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Abstract: Carbon dioxide-based enhanced oil-recovery (CO2-EOR) processes have gained consider-
able interest among other EOR methods. In this paper, based on the molecular weight of paraffins
(n-alkanes), pressure, and temperature, the magnitude of CO2–n-alkanes interfacial tension (IFT) was
determined by utilizing soft computing and mathematical modeling approaches, namely: (i) radial
basis function (RBF) neural network (optimized by genetic algorithm (GA), gravitational search
algorithm (GSA), imperialist competitive algorithm (ICA), particle swarm optimization (PSO), and
ant colony optimization (ACO)), (ii) multilayer perception (MLP) neural network (optimized by
Levenberg-Marquardt (LM)), and (iii) group method of data handling (GMDH). To do so, a broad
range of laboratory data consisting of 879 data points collected from the literature was employed
to develop the models. The proposed RBF-ICA model, with an average absolute percent relative
error (AAPRE) of 4.42%, led to the most reliable predictions. Furthermore, the Parachor approach
with different scaling exponents (n) in combination with seven equations of state (EOSs) was applied
for IFT predictions of the CO2–n-heptane and CO2–n-decane systems. It was found that n = 4 was
the optimum value to obtain precise IFT estimations; and combinations of the Parachor model with
three-parameter Peng–Robinson and Soave–Redlich–Kwong EOSs could better estimate the IFT of
the CO2–n-alkane systems, compared to other used EOSs.

Keywords: soft computing tools; equations of state; n-alkanes; interfacial tension; enhanced oil
recovery; CO2 flooding

1. Introduction

The need to recover the amount of oil left behind in oil reservoirs during primary
and secondary oil-production operations has raised the tendency to develop different
enhanced oil-recovery (EOR) approaches [1–5]. Miscible and/or immiscible injection of
various gases, including nitrogen, flue gas, carbon dioxide, and natural gas, are considered
as the most conventional EOR techniques [6–8]. As an efficient EOR strategy, CO2 injection
can lead to more oil recovery by reducing oil viscosity, swelling, and vaporizing during
miscible flooding [9]. Furthermore, CO2 injection is a widely accepted method due to the
reduction of greenhouse gas emissions by sequestrating CO2 in underground formations
for a long term [10–15]. Thus, CO2 injection, which has been introduced for both EOR and
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CO2 sequestration purposes, is further intended to decrease the emission of greenhouse
gases [12,16].

Among the driven mechanisms in the petroleum industry for gas injection, the miscible
injection method is superior to the other techniques. In industrial processes, including
distillation, evaporation, and absorption, the mass transfer rate in two-phase oil and gas
systems plays a key role. It is clear that when the oil pressure goes below the bubble
point, the gas is released, causing more interfacial traction between the two phases; as the
pressure decreases further below the bubble pressure, more gas molecules are released
from the liquid phase and the IFT value increases. The evolution rate of gas bubbles is also
controlled by molecular diffusion. Therefore, modeling molecular diffusion is important,
and several research studies have been conducted in this field, such as modeling vapor
solvents in heavy oil and miscible gas injection in naturally fractured reservoirs to better
understand the governing mechanisms [17–22].

IFT is used as a vital parameter in the production from oil reservoirs to determine
residual oil remaining in the reservoir, predict the production potential of fractured reser-
voirs, and evaluate the recovery performance of EOR processes [23–25]. IFT, as a critical
phase-behavior feature, affects CO2 flooding efficiency [26]. With the dissolution of CO2
gas in heavy oil, the IFT value, as well as the viscosity of the heavy crude oil, will decrease,
which is favorable for EOR, especially when the viscous forces are the driving forces for the
production of the oil trapped in the reservoir [27]. The reservoir temperature, pressure, and
fluid composition are the key parameters that influence IFT extent [28,29]. Experimental
and correlation-based methods are two distinct ways of determining IFT between two
phases [30]. The empirical correlations for IFT estimation are categorized into classic and
modern methods [31]. Experimental approaches for IFT measurement include capillary
rise ring, drop weight, pendant drop, spinning drop, sessile drop, and Wilhelmy plate [32].
Among the laboratory IFT measurement methods, the pendant drop technique is known as
the most reliable technique for two-phase fluid systems [33]. The IFT between the fluids can
be determined by the shape of the suspended droplet from the needle [34]. Axisymmetric
drop shape analysis-profile is the most suitable method used for IFT measurement [35].
Gasem et al. [36] and Rao [37] used the pendant drop technique to measure the IFT value
of systems composed of various oil and gas mixtures at different pressure and temperature
conditions. Nagarajan and Robinson [38] used a setup consisting of a gas chromatograph
and an IFT view cell to simultaneously determine the IFT and fluid phase behavior of
the CO2–n-decane system. After that, Shahvar et al. [39] improved the setup used by
Nagarani and Robinson and obtained the IFT of CO2–n-alkane systems at different ranges
of pressures. They applied the method introduced by Roush [40] to convert the droplet
profile to Cartesian coordinates; and the Jennings and Pallas [41] methodology was then
used for the subsequent estimation of the IFT.

From a modeling perspective, several techniques, including gradient theory [42], ther-
modynamic correlations [43], corresponding states theory [44], and the Parachor model [45],
have been proposed for IFT prediction of the single- and/or multiphase flow systems.
Among them, the Parachor model, which is an old-fashioned and logical method, gives
adequate information about hydrocarbon mixtures at harsh conditions of reservoirs; and
it is also a widely used method in the industry. Weinaug and Katz [46] used the average
molar properties to extend the models suggested by Macleod [47] and Sugden [45] for
pure components to mixtures. Equation (1) [47] can be used for IFT calculation of mixtures
based on component mole fractions:

IFT =

[
N

∑
i=1

Pch(xiρ
l − yiρ

v)

]E

(1)

where N stands for the total number of components; Pch,i denotes the Parachor value
for component i; xi and yi are the mole fractions of component i in the liquid and gas
phases, respectively; ρl and ρv introduce the molar density of the liquid and vapor phases,
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respectively; and E represents the scaling exponent. The value of E ranges between
3.45 and 4. The correlations based on the specific gravity, molecular weight, and/or
critical properties of the components for the Parachor values have been suggested in
previous studies [48,49]. Hough and Stegemeier [50] modified the correlation developed
by Weinaug and Katz [46], and obtained more accurate results for the systems containing
multicomponents. They introduced a constant of 3.67 for the scaling exponent in their
correlation. A model for complex mixtures also was proposed by Lee and Chain [51]. They
introduced the value of 3.91 as an alternative for the scaling exponent, and Parachor was
estimated based on the critical properties of components. Firoozabadi et al. [48] proposed
that the E = 4 can be applied in asphaltene-free oil reservoirs. They also employed
an empirical equation to determine Parachor as a function of the molecular weight of
components. Fawcett [52] developed a model to calculate the IFT of condensate systems.
It was found that it was not easy to match the model parameters due to the lack of data
in the previous studies for condensate systems. Liu et al. [53] studied the behavior of
supercritical CO2 at the n-decane/water interface. They conducted a molecular dynamics
simulation; it was shown that the CO2 gas acted as a surface-active agent to reduce the
IFT between the phases. Nourozieh et al. [54] employed the Soave–Redlich–Kwong (SRK)
and Peng–Robinson (PR) EOSs to model the equilibrium properties of CO2–n-decane and
n-octadecane systems. Their work revealed that both EOSs had almost similar estimations
for gas solubility, while PR EOS could better predict the density.

As discussed previously, it is of vital importance to attain a precise estimation of the
oil–gas IFT, which exhibits an important role in the petroleum and chemical industries.
Determination of the IFT through experimental methods is often expensive, tedious, and
time-consuming. Using empirical correlations has some problems, such as insufficient
accuracy. The theoretical techniques also require a considerable amount of numerical and
computational calculations; for instance, applying an EOS as well as the flash calculations
are necessary. In previous studies, Ayatollahi et al. [55] developed a least squares support
vector machine (LSSVM) model to calculate the IFT values for CO2–n-alkanes systems.
They used a relatively comprehensive data set containing almost 500 experimental data
for n-alkanes (including nC4, nC7, nC10, nC12, nC14, and nC16) and CO2 systems. After
that, Ameli et al. [56] used the same data set and mixtures, which were incorporated in
Ayatollahi et al.’s model. It was found that their radial basis function-genetic algorithm
(RBF-GA) model surpassed the previously developed model.

In this study, we utilized a comprehensive data set of n-alkane and CO2 containing
879 laboratory data, including n-alkanes from nC4 to nC20, and modeled the IFT by
advanced smart models, namely a multilayer perceptron (MLP) neural network model
trained by Levenberg–Marquardt, a radial basis function (RBF) neural network linked with
various optimization techniques, as well as group method of data handling (GMDH) neural
network to determine the IFT behavior of the hydrocarbon–CO2 systems more accurately.
To the best of our knowledge, this is the first study that benefits such extended ranges of
input data and models to obtain accurate predictions/estimations of IFT for the CO2–n-
alkane systems. In addition to advanced hybrid smart models, we employed white-box
models to generate explicit correlations for calculation of the IFT of the CO2–n-alkanes
systems. In addition, the performance of the physical models (i.e., the Parachor model) for
IFT prediction of the CO2–n-alkane systems, and the combination of these models with
different EOSs, were evaluated. The precision and validity of the models were examined
using a number of tables and graphical diagrams obtained from the statistical analysis.
Finally, the results of the experimental measurements for IFT values of the CO2–n-decane
and n-heptane systems were compared with those obtained from the developed models,
proposed correlations, and the combination of the Parachor equation with various EOSs.

2. Data Collection

In order to develop a comprehensive model that could precisely predict the IFT value
of the CO2–n-alkane systems, a thorough literature survey was conducted to collect 879
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laboratory data from several open sources [22,57–61]. The reliability and the operational
conditions incorporated in the data bank utilized for the model development had a signifi-
cant influence on the accuracy, applicability, and validity of the model. Using an unprece-
dentedly large data set in broad ranges of temperatures (from 297.85 to 443.05 K), pressures
(from 0.1 to 23.01 MPa), and n-alkanes (nC4 to nC20), coupled with various reliable models,
makes this study novel and provides notable progress in predicting/estimating the IFT
values of crude oil–gas systems. Details of the utilized data for model development are
tabulated in Table 1.

Table 1. Experimental IFT data used in this study.

Alkane Type
Mw of n-Alkane,

g·mol−1
Ref., No. of Data

Points

Temperature, K Pressure, MPa IFT, mN/m

Min Max Min Max Min Max

n-butane 58 [38], 23 319.3 377.6 2.18 5.53 1.85 5.75

n-pentane 72.15 [62], 7 313 313 0.1 6 2.6 14.3

n-hexane 86 [57], 16 308.15 333.15 4.05 7.71 1.75 5.87

n-heptane 100 [58], 6 323 323 2.65 9.94 3.4 16.37

n-octane 114
[59], 108 313.15 393.15 0.34 7.58 2.4 16.27
[62], 15 308.15 333.15 5.01 9.34 1.51 4.83

n-nonane 128 [22], 10 333.15 333.15 1.85 10.46 7.64 21.77

n-decane 142
[60], 74 297.95 443.05 0.1 15.17 0.634 21.7
[61], 17 323.15 353.15 0.9 10.1 4.65 18.82

n-undecane 156
[22], 8 333.15 333.15 1.50 9.03 7.59 20.32

[61], 20 323.15 353.15 1.03 12.1 3.39 19.26

n-dodecane 170
[60], 75 297.85 443.05 0.12 15.18 2.29 22.73
[61], 25 323.15 353.15 1.1 17.1 1.14 20
[63], 14 344.15 344.15 1.83 11.16 2.8 21.03

n-tridecane 184
[63], 14 344.15 344.15 2.03 12.07 6.45 21.98
[60], 10 333.15 333.15 1.5 9.81 7.59 20.90
[61], 18 323.15 353.15 1.1 11.1 4.8 19.27

n-tetradecane 198
[61], 5 344.30 344.30 11.03 13.79 1.22 4.03

[63], 15 344.15 344.15 2.52 13.38 6.21 22.08
[61], 22 323.15 353.15 1.05 12.01 5.5 20.79

n-pentadecane 212
[60], 11 333.15 333.15 1.50 9.98 6.79 20.43
[61], 25 323.15 353.15 1.05 15.1 3.06 21.31

n-hexadecane 226
[60], 157 313.15 443.05 0.34 23.01 1.52 23.39
[61], 23 323.15 353.15 1.03 12.01 6.12 21.5
[60], 58 297.85 443.05 0.14 19.01 2.69 27.05

n-heptadecane 240
[61], 9 333.15 333.15 1.56 8.40 7.24 18.91

[61], 23 323.15 353.15 1.1 16.20 2.81 20.95

n-octadecane 254 [61], 30 323.15 353.15 0.4 17.40 2.49 23.35

n-nonadecane 268 [61], 23 323.15 353.15 1.1 14.04 5.08 20.57

n-Eicosane 282
[61], 9 353.15 353.15 1 16.00 2.38 20.35
[64], 9 323.15 323.15 2.24 9.99 6.12 23.04

3. Model Development
3.1. Multilayer Perceptron (MLP) Neural Networks

The MLP technique is one of the frequently used types of artificial neural networks
(ANNs) [65–67]. MLP is an intelligent/smart approach for finding system properties; it
was developed based on biological nervous systems. The principal features of such systems
are to process elements (neurons) and links (interconnections). The interconnections task is
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to make connections among neurons, which have to process the information [66–70]. This
technique is made of at least three layers. The first, second, and third layers of MLP are
pertinent to input data, processing stages, and outputs, respectively. The intermediate layer
is known as a hidden layer. The total number of variables corresponds to the total number
of input neurons [68–72]. The trial-and-error method is employed to attain the optimum
number of neurons and layers in the hidden layers. However, in complex systems, it is
common to have a large number of neurons and layers for models to make a connection
between input and output data. There are interconnections among the neurons of the
hidden layers and those of the previous and next layers [70–73]. By adding the bias term
to the corresponding results (neuron values × corresponding weights) in the last layer,
the values of neurons in the output and/or hidden layers will be estimated [73–75]. An
activation function is used for better processing of the data. We considered an MLP model
with two hidden layers and activation functions such as tansig (for the first layer), logsig
(for the second layer), and purelin (for the outer layer). Equation (2) describes the procedure
to determine the MLP model outputs [72–74]:

Output = purelin(w3 × (log sig(w2 × (tan sig(x) + b1)) + b2 + b3) (2)

where W1 and W2 refer to the weight matrices of the two hidden layers; W3 introduces
the outer layer’s weight matrix; and b1, b2, and b3 are their corresponding bias terms. The
algorithm employed for optimization and training the model has a crucial influence on
the results of the MLP model. In this study, the Levenberg–Marquardt (LM) technique
was employed as an optimization algorithm to optimize the parameters of the MLP neural
network model.

3.2. Radial Basis Function (RBF) Neural Networks

The RBF neural network is a well-known neural network that is applied in both
classification and regression problems. Broomhead and Lowe, for the first time, described
the RBF neural network as a feedforward neural network [76]. The theory of function
approximation was the origin of the RBF neural network idea. RBF neural networks
have been broadly applied in many physical features, approximations, and mathematical
investigations [77,78]. These networks can handle arbitrarily distributed data, simply
induce to a multidimensional scope, and eventually offer reliable outcomes for the difficult
cases [76] of either classification or regression. Generally, an RBF neural network has
three feedforward layers, namely input, output, and an intermediate layer that relates the
input layer to the output layer [75]. The input layer consists of several input nodes, which
correspond to the number of input variables of the model. This layer is responsible for
transmitting the input vectors to the hidden layer(s). The main element of the RBF neural
network is its hidden layer, which has higher dimensions than the input space [79]. The
points within the hidden layer are placed in a specific location with a determined radius,
and the gap between their center and the input vector is measured in their neurons [80]. The
center vector has cluster centers expressed by cij, where j stands for the number of center
vectors (j = 1, . . . , N). It should be mentioned that the number of input data incorporated
in model training should be more than N [81]. In the training phase, the RBF neural
network model makes a nonlinear transformation to capture the complexities, as well as to
convey the input data into the hidden layer [82]. Some of the functions, including linear,
Gaussian, cubic, thin plate spline, multiquadratic, generalized, and inverse multiquadratic,
are of utmost application interest for radial basis functions [75,83]. In this study, due
to the smoother behavior and extensive application of the RBF models, the Gaussian
function was employed as the activation function. The center (ci) and the spreading
coefficient (σ2) characterize the Gaussian function. The Euclidian norm, which is defined
by Equation (3) [82], was employed to determine the location of the input vector (x) in
terms of the center (ci) of the Gaussian function:
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rj =

√√√√ P

∑
i=1

(
xi − cij

)2 (3)

where Cij introduces the centers; and P denotes the number of variables. Eventually, r will
be substituted into the Gaussian function as given below [80–83]:

ϕ(r) = exp
(

r2

2σ2

)
with spread coefficient σ > 0 (4)

where ϕ is the Gaussian function, while r and σ2 stand for the Euclidian distance and the
spreading coefficient, respectively.

The outcomes of the output layer were obtained using the following equation [80–83]:

yj =
kn

∑
i=1

wji ϕi(r) + wi i, j = 1, . . . , N (5)

where N represents the size of the training samples; Kn symbolizes the number of neurons
in the hidden layer; yi introduces the jth output of input vector x; Wi is the bias; and Wji
refers to the weight linking the hidden node i to the output layer.

In this study, we proposed the implantation of some algorithms, such as Levenberg–
Marquardt (LM), to optimize the MLP neural network model, and the imperialist competi-
tive algorithm (ICA), particle swarm optimization (PSO), gravitational search algorithm
(GSA), genetic algorithm (GA), and ant colony optimization (ACO) for optimization of
the RBF neural network model. All of the optimization algorithms along with their corre-
sponding flowcharts (see Figure S1a–e) are explained in the Supplementary Materials.

3.3. Group Method of Data Handling (GMDH)

Artificial intelligence (AI) approaches, including ANNs, GA, and GMDH, can be used
as novel approaches to address complicated computational problems. Also known as the
polynomial neural network (PNN), the GMDH is based on a layered framework in which
quadratic polynomials are utilized to integrate, through crossing separate neurons over,
in each layer to obtain a new generation of neurons in the next layer [84–86]. For this
purpose, two independent neurons are connected via the quadratic polynomial method.
The results of the combination generate new nodes for the next layer [84]. Shankar was
the first to consider the GMDH in terms of a self-organizing system [85]. Subsequently,
different versions of the algorithm were proposed by scholars from Poland and Japan [86],
highlighting the application of GMDH as the superior approach to AI-based pattern
recognition and short/long-term forecasts of random processes for complex systems.
Reporting the first-ever research on the GDMH, Ivakhnenko focused on the proper selection
of the quadratic polynomial expression [87]. As expressed by Equation (6), the Volterra–
Kolmogorov–Gabor sequences can be applied to define the link between the inputs and
outputs [87]:

Yi = a +
M

∑
i=1

bixi +
M

∑
i=1

M

∑
j=1

cijxixj + . . .
M

∑
i=1

M

∑
j=1

. . .
M

∑
k=1

dij...kxixj . . . xk (6)

where Y introduces the model output; xi, xj . . . , and xk are the independent variables; and
a, bi, cij, dij...k, and so on indicate the model coefficients defined by the algorithm. When two
independent parameters are subjected to a quadratic polynomial, the original parameters
are converted to new variables designated as Z1, Z2,..., Zn, as given below [85–87]:

ZGMDH
i = axi + bxj + cxixj + dx2

i + ex2
j + f (7)
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Referring to Equation (7), the constants are quantified by the least-squares method
(LSM). The LSM attempts to diminish the sum of squares of the error (SSE) to enhance the
prediction precision, as expressed below [88]:

δ2
j =

Number o f data

∑
i=1

(
yij − ZGMDH

i

)2
j= 1, 2, . . . , 2m − 1 (8)

where Zi represents the ith actual value and yij denotes the ith prediction/estimation result
(corresponding to the ith real value) of the jth polynomial equation, with δj referring to the
SSE of the jth polynomial. It should be noted that the polynomial corresponding to the least
SSE is selected as the solution. If the solution is not desired enough, the current-generation
parameters are subjected to other operations, including the division or multiplication, to
generate new parameters that, together with the previous parameters, comprise a new
generation. Hence, the numbers of parameters and equations are subject to change, upon
which the process is relaunched right from the first step. The correlations obtained from
the GMDH model to estimate the IFT between CO2 and n-alkanes are provided in the
Supplementary Materials in Table S1a–c, and a schematic view of the recommended model
for molecular weights lower than 128 g·mol−1 is depicted in Figure 1. As the number of
nodes in the GMDH model increases, the accuracy of correlation increases; however, the
correlation becomes longer with more terms. In other words, the structure of the correlation
becomes more complicated and needs more computational time. For calculating the IFT, it
is needed to first calculate all nodes values (N1, N2, . . . , N7) and then obtain the magnitude
of IFT.

Figure 1. Schematic of the network of GMDH for estimating IFT between CO2 and n-alkane. with
MW< 128 g·mol−1.

4. Results and Discussion

In the present study, the IFT between CO2 and n-alkanes (nC4 to nC20) was scrutinized
as a function of the pressure, temperature, and molecular weight of n-alkanes. As discussed
in the model development section, the introduced approaches for predicting/estimating
the IFT values were RBF-(ICA, GA, ACO, PSO, and GSA), MLP-LM, and GMDH. Smart
models for all temperature and pressure ranges exhibited acceptable accuracies. However,
to develop the mathematical model using GMDH, the experimental data were classified into
three groups based on the molecular weights of n-alkanes, including less than 128 g·mol−1

from C4H10 (58) to C8H18 (114), more than or equal to 128 and less than 170 g·mol−1 from
C9H20 (128) to C11H24 (156), and more than or equal to 170 g·mol−1 from C12H26 (170) to
C20H42 (282). Furthermore, the real IFT data were compared against the results obtained
from the Parachor approaches coupled with a number of equations of state, including
the Zudkevitch–Joffe (ZJ), Schmidt–Wenzel (SW), Redlich–Kwong (RK), two- and three-
parameter Peng–Robinson (PR2 and PR3, respectively), and two- and three-parameter
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Soave–Redlich–Kwong (SRK2 and SRK3, respectively). In order to assess the accuracies
and reliabilities of the models, the entire set of data was separated into training (80% of the
data) and testing subsets (20% of the data). It also should be noted that the data points in
each subset were selected randomly.

4.1. Accuracy and Validity of the Models

The model accuracy for predicting the IFT of CO2–n-alkane systems was evaluated
statistically based on the correlation coefficient (R2, higher is better) and average percent
relative error (APRE, %), average absolute percent relative error (AAPRE, %), root mean
square error (RMSE), and standard deviation (SD, lower is better) for the testing and
training subsets, as well as the entire data set.

Based on Table 2, no significant difference was noticed between the training and
testing subsets regardless of the considered optimization model, implying the possibility of
overtraining, a common concern in smart modeling studies. Moreover, Table 2 reveals that
the RBF-ICA model resulted in the lowest prediction errors, compared to other predictive
techniques, with an APRE, AAPRE, RMSE, R2, and SD of −1.47%, 4.42%, 0.54, 0.99, and
0.02, respectively. In this respect, the methodologies used in this work were ranked in
terms of accuracy as follows:

RBF-ICA > RBF-GA > RBF-GSA > RBF-ACO > GMDH > RBF-PSO > MLP-LM.

Table 2. Statistical parameters of the proposed models to obtain the IFT values of the CO2–n-alkane
systems.

Model APRE, % AAPRE, % RMSE, mN/m R2 SD

RBF-ICA
Train −1.49 4.43 0.53 0.99 0.02
Test −1.40 4.35 0.57 0.99 0.01
Total −1.47 4.42 0.54 0.99 0.02

Train −0.62 5.07 0.57 0.99 0.01
RBF-GA Test −2.51 5.35 0.44 0.99 0.03

Total −1.00 5.12 0.55 0.99 0.02

RBF-GSA
Train −1.37 5.65 0.64 0.99 0.03
Test −1.65 5.95 0.66 0.98 0.02
Total −1.43 5.71 0.64 0.99 0.03

Train −0.95 5.43 0.50 0.99 0.02
RBF-ACO Test −1.38 7.52 0.78 0.98 0.02

Total −1.02 5.85 0.57 0.99 0.02

Train −1.62 9.65 1.05 0.95 0.05
GMDH Test −3.49 10.52 0.99 0.96 0.03

Total −2.00 9.81 1.03 0.95 0.02

Train −2.06 9.87 0.80 0.98 0.05
RBF-PSO Test −3.19 12.36 1.15 0.95 0.05

Total −2.28 10.37 0.88 0.97 0.05

Train −3.08 11.97 1.18 0.95 0.05
MLP-LM Test −2.19 13.88 1.31 0.94 0.07

Total −2.93 12.49 1.23 0.95 0.07

A comparison between the AAPRE values attained for the models introduced in this
study is demonstrated in Figure S2. According to Figure S2, the RBF-ICA model, with an
AAPRE of about 3.34%, provided the most accurate prediction for the IFT of the CO2–n-
alkanes systems. However, the MLP-LM model could not lead to accurate estimations,
and the AAPRE attributed to this model was determined to be 12.48%. With a suitable
approximation, the AAPRE magnitudes of the RBF-GA, RBF-GSA, and RBF-ACO models
were close to each other. In addition, a similar AAPRE based on the predictions of the
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GMDH and RBF-PSO was obtained. It implied that not only the type of model, but also
the optimization technique, is important for developing an accurate model.

Figure 2 illustrates the cumulative frequency of the AAPRE for various models when
applied to the entire database. As shown in Figure 2, the cumulative frequency of the
estimation error was smaller than 20% for 95% of the RBF-ICA results, 94% of the RBF-GA
results, 93% of the RBF-ACO results, 86% of the RBF-PSO results, 82% of the MLP-LM
results, 94% of the RBF-GSA results, and 81% of the GMDH results. This finding implied
the superiority of the RBF-ICA model for estimating the IFT of the CO2—n-alkane systems.

Figure 2. Cumulative frequency curve for the models proposed in this research.

Figure S3 (panels a–g) depicts the graphical illustration of the APRE of the applied
models. The red color indicates the maximum error in the IFT estimation, and the purple
color represents the smallest error in model outputs. The peaks indicate the value of abso-
lute percent relative error reported at each temperature and different molecular weights.
At a specific point, as the peaks were higher, the error in predictions at that point was
greater. Generally, all the proposed models showed acceptable results for IFT estimation
of the CO2–n-alkane systems, according to their low values of APRE. Nevertheless, as is
clear from Figure S3, for an extended range of molecular weight of n-alkanes, the RBF-
ICA model resulted in precise estimations for IFT values. It is noteworthy that although
the RBF-GA model was superior to the other predictive tools (i.e., RBF-ACO, RBF-GSA,
RBF-PSO, MLP-LM, and GMDH), for n-alkanes with 150 g·mol−1 < MW < 200 g·mol−1

and 340 K < T < 380 K (MW is the molecular weight of n-alkane, and T refers to the tem-
perature, respectively), the RBF-ACO model could better estimate the IFT values than
the RBF-GA model. In addition, the GMDH model’s results for IFT of the CO2–n-alkane
systems were more precise than those for the MLP-LM model, particularly for n-alkanes
with MW < 150 g·mol−1.

Figure 3 presents cross plots of the experimental versus predicted/estimated mag-
nitudes of the CO2–n-alkane IFT by RBF-ICA model for the training and testing stages,
respectively. These curves prove, graphically, the model precision and efficiency during
both the training and testing phases over broad spectrums of pressure, temperature, and
molecular weights of the n-alkane studied in this paper. N-alkanes have a crucial influence
in controlling the IFT value of gas/crude oil systems, making them appropriate candidates
for representing the oil for IFT modeling.
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Figure 3. Cont.



Energies 2021, 14, 3045 11 of 25

Figure 3. Cross plots of the models developed for IFT determination.

The deviation of the models’ results from the laboratory data is visualized through
the so-called graphical error analysis. Figure S4 demonstrates such an analysis for both
training and testing phases. As the point clouds corresponding to different models are
concentrated around the bisector of the diagram, it reveals that the models, the RBF-
ICA in particular, successfully produce predictions/estimations that closely resemble
corresponding experimental data. Moreover, the models exhibit no bias in the estimations
and are rather quite symmetrically distributed around the bisector, implying the absence
of significant over/underestimation.

Figure 4 describes a graphical analysis of the mathematical model presented by
Shang et al. [22]. Due to the large scattering of data around the X = Y line, it can be
concluded that the model has low accuracy, which can be due to the validity of this model
within certain temperature and pressure ranges.

Figure 4. Cross plot of the model existing in the literature for IFT prediction/estimation.

In Table 3, the statistical parameters of Shang et al.’s model are provided. According
to the results, it is clear that their model underestimated the IFT values.
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Table 3. Statistical parameters of the model available in the literature to determine the IFT values of
CO2–n-alkane systems.

Model Statistical Parameters

Shang et al. AAPRE 154.56%
APRE 154.49%
RMSE 10.789

SD 6.407
R2 0.687

The distributions of the IFT estimation errors using the RBF-ACO, RBF-ICA, RBF-GA,
RBF-PSO, RBF-GSA, MLP-LM, and GMDH models versus the temperature are shown
in Figure 5 (panels a–g). As it is clear, the models introduced in this study resulted in
near-zero errors, confirming their accuracies and reliabilities.

Figure 5. Cont.
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Figure 5. Error distributions corresponding to the developed models to obtain IFT as a function of temperature (K):
(a) RBF-ICA, (b) RBF-ACO, (c) RBF-GA, (d) RBF-PSO, (e) RBF-GSA, (f) MLP-LM, and (g) GMDH models.

4.2. Analyzing Trend of RBF-ICA Outcomes

In order to examine the impact of pressure on the IFT of the CO2–n-alkane binary
systems, IFT versus pressure was plotted at various temperatures based on both the
experimental data and modeling results. As demonstrated in Figure 6, the IFT of the
CO2–n-alkane system, at a constant temperature, was reduced as the pressure of the system
increased. The observed trend for IFT variation with the pressure was in good agreement
with the findings of our previous investigation for CO2–n-heptane binary systems at various
temperatures (from 313.15 to 393.15 K) [55]. It is broadly believed that the solubility of CO2
gas into n-heptane increases with increasing pressure, causing a reduction in IFT between
the phases [59]. Analyzing the temperature impact on the IFT of the CO2–n-heptane binary
systems, Figure 7 (panels a and b) highlights an inverse relationship between the IFT and
temperature at low pressures, which turned into a direct relationship at high pressures.
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Figure 6. Experimental IFT and estimated values using the RBF-ICA model at 313.15 K and different
pressures.

Figure 7. Influence of temperature on IFT at: (a) low and (b) high pressure ranges, according to experimental values and
RBF-ICA predictions.

4.3. Sensitivity Analysis

Using the RBF-ICA model, a sensitivity analysis was conducted. For this purpose,
a relevance factor (Equation (9)) in the range of −1 to +1 was considered for each input
parameter, with the positive relevance factors corresponding to direct impacts on the model
output, and vice versa [89]:

r(Ik, O) =
∑n

i=1
(

Ik,i − Ik
)(

Oi −O
)√

∑n
i=1
(

Ik,i − Ik
)2

∑n
i=1
(
Oi −O

)2
(9)

where Ik represents the kth model input (temperature, pressure, or MW of n-alkane); Ik
indicates the mean of the kth input; Ik,i refers to the ith value of the kth input; and O and
O denote the estimated and mean of the modeled IFT values, respectively. A higher
value of r for an input parameter implies the higher effect of that parameter on the model
outcomes [89].

Figure 8 depicts the outcomes of the sensitivity analysis performed on the input
parameters (i.e., the MW of n-alkane, temperature, and pressure). According to Figure 8,
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the MW of the n-alkane was found to directly affect the predicted IFT, while the pressure
and temperature exhibited inverse relationships with the IFT, as the obtained relevance
factor had the negative sign. As discussed earlier, at high-pressure conditions, the IFT of
CO2–n-alkane systems increase as the temperature increases. Contrarily, for low-pressure
cases, the IFT will decrease upon an increase in the system temperature. Hence, the
negative value of r for temperature revealed that the data points utilized in this study were
measured mostly at low-pressure conditions. In addition, the magnitude of the relevance
factor was maximal for pressure; this implies that its impact on the IFT was more than
other input parameters.

Figure 8. Impact of input parameters on the magnitudes of IFT (mN/m).

4.4. Outlier Detection

An outlier is a data point that is significantly detached from other data points [90].
Usually, the outlier data may emerge in large sets of laboratory data, which could harm
the reliability and accuracy of the developed model [70,91,92]. Thus, the exclusion of
these data from the training data set is of paramount importance. In this work, we used
the leverage statistic for outlier detection, which involves the differences between the
experimental data and the corresponding estimated results [90,93]. The differences between
the represented/predicted data are named “standardized cross-validated residuals” and
are incorporated in a matrix called the Hat matrix [91,93]. The elements on the main
diagonal of the Hat matrix are defined as hat values. The outliers can also be detected
graphically by drawing the so-called William’s plot. Figure 9 displays William’s scheme
for the results of the proposed RBF-ICA model while determining IFT values of the CO2–n-
alkane systems. As shown in Figure 9, bad high leverage were the points where, regardless
of their hat value, their SR value was less than –3 and more than 3. These data were
laboratory-suspicious. In addition, the data points with a hat less than hat* and SR between
–3 and 3 are called good high leverage. These data are different from most of the data
used and may be accurately estimated, but are outside the applicability domain of the
model [55,91]. A list of the suspected data points that were out of the applicability of the
models is provided in Table 4.
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Figure 9. Determination of possible outlier data points and application area of the proposed model
for IFT estimation.

Table 4. List of the suspected data identified by the leverage technique.

No n-Alkane Temperature
Range (K)

Pressure Range
(MPa)

IFT, Exp.
(N/m)

IFT, Pred.
(N/m) H R Ref

1 C7H16 323.00 2.65 16.37 10.75 0.002843 −3.86 [58]
2 C7H16 323.00 5.02 11.12 6.60 0.002366 −3.10 [58]
3 C9H20 333.15 1.85 21.77 15.31 0.002684 −4.44 [22]
4 C9H20 333.15 2.85 20.25 13.55 0.002158 −4.60 [22]
5 C9H20 333.15 3.72 18.49 12.03 0.001842 −4.43 [22]
6 C9H20 333.15 4.54 17.10 10.64 0.001665 −4.44 [22]
7 C9H20 333.15 5.45 15.58 9.17 0.001606 −4.40 [22]
8 C9H20 333.15 6.39 13.96 7.73 0.001696 −4.28 [22]
9 C9H20 333.15 7.42 12.16 6.26 0.001972 −4.05 [22]

10 C9H20 333.15 8.44 10.57 4.90 0.002428 −3.89 [22]
11 C9H20 333.15 9.60 8.69 3.47 0.003169 −3.59 [22]
12 C9H20 333.15 10.46 7.64 2.47 0.003868 −3.55 [22]
13 C9H20 297.85 6.01 2.8 9.39 0.000968 4.53 [22]
15 C12H28 344.15 2.52 22.08 17.34 0.002414 −3.25 [63]
16 C12H28 344.15 3.21 20.79 16.29 0.002018 −3.09 [63]
17 C14H30 323.00 2.65 16.37 10.75 0.002843 −3.86 [63]
18 C14H30 323.00 5.02 11.12 6.60 0.002366 −3.10 [63]
19 C16H34 443.05 20.99 1.97 2.45 0.017311 0.36 [60]
20 C16H34 443.05 23.01 1.52 1.47 0.022369 −0.030 [60]

4.5. Comparison between Proposed and Pre-Existing Models

In this section, we first evaluate the density and MW of the phases in the CO2–n-decane
systems. The Parachor approach is then implemented, into which the estimated parameters
are incorporated, with different values of n (3.57, 3.66, 3.88, and 4) combined with seven
different EOSs to determine IFT values. The Parachor parameters were determined as
follows [48]:

σ =

[
Pch ×

(
ρl − ρg

)
M

]n

(10)

(Pch)i = 69.6 + 2.3Mi (11)
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The EOSs used in this research included RK, PR, SRK, Schmidt–Wenzel (SW), and
Zudkevitch–Joffe (ZJ). The RK and two-parameter PR (PR2) are equations of degree 3 with
two empirical constants. These EOSs are widely used to obtain the physical properties and
equilibrium behaviors of hydrocarbon liquid–vapor systems. RK introduced an EOS in
which the bond of molecular tension with temperature is investigated in a manner similar
to the Clausius equation. The advantage of this EOS over Clausius is that it does not have

a third empirical constant. Soave–Redlich–Kwong suggested that the term
a

T
1
2

should

be replaced with a temperature-dependent term, aT . In the SRK EOS, aT changes with
temperature, and most applications of this equation are at a constant temperature. The tem-
perature and pressure, reduced temperature, reduced vapor pressure, and acentric factor
are involved in SRK EOS. Molecular attraction in the PR EOS is proposed in different sizes;
aT , like in the SRK EOS, is temperature-dependent. The coefficients are also calculated us-
ing a number of mathematical relations. The SRK EOS is very accurate for substances with
a small acentric factor (ω), while the PR EOS offers better results for substances/chemicals
with ω of about 1.3. To reduce the possible error, the Schmidt–Wenzel relation introduces
ω as the third parameter of attraction, as given below [48]:

P =
RT

(v− b)
− ac × α

[v2 + (1 + 3×ω)× b× v− 3×ω× b2]
(12)

By plugging (ω) = 0 and (ω) = 1.3 in the SW equation, the SRK and PR EOSs are
generated, respectively. These EOSs accurately predict liquid density. Therefore, it can be
concluded that the SW EOS is the general form of the SRK and PR EOSs.

Matching the predicted data with the data measured in the saturation state has
been recently used by almost all researchers to determine the parameters of the EOSs.
Zudkevitch–Joffe suggested that the parameters need to be measured when required
under system conditions (temperature and pressure), and that the relations need to be
used to simplify calculations. Using correlations to calculate parameters certainly makes
calculations easier. On the other hand, it reduces the accuracy of calculations, because
each relationship has some deviation from the available data. In the method proposed by
Zudkevitch–Joffe, when used for oil reservoirs, considering that the temperature in the
reservoir is mostly constant, the calculations do not change appreciably, and only once is
enough to calculate the parameters [94,95].

Using these EOSs coupled with the Parachor model, the IFT values of CO2–n alkane
systems were estimated. Then, the IFT experimental data and the values predicted by the
best intelligent model and the mathematical model presented in this research and the IFT
values obtained using the mentioned EOSs were compared at the same thermodynamic
conditions. This comparison showed that there was a better agreement between the IFT
data predicted by the RBF-ICA algorithm and the experimental data than the values
predicted by the EOSs under the same conditions. Figures 10 and 11 further confirm the
high accuracy of RBF-ICA in forecasting IFT.

As is evident in Figure 10a, the PR3 and SW EOSs outperformed the other models
in predicting the CO2–n-decane IFT values. Similar analyses were performed for the
CO2–n-heptane systems, indicating the superiority of the PR2, PR3, SRK3, and ZJ EOSs
(Figure 10b). In Figure 10a,b, the RK and SRK2 EOSs show low accuracy. Thus, it is
recommended not to use these two EOSs to predict IFT.

Figure 11a–c depict the experimental IFT data of the CO2–n-decane along with the
predicted/estimated results using the RBF-ICA and GMDH models, as well as those
evaluated by the Parachor equation combined with either of three EOSs, namely PR3,
SRK3, and ZJ (see Tables 5 and 6). The outcomes suggested superior accuracy of the
Parachor equation (at n = 4) combined with any of the PR3, SRK3, and ZJ EOSs. In
order to properly check the results of the RBF-ICA and GMDH models and conduct a
performance evaluation on other EOSs when coupled with the Parachor equation (at n = 4)
for predicting the CO2–n-alkanes IFT (i.e., nC7 and nC10), the results of the models and
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EOSs were compared to the corresponding experimental data at various pressures. It is
clear that the developed models in this study were superior to the Parachor models.

Figure 10. A comparison between the experimental (a) CO2–nC10 and (b) CO2–nC7 IFT values and
the estimated IFTs using the Parachor equation (n = 4) in combination with several EOSs, while
investigating effect of pressure.
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Figure 11. A comparison between the experimental and estimated IFT values of CO2–n-decane
systems using the Parachor equation with different values of n in combination with: (a) PR(3),
(b) SRK(3), and (c) ZJ EOSs at different pressures.
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Table 5. Formulas of the used EOSs [13].

Equation of State Equation

Zudkevitch–Joffe (ZJ) P =
RT

v− b
− α

T
1
2 v(v + b)

Schmidt–Wenzel (SW) P =
RT

v− b
− acα(Tr)

v2 + (1 + 3ω)bv− 3ωb2

Redlich–Kwong (RK) P =
RT

v− b
− α√

Tv(v + b)
Two-parameter Peng–Robinson (PR2) P =

RT
v− b

− α

v(v + b) + b(v− b)
Two-parameter Soave–Redlich–Kwong (SRK2) P =

RT
v− b

− acα

v(v + b)
Three-parameter Peng–Robinson (PR3) P =

RT
v− b

− α

v2 + uv + w
Three-parameter Soave–Redlich–Kwong (SRK3) P =

RT
v− b

− acα(Tr)

v2 + (1 + 3ω)bv− 3ωb2

Table 6. Parameters of the EOSs employed in this research work [13].

Equation of State Parameter

Zudkevitch–Joffe (ZJ)
α and b can be determined using pressure and temperature.

For intricate mixture.

bi = bZJ
i

[
1 + b0

(
T
TC
− 1
)]

Schmidt–Wenzel (SW)

Ωa = (1− ξc[1− βc])
3

Ωb = βcξc
(6ω + 1)βc

3 + 3βc
2 + 3βc − 1 = 0

ξc =
1

3(1 + βcω)

b = Ωb
RTC
PC

α =
[
1 + m

(
1−
√

Tr
)]2

a = Ωa

(
R2T2

C
PC

)
α

Redlich–Kwong (RK)
a =

0.42748R2T2.5
c

Pc

b =
0.08664RTc

Pc

Two-parameter Peng–Robinson
(PR2)

m = 0.37464 + 1.54226ω− 0.26992ω2

b = 0.07780
RTC
PC

a =
[
1 + m

(
1−
√

Tr
)]2

α = a.αC, αC = 0.45724
(RTC)

2

PC

Two-parameter
Soave–Redlich–Kwong (SRK2)

m = 0.480 + 1.574ω− 0.176ω2

b =
0.08664RTc

Pc

α =
[
1 + m

(
1−
√

Tr
)]2

ac =
0.42747R2T2

c
Pc
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Table 6. Cont.

Equation of State Parameter

Three-parameter
Peng-Robinson (PR3)

w = Ωw

(
RTC
PC

)2

u = Ωu
RTC
PC

Ωa = ΩaCα(Tr)

C = ΩC
RTC
PC

b = Ωb
RTC
PC

α =
[
1 + m

(
1− T0.5

r
)]2

a = Ωa
R2T2

C
PC

Three-parameter
Soave-Redlich-Kwong (SRK3)

m = 0.48508 + 1.5517ω− 0.1561ω2

b = 0.08664
RTc

Pc

α =
[
1 + m

(
1−
√

Tr
)]2

a = 0.42747
(RTc)

2

Pc

5. Conclusions

Modeling the interfacial tension (IFT) of the CO2–n-alkanes systems, comprising
879 data points for various temperatures (varying from 297.85 K to 443.05 K), pressures
(ranging from 0.10 MPa to 23.01 MPa) and n-alkane molecular weights (nC4 to nC20), was
performed, and the following main outcomes were drawn:

1. All the developed models for IFT prediction of the CO2–n-alkane systems yielded
accurate results both for the training stage and the testing stage. The proposed
techniques could be sorted in decreasing order of accuracy as follows:

2. RBF-ICA > RBF-GA > RBF-GSA > RBF-ACO > GMDH > RBF-PSO > MLP-LM.
3. The expected physical trends for the CO2–n-alkane systems were successfully fol-

lowed, and the effects of pressure, temperature, and MW of n-alkanes on IFT behavior
of the targeted systems were thoroughly studied.

4. The higher value of the relevancy factor for pressure, in comparison with the values
for temperature and MW of n-alkane, implied the significant impact of the pressure
on the IFT of the CO2–n-alkane.

5. By comparing the performance of the RBF-ICA, GMDH, and Parachor models in IFT
estimation of the CO2–n-heptane and CO2–n-decane systems, the superiority of the
RBF-ICA model over the other models was obvious. After that, the GMDH model,
followed by the Parachor equation (n = 4) combined with the PR3, SRK3, and ZJ
EOSs, showed an excellent match with the experimental data for the aforementioned
binary systems.

6. From a statistical viewpoint, both the used laboratory data and the developed models
were valid. Only 1.9% of the used data were out of the applicability domain of the
suggested RBF-ICA model, proving the high accuracy of the model.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/en14113045/s1, Figure S1 (a): the flow chart of the GA algorithm used in this study;
Figure S1 (b): the flow chart of the GSA algorithm used in this study; Figure S1 (c): the flow chart of
the ICA algorithm employed in this study; Figure S1 (d): the flow chart of the PSO algorithm used in
this study; and Figure S1 (e): the flow chart of the ACO algorithm used in this study. Figure S2: the
average absolute relative error based on the models introduced in this study. Figure S3: absolute
percent relative error (APRE) contour of IFT for: (a) RBF-ICA, (b) RBF-ACO, (c) RBF-GA, (d) RBF-PSO,
(e) RBF-GSA, (f) MLP-LM, and (g) GMDH at different temperatures and MWs of n-alkanes. Figure S4:

https://www.mdpi.com/article/10.3390/en14113045/s1
https://www.mdpi.com/article/10.3390/en14113045/s1
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experimental data versus RBF-ICA predictions of IFT between CO2 and n-alkane: (a) training subset,
and (b) testing subset. Table S1: developed correlations by the GMDH model to estimate the IFT
between CO2 and n-alkanes with different ranges of molecular weights of n-alkanes.
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