, obtained for numerous parameters settings of the device, were the base for statistical analysis.
This analysis makes it possible to determine the Pearson’s linear correlation coefficient between the
parameters being changed and the image of the failures. In the second stage of the research, artificial
intelligence methods were applied to construct a multilayer neural network (MLP) and to teach it
appropriate identification of damage. In both methods, the same data sets were used, which made it
possible to compare methods.
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1. Introduction

The non-destructive testing (NDT) of conveyor belts gives vast possibilities related to
the optimization of conveyor belt maintenance costs, such as choosing the right moment
for repair, replacement or recondition of the belt based on, among other factors, detected
damage [1] or the rate of change of belt thickness [2]. Belt operating time depends on
several factors that are presented in the literature [2]. Among other things, it is affected by
the hardness, size and shape of transported materials, the specificity of transport point and
the length and age of belt cord. Some of these factors damage the belt covers or belt core.
Figure 1 shows the cross-section of the example conveyor belt with steel cords.

NDT research use offers, inter alia, analysis of the magnetic field changes generated by
damaged or missing cords. Research using this method has been carried out since 1970 [3].
Since then, several researchers around the world have developed various systems to detect
damage to steel cords in the belt core [4–6]. One of the systems in use for studies is a
Diagbelt magnetic system, which enables researchers to obtain two-dimensional images
suitable for further analysis [7–9]. The device detects magnetic field changes arising during
the movement of cord failures beneath the measuring probe (installed across the width
of the belt) which generate a discredited signal (−1, 0 or 1) corresponding to measured
values of the magnetic field. The positive value of the signal measured by the device is
represented in the figures presented in this paper in blue, and the signal of the negative
magnetic field is represented in yellow.
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Abstract: This paper presents the identification and classification of steel cord failures in the con-
veyor belt core based on an analysis of a two-dimensional image of magnetic field changes recorded 
using the Diagbelt system around scanned failures in the test belt. The obtained set of identified 
changes in images, obtained for numerous parameters settings of the device, were the base for sta-
tistical analysis. This analysis makes it possible to determine the Pearson’s linear correlation coeffi-
cient between the parameters being changed and the image of the failures. In the second stage of 
the research, artificial intelligence methods were applied to construct a multilayer neural network 
(MLP) and to teach it appropriate identification of damage. In both methods, the same data sets 
were used, which made it possible to compare methods. 
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Figure 1. The cross-section of the belt with steel cords.

For the performed comparative analysis, a reference conveyor belt containing several
artificial cord failures was used. The measurements were carried out by modifying system
parameters: belt speed, the distance between the measuring probe and the cord and
measurement sensitivity. These parameters were selected based on previous studies [10],
which have confirmed their impact on received signals. The measurements were performed
for many combinations of these parameters over ten measuring cycles, of which three were
selected and used for the analysis. Preliminary visual evaluation of the data indicates
the relationship between failure detection signal and the above parameters. Some of
the damage with the appropriate settings of parameter values generated similar signals.
Figure 2 gives an example of this situation (damage 3 and damage 1).
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Figure 2. 2D images of the damage for significantly different settings of measuring equipment parameters.

The tested failures were divided into six categories: partial cord damage (20% (U1)
and 50% (U2)) in one cord, complete cut of one steel cord (U3), cut of three (U4) and six
(U5) cords and resection of one cord to the length of 20 mm (U6) (Figure 3).

2. Preparation of Data for Analysis

Each one of the cord failures described above generated a magnetic signal, and data
were consolidated into 12 values, four for each of the sub-areas: magnetic signal surface
areas, number of channels on which signal be detected, width and length of the signals.
The method of calculating the size of signal for exemplary damage is shown in Figure 4
and described by Equations (1)–(3).

Z1sum = Z1_1 + Z1_2 + Z1_3 + Z1_4 (1)

Nsum = N1 + N2 + N3 + N4 + N5 + N6 (2)

Z2sum = Z2_1 + Z2_2 + Z2_3 + Z2_4 (3)
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where: Z1_klength of the signal detected on the k-th channel for the signal before damage,
Nklength of the signal detected on the k-th channel for the signal of damage and Z2_klength
of the signal detected on the k-th channel for the signal behind damage.
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Figure 4. The method of calculating values describing selected damage.

During the measurements, the belt speed (V) was increased from 2 up to 5 m/s (in
increases of 1 m/s), the distance between the measuring probe and the cord (g) was changed
within the range of 20–50 mm (in increases of 10 mm) and the following sensitivity levels (c)
were applied: 100 mV, 150 mV, 200 mV, 250 mV, 300 mV, 400 mV, 500 mV, 600 mV, 700 mV
and 1000 mV. The selection of these parameters was predicated on technical capabilities
(speed of the test conveyor) and also the observation of system behaviour and its settings
in numerous previous studies [10]. The above parameter values are shown on the axis in
Figure 5.
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The number of tested triple variants for given settings of the measuring system
amounted to 160.

p = nc · nv · ng = 4 · 10 · 4 = 160 (4)

where: p—quantity of triples parameters variants, nc—number of settings of sensitivity
parameter, nv—number of settings of belt speed and ng—number of settings of distance
between the measuring probe and the cord.
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For each of the three measuring cycles for six defined types of damage, 2880 records
describing the damage should be obtained.

Lp = p · lc · lk = 160 · 3 · 6 = 2880 (5)

where: Lp—theoretical number of records, lc—number of measuring cycles taken into
account and lk—number of types of damage.

The actual amount of data was lower (2367), because magnetic field changes were not
detected for less core damage in certain measurement settings.

One paper [11] defines the most appropriate measuring system parameters, which are
presented in Table 1. For these ranges’ apparatus settings (three parameters), the number
of output data sets decreased to the value of:

Lp = nc · nv · ng · lc · lk = 4 · 1 · (4 + 3 + 3 + 2) · 3 · 6 = 864 (6)

Table 1. Preferred measurement system parameter settings.

Belt Speed
[m/s]

Range between the Belt Core and the
Measuring Probe [mm]

Sensitivity
[mV]

2 20–50 200–300
3 20–50 300–400
4 20–50 400–500
5 20–50 600–700

In reality, however, the number of records was 693 (some minor defects were not
detected in specific measurement settings).

The actual sensitivities of the measuring device are inversely proportional to the
parameter value called “sensitivity”. When the value of this parameter is very low (e.g.,
50–100 mV), the measuring system is extremely sensitive to the slightest field changes;
however, the signal produced by the device is difficult to interpret. Images of the failures
fuse and also appear to measure noise (Figure 6). Furthermore, when the value of this
parameter is too large (i.e., when the system was set to be insensitive), minor damage may
not have been registered, since it generates slight field changes which are outside the scope
of sensitivity of the equipment.

Energies 2021, 14, x FOR PEER REVIEW 4 of 11 
 

 

𝐿௣ = 𝑝 ⋅ 𝑙௖ ⋅ 𝑙௞ = 160 ⋅ 3 ⋅ 6 = 2880                     (5) 

where: 𝐿௣—theoretical number of records, 𝑙௖—number of measuring cycles taken into ac-
count and 𝑙௞—number of types of damage. 

The actual amount of data was lower (2367), because magnetic field changes were 
not detected for less core damage in certain measurement settings. 

One paper [11] defines the most appropriate measuring system parameters, which 
are presented in Table 1. For these ranges’ apparatus settings (three parameters), the num-
ber of output data sets decreased to the value of: 𝐿௣ = 𝑛௖ ⋅ 𝑛௩ ⋅ 𝑛௚ ⋅ 𝑙௖ ⋅ 𝑙௞ = 4 ⋅ 1 ⋅ ሺ4 ൅ 3 ൅ 3 ൅ 2ሻ ⋅ 3 ⋅ 6 = 864         (6) 

In reality, however, the number of records was 693 (some minor defects were not 
detected in specific measurement settings). 

Table 1. Preferred measurement system parameter settings. 

Belt Speed 
[m/s] 

Range between the Belt 
Core and the Measuring 

Probe [mm] 

Sensitivity 
[mV] 

2 20–50 200–300 
3 20–50 300–400 
4 20–50 400–500 
5 20–50 600–700 

The actual sensitivities of the measuring device are inversely proportional to the pa-
rameter value called “sensitivity”. When the value of this parameter is very low (e.g., 50–
100 mV), the measuring system is extremely sensitive to the slightest field changes; how-
ever, the signal produced by the device is difficult to interpret. Images of the failures fuse 
and also appear to measure noise (Figure 6). Furthermore, when the value of this param-
eter is too large (i.e., when the system was set to be insensitive), minor damage may not 
have been registered, since it generates slight field changes which are outside the scope of 
sensitivity of the equipment. 

 
Figure 6. Inconclusive image of the damage for the measurement with high sensitivity of the 
measuring probe (scale 5 mm/pixel). 

3. Statistical Analysis 
The statistical analysis was performed only for the data obtained from the optimal 

sets of parameters (Table 2). The statistical analysis started with the verification of the 
obtained data to remove gross errors that may have appeared in the database, resulting, 
for example, from human oversight (e.g., entering incorrect data). In the next step, the 
correlation between the parameters taken into account in the analysis was examined. 
There are 13 such analysed values. They include damage number (Nr_U), number of cut 
cords (LL), area of damage (Pole_R), three parameters connected with the measurement 
system (belt speed—V, measuring probe distance—G, sensitivity—Czul), the measure-
ment cycle taken into account (Cycle) and the failure description, including two values for 
each of the three damage sub-areas (yellow field before damage—Z1, blue field—N and 

Figure 6. Inconclusive image of the damage for the measurement with high sensitivity of the
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3. Statistical Analysis

The statistical analysis was performed only for the data obtained from the optimal
sets of parameters (Table 2). The statistical analysis started with the verification of the
obtained data to remove gross errors that may have appeared in the database, resulting,
for example, from human oversight (e.g., entering incorrect data). In the next step, the
correlation between the parameters taken into account in the analysis was examined. There
are 13 such analysed values. They include damage number (Nr_U), number of cut cords
(LL), area of damage (Pole_R), three parameters connected with the measurement system
(belt speed—V, measuring probe distance—G, sensitivity—Czul), the measurement cycle
taken into account (Cycle) and the failure description, including two values for each of the
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three damage sub-areas (yellow field before damage—Z1, blue field—N and yellow field
behind the damage Z2). The measured damage parameters are the sum of the lengths of
the signals recorded in the measurement channels (Z1sum, Nsum, Z2sum) and the number
of channels recording the signal related to a given sub-area (Z1_LK, N_LK, Z2_LK).

Table 2. Confidence intervals for the mean of the measured parameters.

U1 U2 U3 U4 U5 U6

Z1sum
x 0.00 3.09 45.72 373.48 793.65 130.91
∆ 0.00 12.67 44.37 94.09 136.12 80.08

Z1_LK
x 0.00 0.09 0.79 3.40 5.17 1.61
∆ 0.00 0.08 0.23 0.17 0.21 0.27

Nsum
x 20.50 110.20 231.10 542.26 821.79 334.82
∆ 2.07 8.29 13.12 16.09 25.25 14.44

N_LK
x 0.88 2.29 3.68 6.01 8.04 4.46
∆ 0.07 0.12 0.14 0.11 0.14 0.15

Z2sum
x 0.00 2.40 43.95 395.60 848.97 103.40
∆ 0.00 3.83 14.06 32.92 45.95 21.77

Z2_LK
x 0.00 0.04 0.61 3.24 4.89 1.24
∆ 0.00 0.05 0.18 0.19 0.18 0.23

Figure 7 presents charts showing the values of six measured parameters for damage
depending on the class to which the damage belongs. A visual evaluation of the data helps
to decide whether a given parameter affects the class differentiation or is irrelevant and
can be removed.
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The first part of the statistical analysis determined confidence intervals for the mean
for each of the analysed measurements [12]. Confidence intervals for the mean are given as
a formula:

x± ∆ = x± 1.96
σ√
N

(7)

where: x—sample mean, ∆half the width of the confidence interval, σstandard deviation
and Nnumber of samples.

The input base is divided into two parts: a training set and a test set. Every third value
went to the test set, while the remaining samples were left in the training set. The size of
the training set was 462 samples, and the size of the test set was 231.

Table 2 summarizes the calculated values that facilitate the determination of the
confidence interval for each of the analysed data sets.

For the data from the test, the set was determined and the mean value of each of the
test sets was prepared in this way. These values were placed on the graph, which also
marks the widths of the determined confidence intervals (Figure 8). Table 3 summarizes
the results obtained from a given test group. In the table, the values that fall outside the
designated confidence interval are marked in red.
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(d)–N_LK (data outside of assigned value).

Table 3. The mean values of the test sets.

U1 U2 U3 U4 U5 U6

Z1sum 0.00 1.03 45.79 377.27 788.06 131.00
Z1_LK 0.00 0.06 0.75 3.40 5.17 1.63
Nsum 20.75 107.94 230.48 538.98 815.54 332.23
N_LK 1.00 2.26 3.67 6.04 8.04 4.46
Z2sum 0.00 0.00 42.33 400.04 843.58 104.23
Z2_LK 0.00 0.00 0.60 3.19 4.92 1.21

Therefore, it can be noticed that the problem with recognition appears only in the case
of data concerning the first type of damage. The number of channels in the test sample was
mean 1.00, and in the training sample was 0.88 ± 0.07.

To check the influence of the analysed values on each other (their linear association),
a statistical analysis was performed which determined the Pearson’s product–moment
linear correlation coefficients between the setting parameters of the measurement device
and the sizes of output signals for each of the analysed failures. Pearson’s correlation
coefficient is a measure of linear correlation between two sets of data (the covariance of
the two variables divided by the product of their standard deviations). Figure 9 displays
the estimated correlations in the form of a matrix with coloured cells. Small changes to
controlled parameters and lack of outliers in results allowed us to assume the linearity
of changes in results. It was applied as an initial test of linear associations for further
investigations to find the physical influence of settings changes on results, to select the best
settings for given working conditions of conveyor belts and to select appropriate output
parameters and methods for steel cord belt failures classification.
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Figure 9. Pearson’s linear correlation coefficients.

The data in the table above (Figure 9) are displayed using both colours and numerical
values. Data marked with “X” are statistically insignificant. Coefficients define a linear
relationship between two different variables. The greater the value of the correlation
parameter, the greater the degree of interconnection between the pairs of variables. It is
worth noting that the presented table shows that the selected parameters of the measuring
system did not significantly affect the type of damage. No correlation was found between
the belt speed and the measurement results (statistically insignificant correlation), there
is a low correlation between the measuring head distance and the measurement results
(negative or positive, depending on the area, within the range −0.16–0.15 and no signif-
icant correlation or weak negative correlation (−0.08) of the measurement results to the
sensitivity of the device.

It is also worth noting that all measurement results are strongly positively correlated
with each other, and the correlation between the values describing the yellow fields (Z1sum
and Z2sum and Z1_LK and Z2_LK) is 1.00 and 0.97, which maintains the hypothesis about
their symmetry [1].

Analogical statistical analysis for the full data set was described in detail in [13], but
the results obtained there turned out to be less satisfactory than the results obtained for
specific parameters of the measurement system. The distribution of the data from the
complete set is shown in Figure 10 (these graphs show the values of Z1sum, Nsum and
N_LK). These results largely overlap, and it is impossible to clearly define the boundaries
of clusters [14,15].
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Similar graphs (Figure 11) were also plotted for the set of parameters of the mea-
surement system tested in this analysis. It can be noticed that, in this case, it is possible
to limit the obtained data with a certain curve marking the boundary of a given cluster,
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although there are still areas where the belonging of the measurement result to a given
cluster is ambiguous.
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Optical analysis of the obtained charts shows that the measurement data are highly
probable to correctly classify the type of damage, but there are areas where the classification
may fail because clusters overlap [15]. Due to this fact, another analysis was carried out
using artificial neural networks.

4. Analysis with the Use of Neural Networks

The analysis of the selection of the structure and parameters of the neural network
as well as the idea of its operation has been widely described in the literature. The
studies [16–18] describe in detail the rationale behind the selection of specific parameters
used in this research. The MATLAB software with the Deep Learning Toolbox installed
was used for the learning process of neural networks. The way of using this toolbox
is described in studies [19,20]. This toolbox enables the creation of a multilayer neural
network with a given number of neurons in each of the hidden layers, and the ability to
train the neural network on a given training data set (which is automatically divided into
a training and validation set). Each layer of the artificial neural network is made up of
individual computing units called neurons. Neurons, stimulated by the signal fed to their
input, work out the output signal using the assigned weight (w) and the added bias (b). The
process of training a neural network under supervision consists of repeatedly assessing it
in the process of training samples from the test set, and then updating the weight based on
the error between the network response and the expected response. To use artificial neural
networks to classify the conveyor belt damage, it was necessary to generate appropriate
sets of training and test sets, train the network on the training set, and then test it on the
test set. Since neural networks can divide the classification of space non-linearly, over the
course of this research two variants of the selection and division of the input data were
distinguished. In each case, the vector of input data consisted of 15 elements (and this is the
number of neurons in the input layer of the neural network): 3 measurement parameters
and 4 values describing each of the three sub-areas. There are 6 neurons in the output
layer—one each responsible for belonging to a given class of damage. Two hidden layers
consisting of 31 and 63 neurons were placed between the input and output layers. The
size of these layers was determined by the Kolmogorov theorem, according to which the
number of neurons in the hidden layer should be equal to the number of neurons in the
previous layer multiplied by two and increased by one [21]. The diagram of the neural
network used in this study is shown in Figure 12.
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Two variants were used for the process of learning neural networks:

• variant 1: analysis of all available data, two measurement cycles of each parameter set
go to the training set, one cycle to the test set. The number of training and test sets
was 1578 and 789.

• variant 2: analysis of data obtained in the measurements with the best possible sets of
parameters (Table 1), two measurement cycles of each of the included parameter sets
go to the training set, one cycle to the test set. The number of training and test sets
was 462 and 231.

Each of the network learning processes in a given variant was performed three times,
and the results are presented in Table 4. The effectiveness of the diagnosis was divided
depending on the type of damage that the neural network was supposed to recognize. In
addition, the effectiveness of the diagnosis was also determined for the entire test set.

Table 4. Measurement results of neural networks analysis.

Variant No
Recognition Effectiveness [%]

U1 U2 U3 U4 U5 U6 Total

1
1 98.57 99.19 99.67 99.69 100.00 100.00 99.37
2 97.14 97.56 98.68 98.13 100.00 100.00 98.86
3 100.00 98.37 98.03 98.13 100.00 100.00 98.99

2
1 100.00 97.14 97.92 100.00 100.00 100.00 99.13
2 100.00 97.14 97.92 100.00 100.00 100.00 99.13
3 100.00 100.00 100.00 100.00 100.00 100.00 100.00

5. Conclusions

Many scans performed over the years using the Diagbelt system have shown that
the magnetic measuring system is well suited to obtaining detailed information about the
technical condition of the belt core. The idea of the system is based on the measurement of
magnetic field changes at sites of core damage. The data obtained are presented on two-
dimensional pictures that can be easily analysed using proposed known methodologies.
The results presented in this study confirm this observation, showing the high efficiency of
identification of the type of damage using the signals generated by Diagbelt.

One such method is verification based on the average of the samples. For this purpose,
from the set of training data the mean value and 95% confidence interval were calculated
for each damage. Then, for the test set containing the specific damage data obtained at
different set values (not taken for training), the mean value was determined, which allowed
for its comparison with the previously determined confidence intervals. In nearly every
instance, testing set data have been included in the relevant confidence interval. The
number of samples in training and testing data for selected parameter sets was 8 and 4,
respectively, which could be a too-small value. It is, however, worth noting that with such
a choice of analysis for automatic recognition of damage, it is necessary to execute many
damage measurements for multiple sets of parameters to obtain a sample that comes from
the same distribution as the training data. This solution can be cumbersome and, as the
study shows, verification by the mean of the sample data is not always reliable.

An analysis of the Pearson correlation coefficient allows an assessment of the inter-
dependence of evaluated parameters and therefore initially verifies which parameters are
worth analysing with the classification of measuring damage, and which are redundant
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and have no correlation with the type of damage. Such an analysis does not allow for the
designated similar data based on a new sample, but on its basis it is possible to construct a
statistical model necessary for the assessment of future data. Creating such a model, which
is a response to the analysis presented in this article, is a good direction for future research.

When the full set of data is limited to data obtained for the most appropriate system
settings, better statistical analysis values are achieved. The full data set shown in the two-
dimensional and three-dimensional plots (Figures 9 and 10) indicates that these data cannot
be isolated from each other and locked in separate clusters; however, for limited data,
cluster analysis is possible, as areas of interdependent neighbouring clusters are slight.

The analysis based on neural networks allows the omission of the problem of non-
linearity. The network containing two hidden layers allows investigators to solve almost
every problem of classification, provided it has the appropriate input data. In the frame-
work of this explanation, analysis was carried out using neural networks, both on the
complete dataset and the limited dataset containing results obtained from best possible
system settings. The data collected in both of these variants have shown good efficacy
(above 98%) following the implementation of the testing process.

The network does not have a problem with classification of the last two types of
damage (U5 and U6); however, it makes errors recognising defects 2–4. This may be
due to the real size of the defect concerned. The neural network analysis, compared to
the statistical analysis, allows for quick action of the entire system while maintaining
high efficiency.

It is worth noting that while analysis of statistical methods has already been used in
the classification of belts damage, cluster analysis and analysis using the neural networks
have so far been rarely discussed and their results rarely presented. Developers of the
diagnostic systems, in many cases, prefer to retain the ability to interpret measurement
results for themselves, so that their services will not become unnecessary. In the Industry
4.0 era [22], the automatic interpretation of the diagnostic signal is necessary to cope
with data processing for an ever-increasing amount of data. Test results discussed in
this paper are promising, and they show the direction of further action that authors are
taking as part of the research project ”Integrated mobile system of automatic testing and
continuous diagnostics of the condition of conveyor belts” (project number: POIR.01.01.01-
00-1194/19) [23].
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