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Abstract: In this paper we present an approach for real-time simulation and Hardware-in-the-
Loop (HIL) testing of Modular Multilevel Converters (MMCs) that rely on switching models while
supporting system level analysis. Using the Latency Based Linear Multistep Compound (LB-LMC)
approach, we achieved a 50 ns simulation time step for systems composed of several MMC converters
and for converters of various complexity. To facilitate system level testing, we introduce the use of a
serial communication-based (Aurora) interface for HIL testing of MMC converters and we analyzed
the effect that communication latency has on the accuracy of the HIL test. The simulation and HIL
results are validated against an MMC laboratory prototype.

Keywords: Field Programmable Gate Arrays (FPGAs); switching converters; Modular Multilevel
Converters (MMCs); parallel algorithms; real-time systems; power system simulation

1. Introduction

The two major challenges in Hardware-in-the-Loop testing of MMC-based systems
are the small time step required for the Real-Time (RT) simulation and the complexity of the
signal interface between the real-time simulator and the MMC controllers. The combined
use of converters with switching devices able to operate at high frequencies—along with
the high number of modules used in many MMC configurations—produces high apparent
switching frequencies that require very small time steps to be accurately simulated. At the
same time, the high number of Sub-Modules (SMs) used in many MMCs requires a high
number of measurements and gate signal exchange between the real-time simulator and
the controller tested. The mentioned challenges are further exacerbated by the growing
need to verify system level operations when multiple converters are interconnected. The
need to support the simulation of very large systems (as a number of switching devices)
with a very small time step makes commercially available solutions for RT simulation
strongly limited as currently the smallest time step achieved by commercial solutions is
about 200 ns.

This paper presents an approach for HIL testing based on the LB-LMC method [1]
which allows simulating systems composed of several MMC converters with a 50 ns
simulation time step. To facilitate system level testing, a gigabit serial communication-
based (Aurora) interface is used in place of traditional analog and digital signals. While
the use of Aurora has a pseudo-interface to conveniently interconnect controllers and
simulators has been previously used in HIL testing, in this paper we systematically analyze
the involved communication delays and evaluate the impact of this serial interface on the
accuracy of the HIL testing.

It is worth highlighting that our focus is on the micro-grid type of systems that use
MMC converters in consideration of the reduced weight and space characteristics and
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not on high voltage power system applications. In these micro-grid applications—as for
example in shipboard systems [2,3]—the number of levels is low as a function of the
relatively low voltage level. At the same time, a higher switching frequency is desirable
to further reduce weight and space. In such applications, it is also important to be able to
perform system level simulation maintaining a high temporal resolution in the small time
step. The electrical proximity of the converters is such that we cannot rely on the natural
filtering effect of high frequency dynamics present in terrestrial power systems.

Before proceeding with the core of the paper, we provide here a survey of recent
developments for system level real-time simulation of power electronics-based power
systems and HIL testing, especially of MMCs. Let us first consider simulations with a
time step equal to or larger than 5 µs, as those are intended for analysis of large power
systems since they are not capable of accurately representing the fast dynamics of high
switching frequency converters. Test cases involving MMCs with more than 1000 levels
have been executed using commercial products such as Opal-RT [4] or RTDS [5]. In both
cases a combination of Central Processing Unit (CPU) and Field-Programmable Gate Array
(FPGA) or CPU only, as in [6,7], has been used. This category includes system-level studies
employing data-driven approaches such as in [8]. HIL experiments with this time step
resolution have been conducted in [9] for a 470 level MMC with a switching frequency
of 225 Hz; in [10] where a 468 level MMC is simulated on multiple FPGAs; and in [11]
and [12] where a multi-rate approach is used. Another example of work belonging to
this category is the one presented in [13]; this work involved a system level test at 25 µs
conducted on System-On-Chip (MSoC) unit in order to simulate switching elements. A
multi-rate data-driven approach was employed.

Simulations with time step between 5 µs and 500 ns use more detailed models for
the switching devices but the size of the system and of the converters is typically smaller
than in the previous case. This is mainly due to the limited scalability of the approaches
involved. In [14] the authors simulated the France-Spain link with a 271 level MMC with
the combined use of CPU and FPGA also employed in [15] to simulate a 401 levels MMC at
823 ns. In [16] a power system involving 5 and 9 levels MMCs with a switching frequency
of 2kHz and an induction machine are simulated on a single FPGA. Similarly, in [17] a
DC-DC converter is simulated using two different 55 levels MMC models. Switching
frequencies of 600 Hz, 1800 Hz and 3000 Hz are used to study the junction temperature of
the MMC’s switching devices. Simulation time step of 2 µs on a single FPGA is achieved
in [18] but the methodology employed does not optimized efficiently FPGA resources
indeed computational latency is greater than 300 cycles and single floating point -rather
that fixed point- data type is employed negatively affecting FPGA resource usage.

Simulation at a time step equal or below 500 ns—often referred in this paper as small
time step simulation—have begun to appear in the last few years with the goal of capturing
the fast dynamics of fast-switching power converters. Due to the low latency requirements,
all approaches proposed in literature rely on FPGA execution, and while a few papers have
been published that achieve such execution time only one focuses on MMC simulation. A
simulation time step of 100 ns is achieved in [19] for a 401 level MMC tested in HIL mode
and in [20] where a 5 level MMC is simulated on NI-FlexRIO FPGA platform. To the best
of our knowledge, there is not yet a commercial tool able to simulate a large MMC or a
system with multiple MMCs with simulation time step below 200 ns.

In comparison with the methods named in this survey, the one presented in this
paper allows simulating with a fixed time step of 50ns large power systems thanks to the
employment of the LB-LMC method. Differently from [14] and [15], the method simplifies
the platform interfacing requirements involving only a single FPGA for the simulator.

Regarding the modeling technique, differently from [13] the MMC sub-modules are
not represented by Norton equivalents, employing curve fitting and data driven techniques,
or averaging to represent the switching behavior, but the model is implemented by state
space equations and switching functions. Differently from [19], the model is discretized
with an explicit integration method to allow full parallelization of model execution and
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differently from [18], fixed point data format is employed; data format is optimized so to
achieve the desired accuracy while minimizing FPGA resource usage.

The main contributions of the paper can be summarized in two points. We demonstrate
that by using the LB-LMC approach, it is possible to simulate systems with multiple MMC
converters in real-time and using a 50 ns time step. This is obtained while maintaining
high flexibility in the definition of the system. To the best of our knowledge, the used time
step is one order of magnitude smaller than the one used by commercial tools. We define
a protocol-based interface for Control Hardware In the Loop (CHIL) testing of MMC. In
addition to presenting the interface, we analyze in detail its limitations and quantify the
introduced error.

Regarding the paper organization, the LB-LMC method is described in Section 2
followed by the description of the implemented state-space full switching MMC model
and how it has been integrated within the LB-LMC circuit network simulation model.
In Section 4, the hardware MMC setup employed for the model validation is described.
In Section 5, the CHIL setup with implementation details of the platforms involved is
described. The experimental results, consisting of model validation, with details about
the diode model behavior, scalability analysis, and evaluation of the CHIL accuracy are
presented in Section 6. Finally conclusions are presented in Section 7.

2. The LB-LMC Method

The LB-LMC method—starting from an approach very similar to the classical Electro-
Magnetic Transients (EMT) method—exploits the small time step required for the inte-
gration of modern power electronics systems to explicitly integrate part of the simulated
system. In [21], it was demonstrated how by implementing the method on a FPGA platform,
small simulation time step (50 ns) is achieved in a scalable and consistent way for a system
composed of several power converters. Differently from the classic EMT approach, the
LB-LMC method models all nonlinear components in a linear network system as functional
voltage sources with series resistance or as current sources with parallel conductance.

At each simulation time step, the nonlinear behavior of nonlinear components is
represented by voltage or current sources updated through an internal step by computing
the state Equations (1) and (2).

The vectors v, i, xin and uin, represent the network node voltages and branch currents,
the state variable internal to the i-th nonlinear component and the input internal to the i-th
nonlinear component. Multiple terminals components can be described by a mix of these
current and voltage sources.

Since the state equations are explicitly discretized leading to (3) and (4) and depend
only on the solutions from the previous time step, and the equations are independent from
one another, each nonlinear component can perform its internal step in parallel to other
components. With these equations, the source contribution vector b is updated and the
system solution at each time step is found with (5).

The linear components of the circuit are solved using an implicit integration approach
to improve stability and accuracy of the method. A detailed analysis of the stability of the
LB-LMC method has been done in [1] and as shown in that paper the time step selection is
mainly dictated by the switching frequency and not by the stability requirement.

di
dt

= f (v, i, xin, uin, t) (1)

dv
dt

= g
(
v, i, xjn, ujn, t

)
(2)

Iin(k + 1) = f (v(k), i(k), xin(k), uin(k), k) (3)

Vjn(k + 1) = g
(
v(k), i(k), xjn(k), ujn(k), k

)
(4)

Gx(k + 1) = b
(
v(k), i(k), Iin(k), Vjn(k), k

)
(5)
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3. LB-LMC MMC Model

In the LB-LMC framework, the MMC is represented as a state space model with five
current-type ports—Equations (1) and (3)—in the solver nodal part. Several state space
model of MMCs have been developed in literature and the selection of the state variables
depends upon the simulation needs. In [10], the arm currents were selected to be fed to a
5µs time step sub module (SM) transient simulation. In [22], besides the capacitor voltages,
DC currents, line currents and circulating currents are considered. In [23], the state variables
are selected to better represent the circuit dynamics to unveil unused switching states of
the SMs. In [24], an averaged dynamic model is used to study large signal terminals and
capacitor dynamics.

The model formulation used in this paper selects as state variables the arm currents
and capacitor voltages. The developed MMC model includes a switching representation of
the half-bridge SMs. While this is based on a switching functions approach, we include
switch conduction resistances, freewheeling diodes, and a bleeding resistance connected in
parallel with the module capacitor; this is included to match the hardware prototype used
for validation, but it can be easily excluded for other studies.

Let us consider as reference the circuit in Figure 1a with bipolar DC Bus link voltages
Vgtop and Vgbot , and three phase output voltages. vj-subscript j is used to indicate phase a,
b, and c. Each phase leg has a top and a bottom arm, each one having a number of SMs
equal to N. The arm equivalent resistance and inductance are Rtop and Ltop for the top arm
and Rbot and Lbot for the bottom arm. As indicated in Figure 1b, each SM is composed by
two switching elements s1 and s2 with diodes (d1, d2) in parallel with a capacitor C and a
bleed resistance Rb reflecting the MMC converter used to validate the simulation model. s1
and s2 are represented with a single pole single throw switch in series with its conduction
resistance of value Ron. The capacitor is modelled with a capacitance of value C in series
with its Equivalent Series Resistance (ESR). In the following model equations, each SM
capacitor voltage is indicated as vCij where the subscript “i” indicates the upper arm (SMs
i = 1 to N) and the lower arm (SMs i = (N + 1) to 2N).

Figure 1. The MMC model: (a) the MMC circuit; (b) a detail of the SM circuit; (c) the detailed model
of SM.
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The modes of operation considered are with the capacitor inserted or bypassed de-
pending on the conduction state of the gates (s1, s2) or the diodes (d1, d2).

The state variables considered are the top and bottom arm inductance currents itopj ,
ibotj

and the capacitor voltages vCij. Equations (6) and (7) are obtained by writing a
Kirchhoff Current Laws (KCL) for each SM respectively of the upper and lower arm. In
these equations, Ci is the SM capacitance, Sij is the switching function. Depending on the
gates values s1 and s2-, gC represents the conductance of the SM capacitor branch and Rb is
the resistance value of the safety bleeding resistor of the real hardware MMC employed
for model validation. The state-space Equations (8) and (9) are derived from the Kirchhoff
Voltage Laws (KVL) written for each independent loop from the DC link to the AC load
for each phase leading. The Sij can be equal to one or zero to respectively model the SM’s
states inserted and bypassed. As indicated in the equations below, Sij depends on the gate
states (s1, s2). Each gate can either be opened, in which case its state will be equal to 0,
or closed, in which case it would be equal to 1. When the SM is inserted Sij = 1 then
(s1 = 1 & s2 = 0) and when it is bypassed Sij = 0 then (s1 = 0 & s2 = 1). During dead
time state (s1 = 0 & s2 = 0) the value of Sij is determined by the arm inductor current
which according to its direction will flow into the proper diodes determining the SM’s state.

Ci
dvCij

dt
= Sij(s1, s2)

(
itopj

Rb
1

gC
+ Rb

)
−
(
1− Sij(s1, s2)

)(vCij

Rb

)
(6)

Ci
dvCij

dt
= Sij(s1, s2)

(
ibotj

Rb
1

gC
+ Rb

)
−
(
1− Sij(s1, s2)

)(vCij

Rb

)
(7)

Ltop
ditopj

dt
= Vgtop − Rtopitopj −

N

∑
i=1

Sij(s1, s2)vcij − vj (8)

Lbot
dibotj

dt
= Vgbot − Rbotibotj

−
2N

∑
i=N+1

Sij(s1, s2)vcij − vj (9)

b1 = igtop = itopa + itopb + itopc (10)

b2 = igbot = ibota + ibotb
+ ibotc (11)

b3 = ia = itopa + ibota (12)

b4 = ib = itopb + ibotb
(13)

b5 = ic = itopc + ibotc (14)

Applying the LB-LMC approach, the MMC model shown in Figure 1 can be repre-
sented for the system level solution as an entity composed of five current-type ports, each
one providing a current contribution bk in parallel with a conductance gk, with subscripts
k = 1, . . . 5 corresponding to the component naming, as shown in Figure 2. It is worth
stressing that the developed MMC model is not an average model and the current sources
of Figure 2 are updated at each time step using the Equations (1)–(6) without any loss of
information on the individual module switching behavior. The Equations (10)–(14) are
used to compute the MMC equivalent LB-LMC model source contributions, b1 to b5, based
on the top itopj and bottom ibotj

arm currents computed by the state space Equations (6)–(9).
The contributions, b1 and b2 are equal to the DC link currents while b3 to b5 are equal to the
phase currents ij.
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Figure 2. LB-LMC equivalent model of the MMC.

At each simulation time step, the MMC current contributions are computed and used
to compute the system solution as in (5). The nodal voltages of the DC link and of the three
phase terminals vj are then used at the next time step to update the state equations of the
MMC converter. In Equation (5), G is the system conductance matrix, precomputed and
inverted offline (i.e., the inversion computations are not executed on the FPGA); x is the
vector of the nodal voltages and b is the vector of the currents contributions. The developed
MMC model, together with other power electronics converter models, and the LB-LMC
solver are distributed as an open-source package [25,26].

4. Hardware Reference System

An MMC prototype, shown in Figure 3, is used for the model and HIL testing valida-
tion. The control hardware of the prototype is also used as Device Under Test (DUT) in
the HIL testing. This MMC consists of six Half-Bridge (HB) SMs per arm. An SM is devel-
oped using the SEMIKRON SEMiX202GB066HDs HB IGBT module and the SEMIKRON
SKYPER 32 PRO R IGBT gate driver triggers this IGBT module. Table 1 lists the key
parameters. The setup is designed for full load apparent power rating of 60k VA and
the maximum DC bus voltage of 800 V. For flexibility purposes, the SM capacitance is
15 mF; the selection has been made based on market available capacitors’ size, cost, and
ESR. Given the 15 mF of the SM capacitors and considering the peak magnitude of the
double-fundamental-frequency circulating current, I2f as 15 A the resulting value for arm
inductors is 1 mH.

Each MMC phase is managed by a custom FPGA-based control platform, denoted
as a Hardware Manager Board (HMB), which receives measurements from sensors and
provides gate signals to each SM of its associated phase. Each HMB is composed of a Xilinx
Virtex-4 XC4VFX20 FFG672 FPGA with four high-speed Multi-Gigabit Transceivers (MGT)
and twenty analog-to-digital converters (ADC) channels. The ADCs are Texas Instruments
(TI) ADS7863 which have four dual, 12-bit fully differential input channels grouped into
two pairs for high-speed, simultaneous signal acquisition. Between HMBs, the three-phase
ring communication is established using 8 bits of data width having 1.25 Gb/s line rate
and a 125 MHz reference clock. The controller has a clock frequency CLK_C of 125 MHz.
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Figure 3. Three-phase MMC prototype hardware: (a) arm module; (b) three phase structure with
Virtex-4 FPGA HMBs and optical fiber.

Table 1. MMC Prototype Hardware and AC System Parameters.

Symbol Description Value

P Nominal Three phase active power 60 kW
Vxn Nominal AC Phase RMS voltage 208 V
N Number of SM per lower/upper arm 6
C SM capacitance 15 mF

Ltop, Lbot Arm Inductance 1 mH
Rtop, Rbot Arm resistance 0.1 Ω

Rb Capacitor bleed safety resistance 5.56 kΩ
Vci Max SM capacitor voltage 400 V
fc Carrier frequency 664 Hz
Nc No. of carrier for PSC-PWM 6
fsw Effective Switching frequency 3.98 kHz
Ron Switching ON resistance 1.0 mΩ
ESR SM capacitor series resistance 0.113 Ω

For all three phases, the control modulating signal m(t) is generated in the control
master FPGA HMB-01 as depicted in Figure 4.
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Figure 4. Block diagram of the control for both simulated and real Hardware (HW) MMC.

HMB-01 also generates digital PWM gate signals and does the Voltage-Balancing
(VB) for Phase A. HMB-02 and HMB-03 generates digital PWM gate signals and performs
VB for Phase B and C, respectively. These two phase controllers (HMB-02 and HMB-03)
receive m(t) from HMB-01 via high speed optical fiber ring communication. The ring is
a checksum-based custom communication protocol that is developed for data transfer
between HMBs. In this work, the phase shifted carrier (PSC) pulse width modulation
(PWM), detailed in [27], is used. Since the MMC consists of six half-bridge SMs per arm,
there are six 60◦ phase shifted carriers. The generation of the double updated modulating
signal ms(t) and measurement sampling trigger are illustrated in Figure 5. Only the
first triangular carrier is shown for clarity. The digital PWM gate signals are produced
by comparing ms(t) and the carrier signal Acr(t). The switching frequency of the MMC,
fsw = Nfc.

Figure 5. Generation of double updated modulating signal ms(t) and measurement sampling trigger.
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Since its double update control, thus the reference update period, Tref_up is Tsw/2. The
measurement sampling has a period, TMSM is equal to Tref_up/2 or Tsw/4. The operation of
the HMBs is only different in the measurement section with respect to connection of the
MMC hardware versus the simulator. For hardware experiments, when the measurement
sampling event is up, it triggers the controller to receive new measurements from the
MMC after TADC time, that is the HMB ADC’s program and conversion time. For the
CHIL experiment, when a measurement sampling event is up, the control updates the
measurements coming from the simulation engine after THI time, that is, the total time for
one cycle of the CHIL. During T0 time, the MMC measurements are stored in controller
memory and the measurements are used for voltage balancing and protection of the system.
The VB presented in [28] has been used for this work.

5. CHIL Setup

The HIL set-up is composed of three HMBs in addition to the FPGA-based MMC
simulator with analog output capability for display of internal simulation variables. All
connections between the control hardware and the MMC simulator are made via high-
speed serial data channels. A picture of the CHIL set-up is shown in Figure 6.

Figure 6. Hardware-in-loop (HIL) set up using Virtex-4 Controller and Virtex-7 MMC simulator FPGAs.

The block diagram of the complete structure of control system is reported in Figure 7.
The system main components are: the test references generator which outputs the three
phases sinusoidal reference signals {Ref}; the Phase-Shifted PWM (PWM) module which
generates the modulation index values {Non}; the voltage Balancing Control Algorithm
(BCA); and the plant (MMC) represented by its transfer function Gp(s).

Figure 7. Block diagram representation of the control platform and RT-simulator.
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The section indicated by P is the section executed on the RT simulator; the rest of
the control functions, including the BCA, are executed on the control platform. The data
exchanged over the fiber optics are the SM switching pulses Si, the arm currents, and SM
capacitors voltages

{
Iarm, Vcapi

}
.

5.1. RT Simulation FPGA Implementation

The MMC simulator is developed using a Virtex-7 FPGA. The core of the design is the
simulation engine, MMC Simulator, discussed in [15], which performs the RT simulation
of the modeled system. This core computes solutions of the simulated model every time
step using the LB-LMC method. Using a dataflow execution approach, the simulation
engine computes all solutions in a single FPGA execution clock cycle set to the time step
of the simulation for RT execution. To capture results from the simulation engine on the
oscilloscope, a Digital-to-Analog Conversion (DAC) interface is used.

To allow the external controller platform access to the modeled system solved by the
simulation engine, a control communication handler core exists in the top-level design.

5.2. Simulator Interface

A high-speed communication protocol using optical fibers interfaces the simulator
to the DUT. A multi-gigabit communication between the MMC simulator and each HMB
utilizes the Aurora protocol [29] developed by Xilinx that uses 8B/10B data encoding.
The Aurora 8B/10B protocol has several features such as channel bonding and clock
compensation that simplify the establishment of high-speed Multi-Gigabit Transceivers
(MGT)- based communication links [30].

For this work, the Aurora 8B10B protocol consists of one lane, two bytes per lane,
1.50 Gb/s line rate, and 150 MHz reference clock. Figure 8 illustrates the block diagram
of Aurora 8B/10B interfacing each of MMC Simulator phases, namely Phase A, Phase B,
and Phase C and the corresponding phase controller. For clock domain crossing (CDC)
in-between controller or simulator and Aurora, first-in first-out (FIFO) has been used. Here,
CLK_S, CLK_A, and CLK_C represents the clock for the simulator, Aurora protocol, and
controller, respectively. The Aurora system clock CLK_A has a frequency of 75MHz while
the simulator and controller have a frequency of 20 MHz and 125 MHz, respectively.

Figure 8. The block diagram of Aurora 8B/10B interfacing of MMC Simulator (Virtex-7) and controller
(Virtex-4) per each MMC phase (A, B, C).
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The timing of the interface between the control boards and the simulation engine is
described in Figure 9. At the top of the diagram, we indicate the main entities involved.
They are the controller, which generates the gates signal; the control handler, the simu-
lation engine handler, and finally the simulation engine. After initialization of Aurora
communication, each controller HMB transmits gate signals to the simulation engine. The
simulation engine receives the gate signals and sends out the measurements to the control
as depicted in Figure 8.

Figure 9. The Control-Plant timing interfacing diagram.

In Figure 9, the white boxes indicated with letters represent the processes performed
by each entity. Each process is described below:

Process A:
Performs the generation of PWM gate signals and then MMC capacitors voltages

sorting and balancing. Process A has a time of T0. In this process, the HIL interfacing
between phase controller and simulator happens continuously in a controlled manner.

Process B:
Takes care of packing the gates signals and of the clock domain crossing (CDC)

between the controller clock CLK_C and the Aurora system clock CLK_A using FIFO
as depicted in Figure 8. Then the Aurora protocol transmits gate signal to the simulator
FPGA platform.

Process C:
Takes care of unpacking the gates signals from Aurora channel and of the CDC

between the Aurora system clock CLK_A and the Simulation Engine clock CLK_S. This
process triggers as soon as it receives the desired header from the controller.
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Process D:
Samples the MMC capacitor voltages and arm currents measurements from the simu-

lation engine, and packs the samples. Furthermore, it also takes care of the CDC between
CLK_S and CLK_A.

Process E:
Takes care of unpacking the MMC measurement samples from simulation engine and

of the CDC between CLK_A and CLK_C using FIFO as illustrated in Figure 8.

5.3. Communication Delay Estimation

Once the final PWM gate signals have been produced, they are sent out by process B.
Ideally, the gate signals should have been received by the simulation engine at time ”t2”
but due to the delay introduced by the controller transmitting CDC and the Aurora-based
communication system, those are received at time “t2 + T2”. T2 has been estimated as
approximately 1.7 µs. Similarly, T1 is the time required for the MMC measurements from
the simulator to be available in the controller. T1 has been estimated to be approximately
equal to 2.1 µs. The time T1 is greater than T2 since the amount of MMC measurement
data to be sent out from the simulation engine is greater than the amount of data which
has to be sent out by the control (the gates signals). It is clear that the introduced delay
will affect the HIL experiment accuracy. In the next section, we will evaluate the impact of
these delays.

6. Experimental Result
6.1. MMC Model Validation

The validation of simulation model is of particular importance in the evaluation
of a simulation method. In this paper this is even more critical when we analyze the
performance of the proposed Aurora interface. Some reference work for validation of MMC
models are reported here: [31–33]. In order to clarify the effectiveness of the presented
work, a model validation has been conducted comparing the MMC phase and capacitor
voltages and circulating currents waveforms with the ones obtained by operating a real
MMC. The accuracy has been evaluated by computing the two-norm error. The laboratory
prototype MMC described in Section 4 has been used to validate the MMC model and is
referred here as HW. The model is executed on a CPU-based workstation and it is referred
to here as Csim.

For validation purposes, Csim and the real MMC implement the same control logic,
a DC bus voltage of 620 V and a resistive load power of 4.5 kW. The results have been
compared by computing a two-norm error. The general formula for a p-order norm error
perr is presented in (15). Here p indicates the norm class is set equal to two since the
Euclidean norm for the error calculation is considered. The series of n reference samples
indicated by subscript i = 1, . . . , n, used to compute the error is xre f i while the series of
measured samples for which the error is evaluated with respect to the reference is indicated
as xmeas i.

perr =

 p

√√√√ n

∑
i=1

∣∣∣∣∣ xmeas i − xre f i

xre f i

∣∣∣∣∣
p
100 (15)

The two-norm error of the phase voltage depicted in Figure 10a is equal to 8.7%. In this
case, the results from the HW execution correspond to xre f i while the results from the Csim
simulation correspond to xmeas i. Differences in the phase voltages shown in Figure 10a
are mainly due to circulating current differences between the hardware experiment and
simulation as shown in Figure 10b. This is mainly due to the mismatch of passive elements
between the module capacitor and bleeding resistance.
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Figure 10. Hardware (HW) experimental and simulation (Csim) results comparison (a) phase A
voltage and (b) phase A circulating current.

The results reported in this paper are obtained by randomizing the values of these
passive elements considering the fabrication tolerance around their nominal value. In this
way, we obtained a good match without matching each individual parameter and so kept
the model of more general interest.

In order to demonstrate the free willing diode behavior—somehow unusual in switch-
ing function-based models—we analyze the dead time behavior of an individual module.

With reference to Figure 11, the quantities considered for the analysis are the voltage
at the SM’s terminals for a model without dead time vsm and for the model with diodes
and dead times vsm_ddt. The voltages should approach the capacitor voltage vc_ddt when
the SM is inserted and zero when the SM bypassed. The leg A top arm current iarm_top is
considered. When positive, it will flow through diode d1 else diode d2.

In Figure 11, we report the four typical conditions for analyzing the dead time behavior
of a half bridge topology; in Figure 11a with the SM transitioning to inserted mode and
positive current and Figure 11d with the SM transitioning to bypassed mode and negative
current, the dead time effect is not visible since the diode conducting is in parallel to the
switch conducting after the transition. Vice versa, the effect is easily visible in Figure 11b,c
where the diode conducting during the dead time is in parallel with the switch conducting
before the transition. Those conditions reflected on the SM circuit with corresponding arm
current color are illustrated in Figure 11e.

To conclude the model validation in Figure 12, we compare the phase A 1st capacitor
voltage computed by the simulation model with the one acquired from the MMC prototype.
For 620 V DC bus voltage, the average value of capacitor voltage is as expected 103.33 V.
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Figure 11. Behavior of the MMC SMs voltages and gates signals to highlight dead-time behavior:
(a) positive arm current with diodes conduction; (b) negative arm current without diodes conduction;
(c) positive arm current without diodes conduction; (d) negative arm current with diodes conduction;
(e) simplified schematic of the SM indicating the arm currents direction for cases (a–d).
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Figure 12. Phase A 1st capacitor voltage waveforms, Csim vs. MMC hardware prototype.

In this case, rather than directly computing the two-norm error, which would have
been meaninglessly small due to the large offset of the signals, we calculate the percentage
error ErrM by first removing the DC component. The formula for calculating ErrM is
reported in (16).

ErrM =
1
n

n

∑
1


∣∣∣x̂meas i − x̂re f i

∣∣∣
Are f

100 (16)

As in (15), the error in this case is also computed considering two series of n samples,
where each sample is indicated by a subscript i = 1, . . . , n. A sample of the measured
values for which the error is evaluated is indicated as x̂meas i while a sample of the reference
values is indicated as x̂re f i. Finally Are f is the normalization reference value used in the
denominator of the error formula in order to compute the percentage for which the factor
100 is introduced. For the case of the MMC model validation presented here, x̂meas i is a
sample of the Csim capacitor voltage minus its average computed over the entire timespan
of the simulation, while x̂re f i, is a sample of the HW MMC capacitor voltage minus its
average value computed over the same time span of the Csim. The denominator Are f is the
maximum peak–peak amplitude of the HW capacitor voltage. The error ErrM allows better
appreciation of the differences in amplitude, which are at least three orders of magnitude
below the waveform mean value. The value of ErrM for the MMC model validation
is 7.3%.

6.2. Scalability Analysis

Since the goal of this work is to support power electronic system level analysis while
maintaining a detailed temporal resolution, it is important that we test the scalability of the
proposed model. For this purpose, we considered the Xilinx Virtex-7 485t VC707 FPGA
and a fixed simulation time step of 50 ns.

First, we considered the scalability of the simulator when the number of modules in a
single MMC is increased. In Figure 13, we report the results of the scalability analysis for a
single converter when the number of levels is increased from 7 to 111.
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Figure 13. Results of the LB-LMC method scalability analysis considering MMCs with an increasing
number of levels.

As expected, and as highlighted by previous work on the LB-LMC method, the
computational delay remains relatively constant. The variations are due to the effort of
Vivado tool to best place and route the design, and the resource usage scales linearly.

We also analyzed the scalability of the proposed approach when multiple converters
are modelled. For this purpose, we used the microgrid of Figure 14, where converters are
added one after the other to increase the system size.

Figure 14. The microgrid used for scalability analysis.

Since we used a single cycle data flow approach to execution and due to the intuitive
consideration that similar model components require the same amount of resources, we
expected to observe again a linear scaling of the resource usage. Figure 15 shows the
stability results when an increasing number of 7-level MMC converters are added to the
system. As expected, the results show a linear relation between the system size and the
resources usage.
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Figure 15. Results of the LB-LMC method scalability analysis on microgrids with an increasing
number of 7-level MMCs.

The maximum number of switching devices included in the simulation for the two
scalability analyses is much greater in the converter-size scalability analysis (660 sub-
modules) than in the case of the grid-size one (180 sub-modules). This is because in
the latter case, systems with more converters have larger conductance matrixes (each
converter introduces 7 more nodes) which require larger FPGA resources allocation. Further
scalability can be ensured using a multi-FPGA solution as described in [34].

6.3. Communication-Based CHIL Accuracy

In this section, to determine the accuracy of the CHIL, the results obtained by the
CHIL tests are compared with the Csim results validated in the previous section. As we
will show, the impact of the communication delay is quite small. To better appreciate the
impact of the delay, we decided to compare the results obtained by the CHIL experiment
with the one of the Csim. Later in the paper, we will also compare the CHIL results with
the data collected using the hardware prototype.

In Figure 16, the phase A voltage waveform output from Csim and from the CHIL
experiment are superimposed. The main difference between the Csim and the CHIL results
is that in the latter, the use of a communication protocol (Aurora) as CHIL interface, induce
the communication delays T1 and T2, Figure 9. They cause the CHIL waveform to be
delayed with respect to the Csim waveform by 2 µs, as can be observed by the detailed
zoom of Figure 16.
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Figure 16. The C-simulation (Csim) and CHIL voltage waveforms of phase A superimposed to
highlight the effect of the CHIL on the simulation.

Overall, the inaccuracy introduced by the communication delay is small and the
two-norm error in this case is equal to 1.47%.

Similarly in Figure 17 we report the phase A 1st capacitor voltage waveforms; in this
case the error as computed according to (16) is equal to 2.87%.

Figure 17. The phase A 1st capacitor voltage waveforms of the Csim and CHIL.
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The presence of the communication delays represents a limitation for the CHIL plat-
form, especially with regard to the delay between when the controller updates the state
of the gate signals and when the update values are received by the simulator, T2. The
negative effect of this delay will be more significant for converters switching at higher
switching frequencies. To quantify the impact of communication delay on CHIL error, a
new C-simulation, namely CsimT1T2, emulating the effects of the communication delays
T1 and T2, has been developed and executed for MMC with increasing switching frequency.
For each case the two-norm error considering the Csim as reference has been computed
and the results are shown in Figure 18.

Figure 18. Error between the phase A voltage of the Csim and CHIL for different switching
frequency fsw.

6.4. Comparison of CHIL and Real Hardware Results

In this section, the accuracy of the CHIL simulator is evaluated by comparing it against
the real MMC. In Figure 19, the phase A voltage waveforms of both cases are superimposed,
the same is done in Figure 20 for the 1st capacitor voltage of phase A.

The two-norm error of the phase voltage in this case is equal to 8.6% while the ErrM
of the cap voltages is equal to 12%. Those values are very much comparable to the one
obtained in the model validation phase, so we can then say that for this application the error
introduced using a protocol-based CHIL interface is very limited and that the accuracy of
the CHIL experiment is mainly determined by the accuracy of the model and not by the
CHIL interface.
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Figure 19. The CHIL and the Real MMC (HW) phase A voltage waveforms.

Figure 20. The CHIL and the Real MMC (HW) capacitor voltage waveforms of the first sub-module
of phase A superimposed.

7. Conclusions

In this paper we presented a solution for real-time simulation and CHIL testing of
power electronic systems including switching representation of MMC converters. The
proposed approach employs a 50 ns time steps also for system level model with multiple
converters. Through a detailed scalability analysis, we show how a single MMC with up to
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111 levels can be simulated using a 50 ns time step and how is possible to simulate, with
the same time step, systems with up to 5 converters.

To facilitate and make more agile HIL testing of systems with multiple MMC con-
verters, we developed a protocol-based interface used to substitute traditional analog
measurements and digital gate signals. The interface clearly introduces additional delays;
we have analyzed this in detail. Through various tests we have shown how those delays
are responsible for an error at max equal to 2.8%. Furthermore, using a 60 kW hardware
prototype as reference, we have shown that the accuracy of the HIL results obtained using
Aurora are comparable to one obtained in the model validation phase. We can then say
that for this application, the error introduced using a protocol-based CHIL interface is very
limited and that the accuracy of the CHIL experiment is mainly determined by the accuracy
of the model (about 10–12%) and not by the CHIL interface.
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