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Abstract: The present study is aimed at studying the energy and environmental performance at
various engine loads (BMEP) with identical start of injection (SOI) for all fuel types. The combustion
parameters for the fuel mixtures were analyzed using the AVL BOOST software (BURN subrou-
tine). Five different blends were tested, consisting completely of renewable raw materials based on
hydrotreated vegetable oil (HVO) and fatty acid methyl ester (FE100), and the properties of diesel
fuel (D) were compared with respect to these blends. The mixtures were mixed in the following
proportions: FE25 (FE25HVO75), FE50 (FE50HVO50), FE75 (FE75HVO25). In this study, diesel
exhaust was found to produce higher NOx values compared to FE blends, with HVO being the
lowest. Hydrocarbon and smoke emissions were also significantly lower for blends than for diesel.
Possible explanations are the physical properties and fatty acid composition of fuel mixtures, affect-
ing injection and further combustion. The results showed that blends containing more unsaturated
fatty acids release more nitrogen oxides, thus having a lower thermal efficiency compared to HVO.
No essential differences in CO emissions between D and HVO were observed. An increase in this
indicator was observed at low loads for mixtures with ester. CO2 was reduced in emissions for HVO
compared to the aforementioned blends and diesel. The results of the combustion analysis show
that with a high content of unsaturated fatty acids, mixtures have a longer combustion time than
diesel fuel.

Keywords: diesel engine; fatty acid esters; combustion; performance; emissions

1. Introduction

As a result of active industrialization, there has been a huge increase in the consump-
tion of fossil fuels and, as a result, it threatens the ecological balance of the Earth [1,2].
The transport sector is the main source of more than one third of all environmental pollu-
tion [3,4]. In this regard, the European Environment Agency in its report “SOER-2020” [5]
focuses on the transformation of key systems for the rational use of energy resources,
fundamental changes in the systems of production and consumption of fossil resources,
which are at the heart of environmental problems.

In modern conditions, road transport has taken an important place in human life,
which has increased the dependence of humankind on energy [6,7]. Such a large number of
diesel vehicles carry a heavy load on the environment [8]. The constantly growing global
energy consumption and global climate change in consequence of greenhouse gases have
led to the need to look to find solutions for renewable energy sources [9–12].
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This led to the development of a new scientific direction based on the technological
stages and peculiarities of processing various types of raw materials to obtain renewable
and environmentally friendly fuels [8,13,14]. In many countries, conditions have been
created for industrial research of renewable fuels [15–17].

Biodiesel is one of the most budding substitutes for diesel fuel [14,18–21]. Biodiesel
can be made from vegetable oils, animal fats, waste oils and other raw materials by carrying
out the transesterification reaction with alcohol and a catalyst [2,22–31].

Biodiesel is called an “environmentally friendly” source of energy, since its impact on
the environment is much less compared to petroleum products [21,32]. Thus, the content
of aromatic hydrocarbons and other substances with carcinogenic, mutagenic, teratogenic
properties for living organisms in biodiesel is lower than in petroleum products if it gets
into soil or water, as biodiesel is completely decomposed by microorganisms [33]. Biodiesel
is essentially free sulfur, which results in an essential reduction in SO2 emissions into
the atmosphere in contrast to conventional diesel fuel [34]. Due to the higher percent-
age of oxygen, the combustion process of biodiesel is much more efficient than diesel
fuel [35,36]. According to most studies [13,37–44], biodiesel significantly reduces the con-
tent of hydrocarbons, particulate matter, soot particles, carbon monoxide and aromatics in
the combustion exhaust gases compared to traditional diesel fuel.

Currently, the technological development of society allows us to focus on a gradual
transition from diesel fuel to more environmentally friendly biodiesel. The advantages of
biodiesel are that it does not require engine modifications [45,46]. Additionally, the key
aspects will be to reduce dependence on oil, which, firstly, will ensure national energy
security, and secondly, will protect the environment.

When operating an engine on biodiesel, there are a number of important aspects to
consider: physical and chemical properties, performance and exhaust emissions.

Higher viscosity biodiesel blends affect engine performance [47–49]. The increased
viscosity of the fuel results the operation of the fuel pumps and the filtration system, as a
result of which the fuel supply to the combustion chamber is disrupted, the combustion
efficiency decreases, and the fuel consumption increases [50,51]. On the other hand, it is
inversely proportional to the amount of acid double chains. This explains the high viscosity
values of biodiesel produced from highly saturated feedstocks [52]. For this reason, the
viscosity of biodiesel must be within the limits defined by international standards for
biodiesel. As can be seen from Table 1, the studied samples are within the norm in
accordance with the EN 14214 standard [26].

Table 1. Physicochemical properties of the analyzed fuels.

Sample D100 HVO100 FE25 FE50 FE75 FE100

Density at 15 ◦C [kg/m3] 823.00 776.00 800.30 824.60 848.90 873.20
Viscosity at 40 ◦C [mm2/s] 3.5 2.9 3.2 3.4 3.9 4.3
Sulphur content [mg/kg] 7.25 4.16 4.12 4.27 4.37 5.41
Water content [mg/kg] 85 20 120 150 400 460

Flash point, ◦C 45 55 82 109 136 163
Hydrogen, % 0.1300 0.1520 0.1460 0.1400 0.1340 0.1280

Carbon, % 0.8700 0.8480 0.8233 0.7985 0.7738 0.7490
Oxygen, % 0.0000 0.0000 0.0308 0.0615 0.0923 0.1230

C/H 6,7% 5.7% 5.6% 5.7% 5.8% 5.8%
Lower Heating Value (LHV) [mg/kg] 42.70 43.70 42.30 41.05 39.53 38.00

Cetane number 45 76.89 69.95 64.52 59.41 58

One of main properties of the fuel is also density, which can be related to a number
of other properties, for instance the cetane number, which is a parameter indicating the
ignition delay time of the fuel. The sulfur content of biodiesel blends declines as the
percentage of biodiesel increases [44].
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Investigation was controlled on a single-cylinder diesel engine by Jayaprabakar et al. [53]
which used rice bran and algal methyl ester biodiesel mixtures with time-variable injection.
Biodiesel blends have demonstrated poor fuel consumption for rice bran methyl ester
mixtures to compare with algal methyl ester. However, BTE was increased for mixture
with rice brain as opposed to algal methyl ester on account of higher calorific value.
Mikulski et al. [54] used a four-cycle common rail diesel engine for research the swine lard
methyl esters. It was noted that brake specific fuel consumption was increasing for the
B25, B50, B75 blends by an average of 3.2%, 8.5%, 13.8%, respectively. Thus, addition of
methyl ester increased the BSFC. It was accounted for lower heating values compared
with diesel fuel and decreased ignition delay of the experimental blends. On the other
hand, was showed the rise in BTE values on increasing biodiesel percent that can explain
by the heating values of fuel mixtures. Another result for brake thermal efficiency was
observed [55] to research of waste fried oil methyl ester in proportions of B50, B90, and
B100. The higher the concentration of the mixture, the lower BTE was compared to mineral
diesel. This conceivable explained by higher viscosity of blends. It should be noted that
in another study [56], brake thermal efficiency for waste cooking oil was most lowest
compared with diesel but for WCO emulsion was slightly higher. The cause can be poor
combustion of the injected fuel due to high density and viscosity. Isik et al. [57] studied
the n-butanol addition to waste cooking oil biodiesel with diesel fuel. For blend B20 with
WCO/diesel, BSFC had highest values to compare with testing forn-butanol fuel with
10% and waste cooking oil also with 10% biodiesel/diesel. This could be attributed to the
oxygen attend in the B20 that upgrades the combustion feature but have poor atomization.
Chuah et al. [58] carried out experiments on a six cylinder internal combustion engine and
found that BSFC of waste cooking oil methyl ester linearly increased due to the increased
percentage fuel blends. However, BTE was slightly lower level for all mixtures to compare
with diesel fuel at low and high engine loads.

The literature review based on the research of combustion characteristics involving
such as cylinder pressure, rate of heat release and ignition delay, were studied at [54,58–61].
In this investigation, we found results indicating that the combustion of the biodiesel
fuel began a little while later in compare of the diesel fuel. This can be explained due to
longer injection delay of the biodiesel in contrast to the diesel fuel. Biodiesel, as known,
has higher viscosity as opposed to diesel fuel and this important feature leads to higher
rubbing around the needle injector [62]. This slow needle motion, and as a consequence,
the longer-lasting injection delay, in spite of the fact that the cetane number of the biodiesel
is slightly higher compared with the diesel fuel, leads to a lower volatility and higher
viscosity of the biodiesel and poor atomization, and the mixture composed with air during
the ignition delay time leads to a delay in starting the combustion of the biodiesel. In
addition, the peak of the cylinder pressure and the peak of the heat release rate for the
biodiesel are higher than the opposite of the diesel fuel. Additionally, the lower heating
value of the biodiesel leads to a decrease of the heat release rate [30]. The result of peak
pressure for waste cooking oil was slightly lower in comparison with diesel fuel when it
was substituted for the fuel injection pressure and timing injection [63].

It was noted [39] that the use of various mixtures of biodiesel insignificantly reduces
engine power and conducts to the increase of fuel consumption, but at the same time there
is a significant decrease in most harmful substances. The only exception is NOx [47,64].
Other studies [46] have been conducted in which BSFC was increased with an increasing
percent of biodiesel blends owing to the lower heating value of the biodiesel. Another
publication [65] observed that when using mixtures with diesel fuel, Brake Thermal Effi-
ciency decreased in contrast with diesel due to the greater accumulation of energy during
the ignition delay. Additionally, CO, CO2 and smoke have decreased with biodiesel fuel
mixture [59]. However, in [66,67], biodiesel blends had more particulate matter compared
with D100.

After studying various literature reviews of alternative fuels for diesel engines [68–72],
the authors of this research concluded that the literature does not discuss biodiesel based
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on fuel mixtures from second generation biofuels, HVO, and fatty acid methyl ester, so it
was motivation to research the combustion, energy and ecological parameters for these
mixtures and discuss various aspects.

Given the above information, it is vital to investigate the effect of other mixtures in
various percentages. The analysis of the physicochemical properties of these mixtures will
aim at a comprehensive assessment of their potential for future operation in a diesel engine
in accordance with the standards.

2. Materials and Methods
2.1. Fuel Preparation

In this research, the properties of mixtures for a diesel engine were considered in
accordance with three standards in European Union standards for fuel. EN 590—this
standard applies to diesel fuel intended for diesel engines and EN 14214—fuel for internal
combustion engines. Fatty acid methyl esters (FAME) for internal combustion engines.
Specification and Testing methods.

Additionally, Neste Renewable Diesel is separate recommendation for HVO. Con-
sidering HVO contains of paraffinic hydrocarbons, it cannot match the requirements of
EN 14214 which was created and reasonable only for fatty acid methyl esters—FAME.
Meanwhile, HVO matches EN 590 with the exception of the property for minimum density.
Therefore, the article used the fuel standard of Neste Oil.

This research introduces the conclusions of a study of the 5 different mixtures, en-
tirely consisting of renewable raw materials. During experimental part these blends were
compared to diesel fuel (D). Mixing was carried out in the following proportions. Blends
hydrotreated vegetable oil (HVO) and fatty acid methyl ester derived from duck fat (FE100)
mixed in the ratio FE25, FE50, FE75,

Additionally, HVO and FE100 have been considered pure. The choice of biofuel based
on animal fats justified by the fact that in a lot of countries is considered as a promising
source for commercial production of biodiesel fuel. The qualities of the blends are given in
Table 1.

Physicochemical properties of biodiesel, in particular, viscosity, density, heat of com-
bustion, cetane number, etc., differ from those for diesel fuel. It can be noted that the fuel
mixtures presented are within the normal range. The cetane number was calculated for
FE25, FE50, FE75 according Kampfer methodology.

2.2. Experimental Setup, Experimental Procedure and Processing Experimental Data

Experimental studies were carried out in the laboratory of the Transport Engineering
Faculty of Vilnius Gediminas Technical University, Lithuania. Fuels were investigated in a
four-cylinder internal combustion engine with direct injection of fuel into the combustion
chamber in the piston (Table 2).

Table 2. Engine specifications.

General Informations 1.9 TDI Diesel Engine

Number of cylinders 4/In-Line
Bore 79.5 mm
Stroke 95.5 mm
Displacement 1896 cm3

Compression ratio 19.5
Maximum torque 180 Nm/2000–2500 rpm
Maximum power 66 kW/4000 rpm
Combustion chamber Direct injection
Nozzle opening pressure 190 bar
Fuel injection Single
Cooling Liquid
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The engine test bench (Figure 1) used was composed of a 1.9 Turbocharged internal
combustion engine with electronic fuel injection pump. The start of the injection (SOI) was
managed by the engine electronic control unit (ECU) with the one injection procedure.
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Figure 1. Schematic of engine testing equipment: 1—Air mass meter; 2—Turbocharger; 3—Gas
analyser; 4—Smoke analyser; 5—Temperature sensor; 6—EGR valve; 7—Air pressure meter; 8—
Exhaust gas temperature meter; 9—Air cooler; 10—Intake gas temperature meter; 11—1.9 TDI
engine; 12—Engine load plate; 13—Connecting Shaft; 14—Crankshaft position sensor; 15—Fuel
injection timing sensor; 16—Fuel pump; 17—Fuel tank; 18—Cylinder pressure sensor; 19—Engine
torque and rotational speed recording equipment; 20—Fuel injection timing recording equipment;
21—Fuel injection timing control equipment; 22—Cylinder pressure recording equipment; 23—Fuel
consumption calculation equipment.

The engine was loaded with a DC generator with an accuracy load measurement of
1.23 Nm. Measurement of load and speed, fuel and air consumption, temperatures in
engine systems, composition and the smoke levels of the exhaust gases were produced
simultaneously. Concentrations of carbon monoxide (CO), unburned hydrocarbons (HC),
nitrogen oxides (NOx), in exhaust gases and smoke were determined by a five-component
AVL DiCom 4000 gas analyzer (AVL—Anstalt für Verbrennungskraftmaschinen List, Graz,
Austria) with a determination 0.01% for CO and 0.1% for smoke, 1 ppm for HC and NOx.
Fuel consumption was measured using a SK-5000 electronic scale (accuracy 1.0 g), air
consumption was measured by air meter BOSCH HFM 5 (Bosch- Robert Bosch GmbH,
Stuttgart, Germany) (accuracy 2%) Pressure of turbocharger was measured using pressure
sensor Delta OHM HD 2304.0 (Delta—Delta OHM S.r.l., Padova, Italy) (accuracy 0.0002
MPa), temperature was measured using thermocouples (accuracy 1.5 C).

To determine the position of the piston at Top Dead Centre (TDC) an optical crankshaft
position sensor A58M-F was used with a signal repeatability of 0.176 crank angle. Gas
pressure in the cylinder was measured with an AVL quartz piezoelectric sensor GH13P,
sensitivity 15.84 ± 0.09 pC/bar. An AVL DiTEST DPM 800 amplifying device was used
to convert the signals of pressure and crankshaft position sensors. The pressure of gases
in (100 cycles) was recorded by the high-speed software LabView Real engine indication
system (LabView—LabView, National Instruments, Austin, TX, USA). The start of the fuel
injection was registered by VAG-COM diagnostic equipment and fuel injection control is
performed using a control signal modulator.
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Engine testing data from the pressure in cylinder sensors fuel and air consumption,
fuel properties, engine data and others were processed in the AVL BOOST/BURN software
environment to determine start of combustion (SOC) and the ignition delay (ID) period,
to calculate heat release rates, combustion duration, pressure and temperature rise, the
average indicator pressure and other important features of combustion. The BOOST/BURN
calculation methodology is based on the first law of thermodynamics, laws of mechanics
and Vibe function [73].

The load characteristics of the engine were taken at 2000 rpm because the engine is
studied mostly works in a similar rotation speed and maximum torque can be achieved at
this speed. During the test, the engine was loaded with brake torque (MB) of 30–120 Nm,
(which corresponds to the Brake Mean Effective Pressure (BMEP) of 0.2–0.8 MPa). As the
load increased, the start of fuel injection timing (SOI) was changed from 4 to 7 CAD before
TDC. The engine test parameters are given in Table 3.

Table 3. Engine load and start of fuel injection.

Measuring Points 1 2 3 4

Engine speed n, rpm 2000 2000 2000 2000
Engine load MB, Nm 30 60 90 120
BMEP, MPa 0.2 0.4 0.6 0.8
SOI, CAD −4 −5 −6 −7

When the load is increased, the start of fuel injection timing must be earlier, as it takes
longer to inject the fuel. This parameter is controlled during the test.

3. Results
3.1. Combustion Characteristics

Figure 2 shows the numerical analysis (using AVL BOOST/BURN software) results of
combustion characteristics were presented in three parts: ignition delay, premixed combus-
tion phase and mixing controlled combustion when the engine load (BMEP) is 0.4 MPa.
Comparing the mixtures with each other, it can be noted that the start of combustion for
HVO was earlier than the others, given the same moment of the beginning of the fuel
supply process, and this, in turn, indicates the shortest ignition delay period for this fuel.

During this load (BMEP = 0.4 MPa), the test start of the fuel injection timing was
constant at SOI = −5 CAD for all fuels. The start of combustion (SOC) and ignition delay
(ID) according the fuel type are shown in Figure 2.

This experimental work has found that the ignition delay for HVO and mixtures is
lower than for diesel, which is related with a higher cetane number for these fuels, which
helps to reduce ignition delay [59]. At 4 CAD, the heat release rate for HVO is ~34%
less than for D100, which indicates a reduction in the peak rate of heat release compared
to diesel fuel. Diesel fuel also shows a longer ignition delay due to its higher viscosity,
which results in a delayed evaporation and an atomization process that causes a longer
ignition delay.

Additionally, it is worth noting that the ignition delay time also relies upon the number
of carbon atoms in the molecules of blends. For our experimental mixture with FE100, we
have less carbon to compare with the diesel fuel. Thus, the difference between 4 CAD rate
of heat release for FE25 is ~29%, FE50 is ~23%, FE75 is ~15% and FE100 is ~14% to compare
with mineral diesel. This is also confirmed by the lowest maximum combustion rate during
fast combustion.

With a further increase in the concentration of ester in the mixture, there is also
a noticable tendency to decrease the maximum combustion rate during rapid ignition.
Particularly, the oxygen content of the biodiesel mixtures improves the fuel–air mixing rate
in the cylinder in comparison with the diesel fuel due to the extended combustion duration.
In addition to this there is the vaporization of biodiesel, which is more slow than DF and
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supplies a lower premixed phase of combustion, which correlates with the viscosity and
density of the fuels. In addition, the cetane number effected the SOC timing [30].
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Figure 2. Heat release rate in the cylinder depending on the CAD.

The lower viscosity of HVO than diesel fuel contributes to improved the mixing
characteristics in the premixed phase. This indicates that HVO evaporates faster and
therefore mixes faster with the ambient air than diesel fuel. Moreover, the straight-chain
paraffinic hydrocarbon HVO is more easily degraded than the diesel, and it can be noted
that HVO is more easily sprayed onto the fuel, vaporized and mixed with the ambient air
in the chamber [62]. For the blend with HVO, we observed the same tendency.

Analyzing the third combustion period (diffuse), it can be seen that HVO100 also
reaches its peak earlier than other fuels, which is explained by the earlier onset of combus-
tion. However, diesel fuel is characterized by the lowest maximum combustion rate in the
mixing control combustion period, which is explained by a significantly larger proportion
of fuel burned out during the first combustion period [74].

At 9 CAD, the heat release rate for HVO is ~1% higher than D100. Additionally,
comparing mixtures with ester, we observed that for FE100 the heat release is ~3% higher
equating to fossil fuel; for FE25, FE50 and FE75 the trend is ~4%, 1%, 1%, respectively.

Figure 3 presents that the temperature rise. It is very similar to the pressure rise
presented in Figure 4. Additionally, the maximum for diesel that has the highest maximum
on it is reached much later than for other fuels.

An absolute temperature rise for diesel fuel at 53 K/deg is observed at 4 CAD. The
temperature rises for HVO at 40 K/deg is ~24% (8 CAD) less from diesel fuel, for mixtures
with ester there is a similar trend in the range from ~15% for FE100 (4 CAD) at 45 K/deg to
~29% for FE50 (8 CAD) at 38 K/deg.

The reason is a later start of combustion, but we also see more intensive combustion
of a pre-mixture phase, which in turn causes an increased rate of nitrogen oxide generation
in the cylinder. Therefore, for all fuel mixtures, this is precisely why the rate of formation
of nitrogen oxides in the phase is lower than for diesel fuel.

In the third combustion phase, diffuse heat release is very slightly different for all
fuel mixtures.
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The pressure rise graph shows exactly the same thing as described earlier. The moment
of the beginning of combustion is clearly visible, as is the moment of a sharp increase in
the rate of pressure change.

When using a pure HVO, the pressure rise is ~47% (3 CAD) less than of diesel fuel
(4 CAD), and for the FE100 it is ~25% (3 CAD) lower than of the fossil fuel. For other
mixtures with ester FE25 (2 CAD) and FE50 (3 CAD), it is also ~38% lower in comparison
with diesel fuel; for FE75 it is ~22% (3 CAD) lower in opposite of diesel.

This graph shows all the other fuels, but shows that the maximum visible is for the
diesel engine, and it corresponds to the premixed combustion phase. This is described by
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the longest ignition delay period, due to which the largest amount of fuel is accumulated
in the cylinder [56].

From a practical point of view, the largest peak of the pressure rise rate means the
highest level of shock loads on the parts of the cylinder–piston group and the highest noise
level on this type of fuel (diesel).

Figure 5 shows that with increasing pressure between the mixtures, a difference is
observed from 0.02% to 1.4%. For HVO, it decreased ~0.3% (10 CAD) compared to fossil
fuel (9 CAD), for FE25, FE50, FE75 and FE100 ~0.7% (9 CAD), 1% (10 CAD), 0.02% (10 CAD)
and 1.4% (10 CAD), respectively.
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During the experiment, it was found that compression stroke, temperature and pres-
sure are very similar for all fuels, but after the start of combustion they differentiate from
−0.4 to 0.7 CAD. However, it is from the pressure graph that all the rest are calculated,
including the most important one—the rate of diffuse heat release.

3.2. Energy Indicators

The brake specific fuel consumption (BSFC_m, g/kWh) for the D100 at medium load
was lower than for all mixtures, but at the same time it was higher by ~3% compared to
HVO. We see how with a growth in the rate of ester in the fuel mixtures, as shown in
Figure 6, the fuel consumption increases for FE100 ~13% compared to fossil fuels. If we
compare D100 and other blends, we observe an increase in fuel consumption for FE25
~1%, FE50 ~5%, and FE75 ~9% in comparison with diesel fuel, which in turn affects the
combustion process.

During engine refueling with ester blends, the BSFC for these test fuels was high in
contrast with diesel and HVO under all load conditions. The trend towards higher BSFC
values has been reported to be associated with a lower calorific value of the test fuel, which
results in more fuel being consumed to sustain the power output [75].

Diesel fuel with 0% oxygen showed the lowest BSFC to compare with biofuel mixtures.
Less heating of the tested fuels (Table 1) was reported as the cause for the increase in BSFC
values [71]. However, it should be noted that HVO has the highest fuel consumption rate
due to the higher hydrogen content. Therefore, the calorific value per mass HVO is higher
(Figure 7).
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Such a correlation can be explained by the ratio of intake pressure on the brake mean
effective pressure (BMEP). Engine performance during low loads is relative on the altitude,
considering that pressure of inlet manifold can straightly influence to the quantity of air
mass induced in the cylinder [76]. Therefore, by growing elevation, the lower amount of air
would enter the cylinder and BMEP decreases which involves additional fuel consumption
with identical output power.

Figure 8 shows that BTE increases for all fuels with increasing load, which is associated
with increased power. Additionally, the higher the specific heat of combustion (the amount
of heat released for complete combustion) of the fuel, the lower its consumption [53]. Lower
BTE values are observed for all mixtures, with the highest for HVO followed by diesel
fuel. The difference between these type of fuels is ~0.5%. This is due to the specific heat
of combustion.

At medium load (BMEP = 0.4 MPa) for mixtures with ester, we can observe a reduction
of BTE at an average of ~0.3% in comparison with diesel fuel.

The resulting low BTE for mixtures can be associated with a lower heating value
and increased fuel consumption in comparison with diesel. It could also be on account of
their low heat consumption for higher power outputs at a given load. As the proportion
of biodiesel in the mixtures increases, the BTE decreases due to poor atomization of the
mixtures by reason of their high viscosity. Fuels with a higher proportion of ester gave less
torque due to less energy released due to their lower heating value [77,78]. A lower BTE
can also be attributed to a higher BSFC. In addition, the oxygen content grows with the
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increase of percent for ester blends (Table 1), which decreases the heating value and, in
turn, decreases the BTE.
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3.3. Ecological Indicators

Carbon dioxide (CO2) emissions decreased for all types of fuels with a growth in the
load as shown in Figure 9. At medium load (BMEP = 0.4 MPa), the CO2 emissions of
mixes including FE75 and FE100 averaged ~2% and ~3%, respectively, which is higher in
comparison to diesel. The higher CO2 emissions in the mixtures are related with the higher
oxygen and carbon content of the tested fuels, in opposition to pure diesel fuel (Table 1).
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For HVO100 carbon dioxide emissions was ~5% lower than diesel fuel. Additionally,
we have observed the decrease CO2 for FE25 and FE50 ~4% and 2% accordingly.

Additionally, in this experiment it was found that mixtures that have a higher hydro-
gen/carbon (H/C) ratio contribute the most to CO2 reduction, since their combustion is
more complete (Table 1).

HVO, in turn, has a higher hydrogen/carbon (0.1520%/0.8480%) ratio, which con-
tributes to the most CO2 reduction for this fuel type compared to the aforementioned
mixtures and diesel fuel.

During combustion, the fuel is split into CO and then oxidized to carbon dioxide.
Consequently, the CO concentration can rapidly decrease with increasing temperature. The
presence of hydrogen-containing substances such as water can help speed up the process.
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Additionally, ester blends are oxygenated fuels, and the additional oxygen molecule
influences help to achieve better combustion, resulting in lower CO emissions [79–81]. Ade-
quate oxygen content and high cylinder biodiesel temperatures help reduce CO emissions.

Figure 10 presents the CO emissions for HVO100 at medium load, which were ~5% less
than for D100, and ~15% higher than for FE100. As reported by the figure, CO emissions
are lower for HVO due to the lower ignition delay, and combustion time is increased, thus
contributing to the oxidation process of CO emissions. Diesel fuel has lower emissions
than mixtures, which is explained by the high C/H ratio in diesel fuel.
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For blends with ester, this tendency was also higher compared to fossil fuel. For FE25,
FE50 and FE75, carbon monoxide emissions were ~6%, 7%, 8%.

At BMEP = 0.4 MPa, there was a marked reduction in HC emissions. It is also seen
that the curves of this dependence for mixtures with an intermediate concentration of ester
in the fuel occupy an intermediate position between HVO100 and diesel fuel.

This can be explained by an increase in the combustion temperature of the fuel and
the increase of the quality of fuel atomization over the volume of the combustion chamber
with increasing load.

Additionally, low rates for mixtures can be associated with the content of fatty acids,
which promote complete combustion, due to the fact that oxygen molecules are also present
in the droplets of this mixture, which contributes to more complete combustion.

In part, unburned hydrocarbons can result from poor air and fuel homogeneity due to
incomplete mixing before or during combustion.

Satputalei et al. [79] noticed that a higher cetane number on methyl ester decreases
HC emissions in comparison with diesel under all load conditions.

All mixtures have lower values than diesel as we can see from Figure 11. For example,
FE100 has hydrocarbon emissions ~14% less than D100, and HVO ~37%. On average
for other mixtures was found the same tendency. FE25 was ~33%, FE50 ~30%, and FE75
~25% lower compared with diesel fuel, while oxygen-free diesel showed the highest
hydrocarbon emissions.

According to the results of experimental studies, we found that the lower the carbon
content in the fuel, the less smoke will be [82].

With a decrease in the ignition delay, the combustion process starts earlier and the content
of harmful substances, such as smoke, decreases (associated with a higher cetane number).

Smoke emissions are increased for D100 and HVO100 compared to blends with ester,
as is illustrated in Figure 12, because oxygenated fuel contributes to the oxidation of soot.
Behcet et al. [80] found that the smoke level of diesel fuel was high, while for biodiesel it
decreased. Additionally, earlier soot formation for diesel fuel correlates with the expected
high soot tendency of diesel fuels containing aromatics and cycloalkanes, which increase
the formation of soot precursors.
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For HVO, we can observe reduce of smoke of ~18% on average in comparison with
diesel fuel. HVO belongs to the paraffinic fuel and contains a higher H/C ratio (Table 1).
This type of fuel does not have aromatic hydrocarbons, sulfur and another mineral contam-
inations, which affect the formation of soot [83]. The mixtures also have indicators which
are lower than of diesel. For FE25, they are ~47%, for FE50 ~55%, for FE75 ~58%, and for
FE100 ~62%. Reduced smoke emissions at all engine loads are on account of the high mass
oxygen content and lower C/H ratio (Table 1).

NOx emissions were increased with a growing load in all samples examined, with
diesel fuel being the highest indicator. The difference between D100 and HVO100 was
~19% on average between D100 and FE100 ~10% in Figure 13.

At medium load (BMEP = 0.4 MPa), the nitrogen oxide emissions reduce for FE25~12%,
FE50 ~10%, FE75 ~10%, FE100 ~10%, and HVO ~20% in comparison with D100.

Consequently, a higher combustion chamber temperature results in higher NOx values.
Numerous literature review have explained the influence of biodiesel on NOx emis-

sions due to the fact that biodiesel contains the oxygen. This improves fuel oxidation in the
process of combustion, which has the effect of higher temperature.

The influence of HVO on NOx emissions appears to be positive compared to the
increase in NOx emissions with ester/diesel mixtures. The ambiguous impact on NOx
emissions may depend on the combined effects of ignition delay, fuel injection quantity,
and the distribution of the injection quantity between the pilot and main injection [84].
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Additionally, the second reason can be that a lower iodine number and oxygen content
in mixtures with ester reduces the NOx value by 20% lower than that of a diesel engine.

4. Conclusions

1. The use of fat esters results in a deterioration of their physical and chemical properties
with increasing fat concentration. However, it is emphasized that the cetane number
of pure fats is higher than compared with mineral diesel.

2. One of the important advantages of testing mixtures is that it lowers the levels of
harmful pollutants in the exhaust of diesel engines. One exception to this is oxides of
nitrogen (NOx), which are implicated in ozone and smog formation.

3. It was determined the D100 has a higher exhaust gas temperature in comparison with
other mixtures due to the longer combustion process of the fossil fuel.

4. We investigated whether when using blends, the combustion started earlier, in op-
position to when using diesel fuel. The testing blends could give a positive impact
on efficiencies (NOx-Soot trade-offs) and GHG, especially for a heavy-duty engine
application. In addition, FE25, FE50, FE75 and FE100 blends reduced CO from ap-
proximately 7 to 13%. CO2 reduction was observed for all mixtures except FE75 and
FE100. Additionally, the concentration of hydrocarbon emissions decreased for all
mixtures. Lower values have HVO to compare with D100. Smoke emissions were
also significantly lower for blends than for diesel. On average, HVO was reduced
by ~18%, FE25 by ~47%, FE50 by ~55%, FE75 by ~58%, and FE100 by~62%. We have
shown increased NOx emissions for all blends and fossil fuel with an increasing load.

5. The brake thermal efficiency (BTE) indicators for the mixtures were lower compared
to D100 for all loads, but for HVO, they were slightly higher than diesel (~0.5%).
Considering that the heating values of the mixtures are lower in comparison with
diesel fuel, it was found that the brake specific fuel consumption (BSFC) for all types
of the mixtures was higher in opposition to fossil fuel, besides HVO, which has a
higher LHV.

Author Contributions: Conceptualization, O.S., J.M. and K.D.; methodology, A.R.; software, A.R.;
validation, O.S., J.M. and M.M.; formal analysis, K.D.; investigation, J.M. and A.R.; resources, K.D.
and M.M.; data curation, O.S., J.M. and A.R.; writing—original draft preparation, O.S. and J.M.;
writing—review and editing, O.S., K.D., M.M. and J.M.; visualization, O.S.; supervision, J.M. and
K.D.; project administration, J.M.; funding acquisition, K.D. and M.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The study did not report any data.



Energies 2021, 14, 3077 15 of 18

Acknowledgments: The authors thank the AVL company for the opportunity to use the engine sim-
ulation tool AVL BOOST, which was used to analyze the combustion process and present the results.
A cooperation agreement has been concluded between the faculty of the Transport Engineering of
Vilnius Gediminas Technical University and AVL Advanced Simulation Technologies.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

BTE brake thermal efficiency
BSFC brake specific fuel consumption
BMEP Brake Mean Effective Pressure
CAD crank angle degree
CO Carbon monoxide
CO2 Carbon dioxide
D diesel fuel
ECU electronic control unit
FE100 fatty acid methyl ester from duck fat
FE25 25% fatty acid methyl ester derived from duck fat and 75% HVO
FE50 50% fatty acid methyl ester derived from duck fat and and 50% HVO
FE75 75% fatty acid methyl ester derived from duck fat and and 25% HVO
FAME Fatty Acid Methyl Ester
HC Unburned Hydrocarbons
HVO Hydrotreated Vegetable Oils
MB brake torque
CN cetane number
ID ignition delay
NOx Nitrogen oxides
O2 Oxygen
SOI start of injection
SO2 sulfur dioxide
LCV lower calorific value
TDC top dead center
WCO waste cooking oil
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57. Işık, M.Z.; Bayındır, H.; İscan, B.; Aydın, H. The Effect of N-Butanol Additive on Low Load Combustion, Performance and
Emissions of Biodiesel-Diesel Blend in a Heavy Duty Diesel Power Generator. J. Energy Inst. 2017, 90, 174–184. [CrossRef]

58. Chuah, L.F.; Aziz, A.R.A.; Yusup, S.; Bokhari, A.; Klemeš, J.J.; Abdullah, M.Z. Performance and Emission of Diesel Engine Fuelled
by Waste Cooking Oil Methyl Ester Derived from Palm Olein Using Hydrodynamic Cavitation. Clean Technol. Environ. Policy
2015, 17, 2229–2241. [CrossRef]

59. Uyumaz, A. Combustion, Performance and Emission Characteristics of a DI Diesel Engine Fueled with Mustard Oil Biodiesel
Fuel Blends at Different Engine Loads. Fuel 2018, 212, 256–267. [CrossRef]

60. Gad, M.S.; Ismail, M.A. Effect of Waste Cooking Oil Biodiesel Blending with Gasoline and Kerosene on Diesel Engine Performance,
Emissions and Combustion Characteristics. Process Saf. Environ. Prot. 2021, 149, 1–10. [CrossRef]

61. Hwang, J.; Qi, D.; Jung, Y.; Bae, C. Effect of Injection Parameters on the Combustion and Emission Characteristics in a Common-
Rail Direct Injection Diesel Engine Fueled with Waste Cooking Oil Biodiesel. Renew. Energy 2014, 63, 9–17. [CrossRef]

62. Kegl, B.; Hribernik, A. Experimental Analysis of Injection Characteristics Using Biodiesel Fuel. Energy Fuels 2006, 20, 2239–2248.
[CrossRef]

63. Yadav, S.P.R.; Saravanan, C.G.; Kannan, M. Influence of Injection Timing on DI Diesel Engine Characteristics Fueled with Waste
Transformer Oil. Alex. Eng. J. 2015, 54, 881–888. [CrossRef]
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68. Warguła, Ł.; Krawiec, P.; Waluś, K.J.; Kukla, M. Fuel Consumption Test Results for a Self-Adaptive, Maintenance-Free Wood
Chipper Drive Control System. Appl. Sci. 2020, 10, 2727. [CrossRef]
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