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Abstract: Due to the globally increasing share of renewable energy sources like wind and solar power,
precise forecasts for weather data are becoming more and more important. To compute such forecasts
numerous authors apply neural networks (NN), whereby models became ever more complex recently.
Using solar irradiation as an example, we verify if this additional complexity is required in terms
of forecasting precision. Different NN models, namely the long-short term (LSTM) neural network,
a convolutional neural network (CNN), and combinations of both are benchmarked against each
other. The naive forecast is included as a baseline. Various locations across Europe are tested to
analyze the models’ performance under different climate conditions. Forecasts up to 24 h in advance
are generated and compared using different goodness of fit (GoF) measures. Besides, errors are
analyzed in the time domain. As expected, the error of all models increases with rising forecasting
horizon. Over all test stations it shows that combining an LSTM network with a CNN yields the best
performance. However, regarding the chosen GoF measures, differences to the alternative approaches
are fairly small. The hybrid model’s advantage lies not in the improved GoF but in its versatility:
contrary to an LSTM or a CNN, it produces good results under all tested weather conditions.

Keywords: neural network; solar irradiation; time series forecasting; LSTM; CNN

MSC: 62M45

JEL Classification: C45; C53; C58

1. Introduction

The sun has been an object of interest since the beginning of scientific research. Hence
its movement over the year is well established. Michalsky [1], for example, derived a
set of formulas which allow to identify the current solar position with an error of ±1◦.
Based on the solar position one can compute the extraterrestrial irradiation which is the
maximum solar irradiation (MSI) for any GPS coordinate on earth. Other models like Bird’s
clear sky model [2] use this information to calculate the solar irradiation under clear sky
conditions with an error of only ±5%. However, when it comes to cloudy conditions, both
estimation and forecasts of solar irradiation on the ground are far more complicated but
not less relevant—especially today. There are worldwide efforts to increase the use of solar
power. However, if not installed in a desert and in absence of considerable battery power,
solar panels are a highly volatile source of energy causing significant grid stabilization
efforts. Nevertheless, the world and especially central European countries like Germany
rely on it for transforming their current fossil-fuel dominated energy mix. Hence, there
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is a significant need especially for good short-term solar power forecasts. Power plant
dispatching heavily relies on such numbers to estimate how much power capacity needs to
be reserved and/or activated on short notice. Furthermore, new concepts like integrated
energy, where different sectors (e.g., heating and driving) are connected, can benefit from
better solar power forecasts.

High-quality solar irradiation forecasts are the major input factor deciding about
the reliability of estimated future solar power amounts. Thereby, obviously, location
matters. Forecasting models perform comparably better in areas with a lot of sunshine and
less clouds (Southern Europe) than in areas where clouds and/or precipitation are more
likely [3,4]. Due to the above described demand there is already an extensive literature on
forecasting solar irradiation and/or solar power (see Section 2), whereby lately the focus
shifted towards methods that involve artificial neural networks (ANN). This concept, in
most cases simply referred to as neural networks (NN), was invented in the 1940s and has
been applied to a large variety of problems (see Section 2). Apple’s Siri is based on NNs,
for example. It has also been used for time series forecasting since 1996 [5]. In the context
of solar irradiation forecasting we found more than 200 articles concerned with NN-based
irradiation forecasts, whereby there are numerous suggestions to combine different NN
setups with each other. Lately, various authors like Kreuzer et al. [6] or Wang et al. [7],
for example, started to combine a convolutional neural network (CNN) with a long-
short term (LSTM) neural network in order to incorporate interdependencies in time and
between different climate data like wind, temperature and irradiation. Kreuzer et al., who
applied an NN for generating short-term temperature forecasts, showed that this reduces
forecasting errors compared to a pure CNN or LSTM network. On the one hand, this should
also be beneficial for irradiation forecasting as this parameter is more deterministic than
temperature, because we have a clearly specified annual and daily pattern. On the other
hand, solar irradiation on the ground depends on factors like cloud coverage, which is both
an autoregressive and a highly volatile stochastic process. Wang et al. [7] applied such a
combination to forecast five-minute irradiation values and showed that a combination of
CNN and LSTM network indeed improves forecasting quality: in their article the method
outperforms various NN benchmarks.

However, their results have only limited validity, as they used one data set from a
rather sunny location, namely Alice Springs in Australia, as a test set. Like Kreuzer et al. [6],
the authors’ focus was rather on the method itself than on analyzing its performance in
detail. At Alice Springs, for example, cloudiness is of minor importance. The method
has to be tested for different climate conditions. Models perform worse in areas with less
sunshine, because weather is less stable there. Lorenz [3] computed a forecasting error for
Southern Europe between 20% and 35% whereas in central Europe of up to 60%. Hence, a
good performance in a sunny area is not necessarily a strong argument for a forecasting
method. In summary: as shown in detail in Section 2, there have been substantial efforts
to improve forecasting quality using NNs like CNNs or LSTM networks or combinations
of both. However, until now, when it comes to solar irradiation forecasting, there have
been no efforts to (a) compare NN models of different complexity under different weather
conditions and (b) analyze more in detail the resulting error statistics. Authors commonly
apply standard statistical measures like the root mean square error (RMSE) and mean
absolute error (MAE). There is rarely an error analysis in the temporal domain. In this
article we aim to fill this gap by including four different locations across Europe from sunny
Almeria in Spain via the windy sea town of Hull to Rovaniemi in Finland, located close to
the Arctic circle. Even though this still does not cover all worldwide weather scenarios,
it gives at least a good impression of how the models work under different conditions.
It would be valuable information to know under which (weather) conditions a model
performs good or not, and if the comparably high complexity of combining an LSTM and
CNN model really pays off regarding forecasting precision. This is why we especially focus
on evaluating the performance and analyze the errors in detail in Section 4.4. Thereby we
also consider the time dimension.
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The setup of our case study is as follows: for all locations we produce hourly, i.e.,
short-term forecasts for global irradiation on the ground for up to 24 h in advance. As
auxiliary variables for the forecast we add the MSI and other meteorological data such as
temperature and rainfall. Results are analyzed in detail. As with most authors, aggregated
goodness of fit (GoF) measures (RMSE and MAE) are computed. Errors are also checked for
bias and skewness. Above that we perform an analysis in the time domain to evaluate when
and under which conditions errors are high or low. Overall, as a result, we see that errors
increase with the forecasting horizon. This makes sense as a longer horizon offers a greater
chance for changing weather. Albeit the combination of LSTM and CNN performs better
then other NN benchmarks on the long run, it is outperformed at all locations for short
horizons. Furthermore, for Ulm, Hull, and Rovaniemi, even for forecasting horizons larger
than about five hours, the comparative advantage regarding precision does not justify the
additional complexity. Interestingly, for Almeria, the sunniest candidate, combining CNN
and LSTM network does make a change, as for the other locations, a comparably simple
and well-established LSTM shows a reasonable performance. In Almeria it does not. Hence,
the strength of the hybrid model shows in its versatility. Above that, including the MSI
improves the forecasting quality. We also see that all tested models are unbiased-except
for the CNN, which on average overestimates irradiation a bit. Forecasting errors, which
are computed as true irradiation minus forecasted irradiation, are slightly skewed to the
left, meaning that if we underestimate irradiation, the risk of significantly missing the real
value is larger than when overestimating.

The paper is structured as follows: in Section 2, we comment on existing literature
and why we see the necessity to add another concept. Section 3 provides an overview
over the NN setups used in this article. Thereby we assume that readers are familiar with
the fundamental definitions of NNs. If not, respective literature is suggested. Section 4
contains the case study with a detailed discussion of the results and the corresponding
errors. Eventually, Section 5 concludes the article.

2. Concepts to Compute Solar Irradiation Forecasts

There are two different major approaches for performing solar irradiation forecasts,
namely physical models and stochastic models. Thereby, among other things, the choice
depends on the forecasting horizon. In this section we give a brief overview over both
model types with a focus on stochastic NN-based sources.

Physical models, also called numerical weather forecasts, mostly try to identify the
interactions of meteorological factors like wind, solar irradiation, etc. For the forecast
itself no historical data is needed; however, one requires substantial information about
the location and the local interaction of individual weather data [8,9]. Normally those
methods are not used for very short-term forecasts [10]. If applied in this context, all-
sky cameras and/or satellite images are involved [11,12]. Depending on the forecasting
horizon, methods like autoregressive models or NNs might be involved as well to produce
forecasts. There are various models available and literature has shown that quality can
be improved by combining a few methods in the context of ensemble forecasts [13–16].
Hassani et al. [17], for example, combined 12 models to compute forecasts.

Stochastic models, again, follow a data-based approach. Their intention is to identify
patterns in historical data in order to produce forecasts. The simplest approach is the
seasonal naive forecast, i.e., the rough assumption that the weather tomorrow is more or
less the weather of today. In formulas X̂t = Xt−24, t = 25, 26, 27, . . . , T, whereby Xt is
an observation at time instance t and T denotes the length of the data set. Despite being
rather daring, the assumption that structures are persistent has worked fairly well in many
applications like temperature or energy demand forecasts. Alternatively, especially for
forecasts up to 24 h ahead, the seasonal autoregressive moving average model (SARIMA)
[18] is used. However, in case of hourly solar irradiation data, SARIMA might face quite
a few problems as the time series shows numerous instationarities. This is why different
forms of NNs become more and more popular in irradiation forecasting. They combine
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the promise of identifying and processing complex interdependencies between different
meteorological data and a a certain computational efficiency so we can run them as stand-
alone applications. As mentioned above we found more than 200 publications (Q4 2020)
about using machine learning techniques for irradiation forecasts and we cannot mention
all of them. Instead we try to give an overview over the range of potential models. Most
involve neural networks, but there are also a few approaches based on support vector
machines [19–21].

Abdel-Nasser et al. [22] applied a recurrent LSTM model to forecast photovoltaic
power. They benchmarked their model to various alternatives like different NN versions,
an ARIMA model, support vector machines, and even a hybrid of ARMA and NN. The
methods are applied to Aswan and Cario, both sunny locations in Egypt. Hence their
results, which show that an LSTM network is capable to produce good forecasts, have
only a limited validity when talking about forecasts in regions with more clouds and
rain. Furthermore, the models are only briefly compared regarding error levels. Lee
and Kim [23] favored recurrent NNs and used (seasonal) ARIMA models and different
NNs as benchmarks as well. Contrary to Abdel-Nasser et al., they included an error
analysis in the time domain but focused only on one location, which again limits the
transfer of the results to other weather conditions. Benali et al. [24] combined random
forests with an NN. Random forests are part of supervised learning where combinations
of decision trees are trained. Using this concept the authors hope to catch anomalies in
the data. Like the aforementioned authors they consider only one specific location. In
addition, they focus on very short forecasts up to only six hours in advance. Ozoegwu [25]
combined an autoregressive model with NNs. However, they apply their model only to
monthly data, which means it does not have to bother with challenges like rapidly changing
weather conditions like sudden temperature drops, unpredictable cloud movements, or
daily seasonality, for example. Pereira et al. [26] used NNs not for genuine forecasts but
to improve forecasting precision of other algorithms. Hence, this is of minor relevance
to us here but still worth mentioning. Gensler et al. [27] applied various deep learning
strategies like an LSTM network to forecast solar power. Contrary to other authors, their
data set is comprised of 21 data sets from different locations scattered across Germany.
Being much better than considering only one location, interpretation is still limited to
German weather conditions. Their performance analysis is fairly extensive though. Lima
et al. [28] compared different techniques with each other and proposed a deep learning
strategy that is combined with a forecast based on portfolio theory, a concept from finance.
Their method is applied to data from Brazil and Spain with rather convincing results, as
measured errors are small. However, again, Spain is a country with a high number of
sunshine hours over the year, so these numbers are to be treated with care.

Above that, there are numerous examples of combining CNNs and LSTM networks.
Lately it has been used for pattern recognition in figures and video sequences [29–31] but
also for time series forecasting. He et al. [32] and Livieris et al. [33], for example, forecasted
gold prices using a combination of CNN and LSTM networks. Other authors [34,35] used
a hybrid model for stock price forecasting. Neither stock nor gold prices show distinct
seasonal patterns and other instationarities, so their results can hardly be transferred to
weather forecasts. There are further applications not related to climate forecasting, which
are mentioned for the sake of completeness: Li et al. [36], for example, used a hybrid CNN-
LSTM network to forecast particulate matter, Baek et al. [37] forecasted water levels and
quality, and Cao et al. [38]—as an exception—applied a CNN-LSTM model for long-term
predictions of waterworks operational data. Regarding climate data forecasts, there are
two sources that also have been mentioned in the introduction: Wang et al. [7] applied a
combination of LSTM and CNNs to forecast irradiation at Alice Springs, whereby the data
set was half a year long and comprised of five-minute data. Hence, they did not have to
bother with any annual seasonality. Kreuzer et al. [6] considered hourly data and extended
the number of locations to five different weather stations across Germany. Here, again,
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regarding using the results, we are limited to German climate conditions. Besides, they
apply the concept to temperature data, and their error analysis is fairly short.

To sum up: there is an extensive literature on applying NNs or hybrids of NN models
for forecasting purposes in various fields, among others finance and climate data science.
Considering all results, a hybrid CNN-LSTM model should perform quite well for any
location or any application. However, when it comes to irradiation forecasting, almost
all authors test their models only on one or maximum two (often very sunny) locations,
thereby excluding statistically challenging effects like cloudiness or precipitation. Besides,
performance and error analysis is often done only on a rather superficial level.

3. Neural Networks for Time Series Forecasting

As mentioned in the introduction, we assume that the reader has at least some funda-
mental knowledge about NNs. If not, please refer to Zou et al. [39] or Aggarwal [40] for a de-
tailed introduction. In this article we consider CNNs introduced by LeCun et al. (1998) [41]
and LSTM networks introduced by Hochreiter (1997) [42], as these concepts showed a
promising performance when used for forecasting purposes. This, in turn, motivated
researchers to combine both approaches [6,7,32]. In our case study we test the following
models: an LSTM network (Section 3.2), a CNN ( Section 3.3), and two hybrid versions
(Section 3.4).

3.1. Artificial Neural Networks

Artificial neural networks (ANN) are computing systems inspired by biological (real-
world) neural networks that constitute animal brains. Accordingly, an ANN is based on a
collection of nodes called artificial neurons. These neurons are connected with weights and
comprise of biases and activation functions. Depending on the input, different neurons
will be activated and lead to a certain output. The neurons are organized in so-called
layers. In addition to the input and output layers, there is the possibility to include a
certain number of hidden layers. Designing the network architecture means determining
the number of nodes on each layer, the number and type of layers in the network, and
fixing other parameters. These factors are usually set by intuition or experience from other
related work and then optimized via a training process using a specific data set [7]. Once
the network architecture is set up, input data with the associated labels is given to the
NN; during training, the weights and biases are adjusted so that the error between the
processed input data (i.e., the NN output) and the labels is minimized.

3.2. Long Short-Term Memory Neural Networks

Long short-term memory is an artificial recurrent neural network (RNN) architecture
to learn long-term dependence information and to deal with long time sequences. Such
networks are well-suited for classifying or processing time series data as well as making
predictions based on such data. The benefit of an LSTM network compared to traditional
RNN is its internal memory unit and gate mechanism, which overcomes the gradient
disappearance and gradient explosion problems of other RNNs [42]. LSTM networks are
widely used for time series forecasting and thus often serve as a benchmark for other
models [6,7]. Contrary to a simple NN, an LSTM cell consists of different gates: an input
gate, a forget gate, an update gate, and an output gate. These gates process the data and
store the information of the previous time step. The combination of forget gate and update
gate is thereby responsible for identifying and learning long-term structures in the data set.

3.3. Convolutional Neural Networks

Convolutional neural networks (CNN) have become one of the most prominent
machine learning method in recent years. Initially developed for computer vision, CNNs
have shown superior performance in classification tasks [43] such as object recognition in
images [44], speech recognition and modeling [45], and natural language processing [46].
Because of the great success of CNNs, they have been applied to other tasks as well, in
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particular time series forecasting. Promising results were shown by Borovykh et al. [47]
who applied CNNs mainly to financial data. Other applications are solar power forecasting
and electricity load forecasting [48].

A CNN mainly consists of a convolutional layer and a and pooling layer. During the
convolution, the data values are multiplied by the filter values and then summed up. In the
pooling step the values are aggregated. Thereby the type of convolution varies and relies
on the specific application. Basically there are three types [49]: for time-series data in most
cases a 1D convolution is used, 2D convolution is used for image data, and 3D convolution
is used for 3D data like magnetic resonance images. The difference is the direction in which
the kernel/filter moves. In a 1D convolutional layer the kernel only moves in one direction
which is time, whereas in a 2D convolution the kernel moves in a horizontal and a vertical
direction. The advantages of a 1D convolution is that a relatively shallow architecture (i.e.,
small number of hidden layers and neurons) is enough to process the input data (e.g., a
time series) whereas 2D convolution requires deeper architecture to handle such tasks. This
effects the training time and complexity. With few hidden layers and neurons the training
time and the computational requirements are low [50].

3.4. Hybrid Models

As both LSTM and CNN are already widely used for forecasting purposes, various
authors began creating hybrid models. The idea is that the LSTM network handles the
temporal information of the historical data and the CNN handles the spatial information.
Models differ in the sequence of LSTM and CNN step. One version is to first insert data
into the convolutional layer, whose output is then given to the LSTM layer. We call this
model short convLSTM as Kreuzer et al. do [6]. Alternatively, we may invert the sequence,
i.e., first handle the temporal information via an LSTM network and then focus on the
spatial dimension using a CNN. This version we call LSTMconv. The structure of an
LSTMconv model is exemplary, as shown in Figure 1. The convLSTM model is constructed
analogously.

 

  ⁝      ⁝      ⁝      ⁝      ⁝      ⁝      ⁝      ⁝ 

LSTM LSTM LSTM . . . 

⁝ 

. . . 

Input 
Layer 

LSTM 
Layer 

Convolutional 
Layer 

Pooling 
Layer 

CNN 

Output 
Layer 

Figure 1. Structure of LSTMconv model (based on [51]).

4. Case Study: Forecasting under Different Climate Conditions

We test various NN-based forecasting models at different locations across Europe
in order to verify their performance under different climate conditions. The data sets
are explained in Section 4.1, whereas model architecture and calibration are discussed in
Section 4.2. GoF measures are presented in Section 4.3 and results are given in Section 4.4.
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For almost all numerical computation Python 3.7 was applied. Only for calculating the
maximum solar irradiation (MSI) we use R 3.6.3. The final model is set up with Tensorflow
(v2.3.1); loading and managing the data is done with the pandas (v1.1.3) and numpy
(v1.18.5) libraries. Visualizing the data is done with matplotlib (v3.3.1). For data scaling
and error calculation, the libraries scikit-learn (v0.23.2) and scipy (v1.5.2) are used. All source
code is publicly available on GitHub via https://github.com/schlueterTHU/SolarForecasting
(accessed on 21 May 2021).

4.1. Data Sets

The considered locations (see Table 1) are chosen to reflect the variation of climate
conditions in Europe: Almeria in southern Spain is the driest and most sunny area in Eu-
rope with (in general) little influence of rain and clouds. Ulm, Germany, again, represents
continental climate influenced by mountains (Alps) and rivers (Danube). Hull is a coastal
town in northern England, which allows for the testing of the forecasting performance un-
der windy and rapidly changing weather conditions. Eventually, we picked Rovaniemi in
northern Finland, which is close to the Arctic Circle, to include a location with comparably
cold climate and less sunshine. Besides global irradiation on the ground, i.e., the value to be
forecasted, relative humidity, wind speed, temperature, pressure, and rainfall are included
in the analysis (see Table 2). This choice is based on previous research. Kreuzer et al. [6],
for example, showed that there is some significant interdependence between the individual
input data sets, as these helped to improve the quality of short-term temperature forecasts.
Hence, in turn, it should also be beneficial for irradiation forecasting. Besides, this choice
represents our suggestion for an adequately large and diversified database. Including
more data in general tends to improve forecasting quality but also increases problems
related to data maintenance (missing data, errors etc.). Here, all data sets for all locations
can be directly downloaded from www.soda-pro.com, which offers worldwide satellite-based
climate data. This, in turn, means that our approach–combined with the software code on
the mentioned GitHub account–can be easily transferred to any other location. For testing
purposes we extend the above mentioned data set by the MSI—both current and future values.
As this value is due to the movement of earth around the sun it can be calculated with high
precision for any time of the year. There is a respective R package called solaR [52].

The data available on www.soda-pro.com (accessed on 21 May 2021) have been
originally recorded by the United States National Aerospace Agency (NASA) and processed
as MERRA-2 data set [53]. Thereby, MERRA stands for Modern-Era Retrospective analysis
for Research and Applications and includes several meteorological indicators such as wind
or temperature for any location worldwide and different time steps such as hourly or daily,
for example. The spatial resolution is 0.625◦ × 0.5◦. For all chosen locations hourly data
between 1 January 2016 and 30 November 2020 are obtained, which means we have 43,080
(multivariate) observations per data set.

In total we have six univariate time series at four locations, and showing all data sets
would simply be too much. Instead, to highlight some important features, we limit the
visualisation to one year of solar irradiation and temperature data for all four locations,
which are displayed in Figures 2 and 3. For Ulm, as the most central location, we also plot
one year of humidity, wind speed, pressure, and rainfall in Figure 4. A visualization of
the input data for all other locations can be found under the aforementioned GitHub link.
Both global irradiation and temperature data show the expected annual swing, whereby
the volatility of the irradiation data is considerably larger. Besides, irradiation levels are on
average higher in Almeria and Ulm than in Rovaniemi and Hull. The same holds true for
the temperature, where we see significantly larger oscillation during winter than during
summer in Rovaniemi. Considering the other input factors for Ulm in Figure 4, one might
assume that the distribution of humidity is slightly asymmetric, whereas pressure shows
comparably less variation. Wind speed is—compared to the other data sets—a fairly noisy
time series with time-varying volatility. Rainfall shows hardly any annual pattern but some
extreme solitary spikes. To sum up our observations: for each location we have six quite

https://github.com/schlueterTHU/SolarForecasting
www.soda-pro.com
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diverse data sets, whereby often we have to deal with some kind of instationarity, e.g.,
potentially time-varying seasonality, spikes, or time-dependent volatility. A forecasting
model needs to consider all these aspects.

Figure 2. Global irradiation from 1 December 2019 to 30 November 2020.

Figure 3. Temperature from 1 December 2019 to 30 November 2020.
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Figure 4. Other input factors from Ulm from 1 December 2019 to 30 November 2020.

Table 1. Locations considered in the case study.

City Country Description

Ulm Germany close to the Alps, continental climate
Almeria Spain hot and dry climate, large number of sunshine hours
Rovaniemi Finland close to arctic circle, cold and dark in winter time
Hull England coastal climate with rapidly changing weather

Table 2. Summary of the satellite data used in the network input.

Factor Unit Factor Unit

global irradiation Wh/m2 temperature ◦C
relative humidity % pressure mbar

wind speed m/s rainfall L/m2

4.2. Model Architecture and Calibration

The objective of this article is to generate hourly solar irradiation forecasts. Models are
chosen and calibrated to minimize the average expected error. In large part we based our
architecture on the proposed models from related articles with similar objectives [7,33,48].
Hence, we make use of their results, whereby we have to adapt the models to our setup.
For example, Wang et al. [7] used more LSTM units and two CNN layers (convolutional
and max pooling layers) in their hybrid model. We fit the models to our data sets by
trial and error where different setups are tested and the best one is chosen. Thereby one
has to consider that including too many LSTM units may cause the network to adapt too
much to a specific data set, which is called overfitting. Hence, in order to yield a trained
NN that is able to handle new data points (which is the case in forecasting), we limit the
number of LSTM units. For the convolutional part of the models we opted for a shallow
architecture as we use 1D convolution. Based on that we evaluated the performance of
different architectures and parameter combinations on the test set of a whole year and
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selected the best one. For example, we tested the effect of adding more convolutional
layers, different amounts of kernels, different kernel sizes, and so on. The integration of
max pooling layers was also investigated. Apart from that, layer order (whether LSTM or
CNN first) does influence the NN setup. Thereby we found out that more convolutional
kernels are needed if the data is convoluted first. The architecture and training parameters
of all models considered here can be found in Appendix A.

As input for the NNs, we use 24 time steps to predict the next 24 h. To train the NNs
we first split the data into a training, validation, and test set. The training and validation
sets are handed to the NNs, whereas the testing set is kept for evaluating the model’s
performance against real data (out of sample testing). In order to see how the NN performs
over the course of a whole year, the test set contains data for one year, which means 8760 h.
For the remaining data set we follow Wang et al. [7] and split it into 80% training data and
20% validation data, which is a common ratio in practice. Kreuzer et al. [6], for example,
use the same ratio. To be on the safe side we also tested other ratios like 90% vs. 10% but
could not find significant differences. Apart from that, the time index is transformed with
sine and cosine to catch the periodicity. This is done by fitting the day/year data to a
sine/cosine oscillation by dividing the timestamp by the day/year. Then sine/cosine is
applied and we obtain four variables, namely day sine, day cosine, year sine, and year cosine.

Moreover, for facilitating the NN data processing, we normalize all data by scaling
each input factor to values between 0 and 1 using a MinMax scaler [54]: Given a data
sample X1, . . . , XT the scaled value Xscaled

t is calculated as follows:

Xscaled
t =

Xt − Xmin
Xmax − Xmin

,

where Xmax = maxt=1,...,T Xt and Xmin = mint=1,...,T Xt.

4.3. Goodness of Fit Measures

We compute the root mean square error and the mean absolute error to evaluate the
performance of the different forecasting models. The measures are calculated separately
for each horizon k. Let X̂(k)

t be k-step forecast of Xt. Then, the RMSE for the forecasting
horizon k is defined as:

RMSE(k) =

√√√√ 1
T

T

∑
t=1

(X(k)
t − X̂(k)

t )2.

where T is the sample size. In our case the size of the test set is 8760, for example. The
MAE is defined analogously:

MAE(k) =
1
T

T

∑
t=1
|X(k)

t − X̂(k)
t |.

In order to compare the average error over all tested forecasting horizons, we eventu-
ally compute the average for both RMSE and MAE:

RMSEtotal =
1
K

K

∑
k=1

RMSE(k) ; MAEtotal =
1
K

K

∑
k=1

MAE(k),

where K is the maximum number of predicted time steps, so here K = 24. The unit of these
measures is Wh/m2, as we forecast global irradiation values. Furthermore, to also compare
results from different locations, a measure that adjusts for the local solar irradiation amount
is needed. As level adjustment, the seasonal naive forecast at each location is used. We
divide the models’ MAE by the MAE of the seasonal naive forecast (SN) and call it relative
MAE (RMAE).
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RMAE =
MAEmodel

MAESN
(1)

Note that night hours are removed before computing the above described error
measures as those hours naturally reduce all models’ errors without offering more insight.

4.4. Results and Performance Evaluation

Each model was trained for each location according to the process described in
Section 4.2. The trained NNs were then tested on hourly climate data from 1 Decem-
ber 2019 to 30 November 2020. In the context of a rolling time window we fed the realized
input values (Section 4.1) of the previous 24 h to the NNs in order to obtain irradiation
forecasts for the upcoming 24 h. Results were compared to the true measured irradiation
to obtain error values for each of the 24 forecasted hours. Eventually, having shifted the
time window through the year, we obtained a vector of errors for each combination of
forecasting horizon, model, and location. Eventually, these error vectors were evaluated
and aggregated using the GoF measures described in Section 4.3.

Given all results we can state that merging a CNN with an LSTM model does indeed
improve the forecasting performance. However, it is not the precision but the model’s
robustness regarding climate conditions that matters.

Before presenting the results for all tested locations we need to verify if and how
adding the MSI to the input data set makes sense. Regarding test results we only discuss
Ulm here, as the results for the other locations are very similar: adding the MSI to the
input only slightly reduces forecasting errors as shown in Table 3. Alternatively, as the
MSI can be calculated for any location and any time over the year, we might add future
MSI values (up to 24 h in advance) to the input set as well. Results from Table 3 show
that errors are not significantly smaller either. The performance even decreases for some
models (see convLSTM). Hence, we only use the factors from Table 2 and the MSI as input
for all models.

Table 3. Comparison of different input factors of Ulm data for the NNs. The table shows the RMSE
values in Wh/m2. The best results are marked in bold letters.

Model
RMSE MAE

Input1 Input2 Input3 Input1 Input2 Input3

LSTM 98.16 97.71 98.95 68.70 68.41 69.93
convolutional 98.63 99.56 101.07 68.56 70.70 71.95

convLSTM 96.64 95.25 96.64 65.69 65.34 65.71
LSTMconv 97.23 97.35 99.52 67.37 66.75 69.76

Input1: factors from Table 2 + MSI and MSI of forecast horizon; Input2: factors from Table 2 + MSI; Input3: factors
from Table 2.

Having settled the issue if and how to include the MSI, we compute 24 h ahead
forecasts for all locations and different neural network models, namely the LSTM network,
the CNN, and both hybrid convLSTM and LSTMconv. The forecasts are evaluated using the
GoF measures from Section 4.3. Results for all four cities are displayed in Figure 5, where
the MAE for each individual hour of the 24 h ahead forecast is shown. The errors are thereby
calculated based on the above described test set, i.e., for 8760 h from 1 December 2019 to 30
November 2020. From the graphic representation we can draw some major conclusions:
First and foremost, except for the seasonal naive forecast, MAE values of the different
NN models differ only slightly. In the first few hours the convolutional and convLSTM
network perform the best. Later on the CNN is outperformed and overall the LSTMconv
model seems to perform the best. The simple LSTM model has the worst performance,
which is still close to the others. By comparing the cities we notice that here the main
difference is the the error level. In Rovaniemi, where we have big seasonal differences (no
solar irradiation in winter, all day irradiation in summer), the error is the lowest (MAE is
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roughly around 50 Wh/m2), whereas in Ulm with no specific seasonal pattern the network
forecasts result in the largest errors (MAE is roughly around 75 Wh/m2).

Figure 5. MAE for various neural network models: LSTM, Convolutional, convolutional LSTM (convL-
STM), and LSTM convolutional (LSTMconv). As reference the seasonal naive forecast (SN) is shown.

The aggregated results for all models and exemplary for the cities Ulm and Almeria
are shown in Table 4, whereby the best results are highlighted in bold letters. Values for
Hull and Rovaniemi are given in Appendix A. Thereby, results from Table 4 just confirm
the graphical observations. In general, combining an CNN with an LSTM model increases
forecasting precision.

Table 4. Performance results of the different NN Models for the cities Ulm and Almeria. The best
results marked in bold letters.

Model
Ulm Almeria

RMSE MAE RMAE RMSE MAE RMAE

LSTM 97.71 68.41 81.35% 87.63 58.36 86.45%
CNN 99.56 70.70 84.08% 85.08 53.28 78.93%

convLSTM 97.35 65.34 77.70% 85.50 52.78 78.19%
LSTMconv 95.25 66.75 79.37% 86.58 51.89 76.87%

For more insight into the models’ performance we also consider some distributional
properties. Thereby we see that, except for the convolutional model, all models are more or
less unbiased. The bias of the naive forecast is closest to zero, whereas the convolutional
model’s bias is positive. Hence, as the error is computed as true irradiation minus forecasted
irradiation (X(k)

t − X̂(k)
t ), the convolutional model tends to underestimate irradiation levels.

Besides, at all locations and for all considered forecasting horizons we find that model
errors are negatively skewed. In Figure 6, where this fact is exemplarily shown for Ulm,
we see a quite uniform behavior except for the convLSTM, which is still skewed. Negative
skewness means that, when overestimating irradiation, the risk of missing the real value
significantly is larger than when underestimating irradiation. The skewness is clearly
visible in Figure 7 where the histogram of the six hour-ahead forecast for the LSTMconv
model for Ulm is displayed.
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Figure 6. Skewness of the different NN models.

Figure 7. Histogram of the prediction errors for the LSTMconv model for six hour-ahead forecast in
the city Ulm.

To visualize the models’ performance for two specific situations, we plot the forecast-
ing results of each model in Figures 8–11: A 24 h ahead forecast was computed for two days
at 6 a.m. The right graphic shows the irradiation forecasts for 22 March 2020. For Ulm, for
example, we see that even though the irradiation on the previous day (input data) is on a
low level, all NNs are able to predict more or less the correct irradiation level. Nevertheless,
the forecast is lower than the actual irradiation. On 16 February 2020 (left plot) there is a
irradiation drop in Ulm around noon, which was not incorporated by any NN. The same
can be seen for Hull in Figure 10 on the left side. Interestingly, in Figures 10 and 11, we
see a rather diverse performance of the NN algorithms for 16 February 2020. In both cases
the CNN was clearly overstimating sunshine levels. In Rovaniemi, the LSTMconv model
produced the closest estimate, wherease LSTM and convLSTM signifcantly underestimated
sunshine levels. The day in March seemed to be a fairly sunny day with no surprises and
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all models performed quite well for all locations except for Almeria, where no model was
able to capture the seemingly asymmetric pattern with less sunshine in the morning hours.

Figure 8. Global irradiation forecasts for Ulm on 16 February 2020 (left) and 22 March 2020 (right).

Figure 9. Global irradiation forecasts for Almeria on 16 February 2020 (left) and 22 March 2020 (right).

Figure 10. Global irradiation forecasts for Hull on 16 February 2020 (left) and 22 March 2020 (right).

Figure 11. Global irradiation forecasts for Rovaniemi on 16 February 2020 (left) and 22 March
2020 (right).

To compare all locations with each other we eventually focus on the best model, namely
the LSTMconv network. First we identify the mean solar irradiation for each location,
whereby we only consider hours with positive values. Each MAE is then divided by this
aggregated number and results are displayed in Table 5, which confirms the assumption
that the NNs perform better in sunny regions (e.g., Almeria) than in regions with unstable
weather like Ulm or Hull. Without the adjustment, Rovaniemi has the lowest MAE, which
is reasonable as during winter there is no sun and during summer there is comparably
lesser sun than, say, in Almeria. Hence, it is reasonable to expect absolute differences to be
smaller. Note that we could have alternatively computed the mean absolute percentage
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error, which divides the absolute error by the current irradiation level. However, as in the
morning and in the evening irradiation levels are very small, this alternative error measure
often produces extremely high error levels which significantly skews the total GoF measure.
This is why we consider the adjusted MAE to be a better measure for comparison.

Table 5. MAE of the LSTMconv network and the mean global irradiation per hour.

Ulm Almeria Hull Rovaniemi

MAE 66.75 51.89 62.87 46.38
Mean 296.46 407.88 248.27 179.79
MAE
Mean 22.5% 12.7% 25.3% 25.8%

Having identified the LSTMconv as a model that performs good under all conditions,
we eventually analyze the errors in the time domain, where we use Figures 12–15 as
graphical means to extract information about the model’s performance. Note that we limit
our comparison to this model as it proves to be sufficient. The same conclusions can be
drawn for the other NN models. The errors in Ulm show a distinct annual pattern with
smaller absolute values in winter than in summer—which is not the case for Almeria. In fact,
here it is the other way round. During July/August errors are comparably small whereas
during April and May, where both temperature and precipitation indicate comparably
cold and wet weather, error variation is larger than during the other months. Given the
plot, Almeria errors are also skewed to the left but more distinctly than Ulm errors. Errors
of Hull (Figure 14) are low during winter season, which goes along with less sunshine,
low temperatures, and comparatively a lot of rain. We see a distinct annual pattern in
the forecasting error, which only partly coincides with the annual temperature swing.
Eventually, Rovaniemi errors show the expected pattern: almost no errors during winter
when it is dark anyway. Forecasting errors do not significantly coincide with the annual
temperature swing or rainfall. As for Hull, errors seem to be mainly dependent on the
annual swing of irradiation (compare Figure 2).

Figure 12. Error of LSTMconv Model and temperature/rainfall in Ulm from 1 December 2019 to
30 November 2020.
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Figure 13. Error of LSTMconv Model and temperature/rainfall in Almeria from 1 December 2019 to
30 November 2020.

Figure 14. Error of LSTMconv Model and temperature/rainfall in Hull from 1 December 2019 to
30 November 2020.
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Figure 15. Error of LSTMconv Model and temperature/rainfall in Rovaniemi from 1 December 2019
to 30 November 2020.

To sum up our results: the LSTMconv neural network performs best in our case study
across all tested locations. However, the advantage is small—especially when considering
that the training process of the neural networks appeared to be not deterministic. This
means that the results vary—albeit very little—when training the same network multiple
times. Furthermore, the problem of the non-deterministic training process makes fine
tuning of the neural networks quite hard. So, the LSTM seems like a good alternative;
however, its performance for sunny Almeria is comparably worse. The CNN, again, has
problems with the continental climate of Ulm but would be a feasible alternative for the
other locations. Hence, the LSTMconv network is the best model not because it produces
the best results but because it appears to be a rather versatile approach producing fairly
good results in all tested climate conditions.

In terms of computational time, all networks are feasible for practical application as
the training, which has to be done once a day or once a week, requires less then 30 min on
a regular laptop.

5. Conclusions

Using neural networks for forecasting purposes has become very fashionable lately.
This is proven by the wide range of literature about this topic. The motivation simply is that
NNs show a comparably good performance and authors have tried to improve on these
levels by combining different types of NNs. In this article we analyze the suitability for
solar irradiation forecasting by comparing the performance of different NN models, namely
an LSTM, a CNN, and two hybrid versions. We consider short-term forecasts up to 24 h
ahead and test the models on four different locations in Europe to check the local climate’s
influence on the overall behavior. It shows that the hybrid versions, i.e., the combination
of a CNN and an LSTM model, outperform the other models, but the advantage is not
significant—given our data sets and the tested climate conditions. Except for Almeria, the
sunniest location, a comparably simple LSTM performs very similar to a more complex
combination of CNN and LSTM model. However, the additional complexity does pay off,
because even if the forecasting error is not considerable smaller compared to the other
tested NNs, the hybrid models are more robust against changing climate conditions. The
LSTM model has problems in sunny regions, the CNN for Ulm, i.e., a continental climate.
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The hybrid methods produce good forecasts in all scenarios. Eventually, as we use data that
are easily available online and because the source code of this article is publicly available
on GitHub, the NN-based methods presented in this study can be easily transferred to any
other location worldwide. This is beneficial, as there is still some research to be done. First,
one might check the models’ performance at more locations across the planet. Longer data
sets might increase the reliability of the results. However, as we work with hourly values,
one year should already guarantee significance of the results. Second, when analyzing
more years in the test data set one could study seasonal differences.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial neural network
CNN Convolutional neural network
LSTM Long-short term memory (neural network)
MAE Mean absolute error
MSI Maximum solar irradiation
NN Neural network
RMAE Relative mean absolute error
RMSE Root mean square error
RNN Recurrent neural networks
SARIMA Seasonal autoregressive integrated moving average (model)
SN Seasonal naive

Appendix A

Table A1. Performance results of the different NN models for the cites Hull and Rovaniemi.

Model
Hull Rovaniemi

RMSE MAE RMAE RMSE MAE RMAE

LSTM 91.50 64.39 85.06% 72.33 47.65 76.83%
CNN 92.82 61.59 81.36% 74.21 47.56 76.68%

convLSTM 91.23 63.54 83.94% 71.25 46.00 74.16%
LSTMconv 91.09 62.87 83.05% 71.59 46.38 74.78%
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Table A2. Architecture of the LSTM network.

Category Parameter Value Description

LSTM layer units 32 number of LSTM cells
dense layer units 24 number of hours to predict
training loss MSE mean square error
training optimizer ADAM optimizer
training learning rate 0.0001 learning rate of optimizer

Table A3. Architecture of the convolutional network.

Category Parameter Value Description

Conv1D layer filters 64 number of filters
Conv1D layer kernel size 3 size of a filter
MaxPool1D layer pool size 2 size of MaxPool kernel
Conv1D layer filters 64 number of filters
Conv1D layer kernel size 2 size of a filter
MaxPool1D layer pool size 2 size of MaxPool kernel
flatten layer
dense layer units 24 amount of hours to predict
training loss MSE mean square error
training optimizer ADAM optimizer
training learning rate 0.001 learning rate of optimizer

Table A4. Architecture of the convolutional LSTM network.

Category Parameter Value Description

Conv1D layer filters 256 number of filters
Conv1D layer kernel size 3 size of a filter
Conv1D layer filters 256 number of filters
Conv1D layer kernel size 2 size of a filter
MaxPool1D layer pool size 2 size of MaxPool kernel
LSTM layer units 32 number of LSTM cells
dense layer units 24 number of hours to predict
training loss MSE mean square error
training optimizer ADAM optimizer
training learning rate 0.0001 learning rate of optimizer

Table A5. Architecture of the LSTM convolutional network.

Category Parameter Value Description

LSTM layer units 32 number of LSTM cells
Conv1D layer filters 256 number of filters
Conv1D layer kernel size 3 size of a filter
MaxPool1D layer pool size 2 size of MaxPool kernel
flatten layer
dense layer units 24 number of hours to predict
training loss MSE mean square error
training optimizer ADAM optimizer
training learning rate 0.00001 learning rate of optimizer
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