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Abstract: With the growth of commercial building sizes, it is more beneficial to make them “smart” by
controlling the schedule of the heating, ventilation, and air conditioning (HVAC) system adaptively.
Single-building-based scheduling methods are more focused on individual interests and usually
result in overlapped schedules that can cause voltage deviations in their microgrid. This paper
proposes a decentralized management framework that is able to minimize the total electricity costs
of a commercial microgrid and limit the voltage deviations. The proposed scheme is a two-level
optimization where the lower level ensures the thermal comfort inside the buildings while the
upper level consider system-wise constraints and costs. The decentralization of the framework
is able to maintain the privacy of individual buildings. Multiple data-driven building models are
developed and compared. The effect of the building modeling on the overall operation of coordinated
buildings is discussed. The proposed framework is validated on a modified IEEE 13-bus system with
different connected types of commercial buildings. The results show that coordinated optimization
outperforms the commonly used commercial controller and individual optimization of buildings.
The results also show that the total costs are greatly affected by the building modeling.

Keywords: commercial HVAC; microgrids; distributed optimization; multi-objective; costs

1. Introduction

Residential and commercial buildings consume a large share of the energy consump-
tion in the E.U. and USA [1]. Heating, ventilation, and air conditioning (HVAC) systems
alone consume around 44% of the total energy required in commercial buildings, which ne-
cessitates the control of such systems [2]. While the HVAC control in residential buildings
and their participation in residential demand response have received a lot of attention [3–5],
coordination of commercial buildings still needs further research. Unlike residential build-
ings, commercial buildings are more challenging to optimize and coordinate. This is
because a generalized model for commercial buildings cannot be easily achieved due to
the complexity and customization of different commercial buildings, which stems from the
fact that commercial HVAC systems consist of multiple parts (chillers, air handling units,
variable or constant air boxes, etc.) and they can be configured in many ways.

To evaluate the potential of commercial buildings in participating in demand response,
two years of smart meter data coming from an urban area in New York was used in [6].
It was found that the demand characteristics of commercial buildings in which the strict
temperature requirements coincide with the time of use on-peak period make it challeng-
ing for most commercial buildings to participate in demand-side management effectively.
Different researchers proposed different control methodologies to help minimze the energy
cost of commercial buildings and facilitate their integration into the grid [7–9]. Model
predictive control (MPC) is one of the most commonly used controllers for commercial
HVAC optimization [10]. Data-driven MPC was used in [11] to optimally schedule the
heating system in order to save energy while guaranteeing the thermal comfort for the oc-
cupants. A linearized random forest model was used to develop the data-driven MPC and
it was found that the MPC could provide comparable performance with the conventional
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physics-based MPC. Stochastic model predictive control (SMPC) for commercial HVAC
control was proposed in [12], where a finite probability density function was used to reflect
the uncertainties associated with the thermal loads of different zones. In [13], a neural
network was deployed to model the building temperature dynamics and a linear regression
for the energy consumption. Experimental evaluation of data-driven optimization was
conducted, where integer linear programming was used to minimize the energy costs while
satisfying the thermal comfort. Other authors considered the use of reinforcement learning
for whole-building HVAC control [14,15] to minimize the energy cost while maintaining
the thermal comfort. The reinforcement learning allowed for the possibility of adopting
more accurate nonlinear models of the HVAC system but the optimiality of the operation
is not guaranteed.

A virtual battery model for a commercial building was developed in [16], where
data-driven and physics based-modeling were used to learn the building’s thermal charac-
teristics. Then, a model predictive controller was developed to enable real-time ramping
service participation. To ensure a fast response, the MPC was tested under different possi-
ble circumstances, where an input–output mapping is recorded and saved in a scheduler
that is used for real-time control. All the previous works focused on the optimization of an
individual commercial building.

To leverage the use of commercial buildings in providing grid services, some re-
searchers developed more comprehensive controllers that are able to coordinate multiple
buildings or resources. Agent-based modeling was proposed in [17] to study the consump-
tion behavior of commercial buildings participating in demand response under different
market structures. The results illustrate that there is an obvious impact from commercial
buildings with price-responsive demand on the electricity market. In [18], the authors de-
veloped a generalized battery model for buildings with the aim of analyzing the buildings’
flexibility and ability to provide different grid services. The effect of lock-off time of virtual
battery models was assessed in [19]. It was found that with the lock-off time, the flexibility
does not greatly change when following slow grid signals, but was much reduced when
following fast signals.

Many researchers considered centralized coordination of commercial buildings and
resources. Centralized coordination of buildings, thermal energy storage and unit commit-
ment was considered in [20], where buildings were modeled as exponential functions of
voltage and non-uniform horizon MPC was used to tackle the uncertainty and ensure load
generation balance. Another centralized model predictive control was developed in [21]
to reduce the maximum load ramp-rate of the power grid to prevent duck-curve issues
associated with the increase in solar PV power penetration in the grid. The MPC was used
to maximize the building load penetration while controlling the transformer tab changes
and capacitors in the distribution system. Centralized energy management of commercial
buildings in a microgrid was considered in [22]. In this work, the authors suggested a pric-
ing model which aims at maintaining low operational costs while utilizing solar generation,
stationary battery systems and mobile EV storage as much as possible. The authors in [23]
provided a framework for energy optimization in neighborhoods. The authors considered
the existence of multiple resources and buildings. Detailed physics-based models via
Modelica have been used to represent the buildings’ dynamics while a quasi-dynamic
approach was used for the load flow of the network.

In [24], centralized, mixed-integer, non-linear programming was suggested to optimize
the operation of multiple buildings in a microgrid. Linearization and equivalent represen-
tation of a pre-processed building model in Energyplus was used. Game theory was also
deployed for optimal allocation of power among the buildings. In [25], RC networks were
used for building modeling and a cooperative Nash bargaining formulation was developed
to optimally allocate the power among campus buildings. Network constraints were not
considered. Other researchers studied hierarchical control approaches. In [26], a hierar-
chical framework is proposed where the buildings optimize their consumption, taking
network constraints into consideration, and send their operational constraint and other
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information to the distribution system operator. Then, the operator sends a feedback signal
that might include other operational constraints for scheduling. An economic framework
that solves a bi-level optimization problem was developed in [27]. The framework made
sure that the followers/households and the retailers would benefit simultaneously, without
unexpected deviations from the household side. However, no highlights on the building
models were provided and the network technical constraints were not considered.

In a microgrid framework where multiple resources and loads need to be coordinated,
the operator should maintain the technical reliability of its local grid while minimizing the
operational costs. In [28], the authors provided insights into the different operational modes
of a microgrid consisting of multiple resources and loads. The authors compared four
kinds of conditional equations, which are: conditional equations for peak control, power
use flattening, power demand response and operation of net zero energy. It was found
that the conditional equations were effective when attempting to optimize the microgrid’s
performance efficiently. The paper did not consider the modeling and control of HVAC
systems in the grid. In [29], the authors provided a control algorithm for residential HVAC
systems in a microgrid to minimize the cost, minimize the size of the microgrid units
and minimize the imported energy from the distribution grid. A physics-based model
of the residential HVAC has been adopted where the information about the wall thermal
losses was used via the use of transmission coefficient and infiltration of the walls.

In the operation of microgrids that have multiple buildings, the privacy issue of the
different buildings arises as a major concern and the microgrid operator should ensure
good operation of the system with minimal information about the buildings. Therefore,
decentralized coordination alorithms arise as a viable option that can help achieve these
goals. Decentralized coordination of commercial buildings has been rarely investigated in
the literature. In [30], Dantzig–Wolfe decomposition was used to transform the centralized
coordination problem between a building manager and an EV aggregator into a decentral-
ized one. Power flow and grid constraints were not considered in this work. In addition,
Dantzig–Wolfe decomposition can only be used with problems with a certain structure
where there is a binding constraint between the entities under consideration. Therefore, it
can not be used in many cases. In this work, a more comprehensive framework that can
handle problems with common objectives is considered. In addition, this work investigates
how the building model affects the cost and flexibility of the entire microgrid.

Therefore, in this work, a two-level scheduling framework is proposed to satisfy the sys-
tem requirements. At the global level, the system operator (i.e., microgrid/enterprise/campus
operator) is required to minimize the total cost of the electricity purchased from the utility
company as well as maintaining the operating conditions of its power grid within satisfac-
tory conditions. At the local level, the building managers are required to maintain a certain
thermal comfort for the occupants of the building during the day. The proposed approach is
a decetralized one which minimizes the amount of exchanged data and information with the
system operator, which may result in privacy concerns and require extra communication in-
vestment. In addition, the buildings’ models in this work are based on the building historical
data that can be readily available in the building automation system. It is worth highlighting
that most commercial buildings are usually equipped with a building automation system
that can easily store different historical data about the building performance. This makes
the proposed algorithm more generalizable and favorable for most commercial buildings
regardless of the building customization.

Based on the above discussion, the main contributions of this paper are: 1. Developing
and comparing different data-driven buildings’ models; 2. Developing a decentralized
coordination among the buildings to reduce the cost and voltage deviations while main-
taining the thermal comfort of each building; 3. Analyzing the effect of the building models
on the overall costs and flexibility of the microgid.
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2. Methodology

The proposed methodology aims at minimizing the total cost of the purchased electric-
ity by the microgrid as well as improving the voltage deviations of the power network. The
voltage deviation is considered in this work as a main concern for the microgrid operator
where the voltage should be within the ANSI standards between 0.95 p.u and 1.05 p.u.
Based on that, this consideration of voltage deviations can only be made by the microgrid
operator as the building operator does not have access to system-wide information such as
the voltages at different buses.

In addition, the proposed method ensures that the temperature in different buildings,
coordinated by the microgrid operator, is maintained within the comfort range required by
each building manager. The coordination occurs in a decentralized way. This helps alleviate
the need for investments in the communication infrastructure as well as maintaining the
privacy of different buildings.

Figure 1 shows the architecture of the proposed optimization framework. It is a two-
level framework where the system-level optimization is responsible for limiting the voltage
deviations in the network as well as minimizing both the energy and demand charges of the
purchased electricity. The decision variables at the upper level are the virtual price signals
that will guide the consumption of different buildings, while the decision variables at the
lower levels are the switching statuses of the HVACs in different buildings. The upper
level receives the actual time of use (ToU) signal and tries to come up with a synthetic set of
virtual prices that will be sent to the different buildings in the lower-level optimization. The
idea of virtual prices has been considered in a variety of different studies [31–33] ranging
from relieving network congestion to other cost related objectives. The advantage of a
virtual price signal is that it provides a cheap and effective way to coordinate and harness
the flexibility of multiple entities in the grid. It alleviates the need for high investment in
the communication infrastructure to share large amounts of data. It also helps to maintain
the privacy of different users in the grid since only the expected total demand is shared
with the upper-level operator. When the virtual price signals become decision variables in
the optimization problem, they can be optimally determined by the optimizer.

The objective of the lower-level optimization is to minimize its operating costs while
maintaining the required temperature comfort range. In doing so, it is assumed that the
building manager does not want to expose any detailed information about the building,
e.g., HVAC system structure, its schedules or temperature comfort range. Therefore,
the only outcome of the building-level optimization that is shared with the system operator
is the expected building power profile. The decision variables at the building level are the
switching statuses of the HVAC system.

Different buildings will submit their power profiles, and load flow analysis for the
power network will be performed. Then, the total system power profile as well as the line
flows and voltages at the different buses will be sent to the upper layer, which will evaluate
the different objectives and adjust the virtual price signals and send them back to building
levels. This iterative process will continue until a stopping criterion is achieved.

The main intuition behind this proposed methodology is to prevent the rebound
effect that might occur if all the building received the same actual ToU. The rebound
effect happens when multiple loads defer their demand during the peak time of the ToU
signal; then, all the loads are connected at the same time with the start of the off-peak
period, which introduces another peak in the system. This phenomenon was confirmed
by many researchers [34–36]. In the case of a microgrid operator, the introduced peaks in
the system will cause an increase in the demand charge (a cost that is a function of the
system peak), which is usually paid by the commercial building operator. In addition, it
can cause undesirable voltage deviations in the system. Thus, the proposed methodology
attempts to synthesize virtual price signals that will help to minimize the energy cost and
avoid introducing such system peaks as much as possible, which in turn will reduce the
total costs of the purchased electricity and improve the voltage deviations of the system.
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For any building optimization, building models are needed. Therefore, the next section
will introduce the three types of data-driven models adopted in this work.

Figure 1. Bi-level optimization framework.

3. Data-Driven Models

The lower-level optimization is responsible for maintaining the building temperature
within the comfort range at the lowest possible cost. Numerical optimization techniques,
including mixed-integer linear programming (MILP) and linear programming (LP), are
commonly used in the literature. This is because optimality is guaranteed and most of the
developed HVAC models are linear in nature or can be linearized [37,38]. Therefore, MILP
is adopted in this work at the building level. In order to optimize the HVAC consumption,
it is important to characterize/model the internal building dynamics in terms of the tem-
perature behavior as well as the energy consumption. To make the proposed methodology
generalizable, data-driven models are adopted in this work. The adoption of data-driven
models relies on the availability of the historical data in the building automation system
(BAS) in most commercial buildings. Unlike physics-based models, data-driven models do
not need detailed information about the physical parameters of the building, such as the
construction materials, lighting and equipment schedules, etc. In addition, physics-based
models require large amounts of time and effort to develop and calibrate [39,40]. In this
work, three different data-driven models are developed and compared. The effect of the ac-
curacy of the different models on the total energy and demand costs of the entire microgrid
will be discussed. The three models are the linear regression model, polynomial regression
and support vector regression. Details about each of them are provided below.

3.1. Linear Regression

Linear regression is one of the most commonly used methods in HVAC system model-
ing. The linear regression model represents a weighted linear combination of the features,
where the weight of each feature determines the impact of this feature on the modeled
variable. The objective of the trained model is to minimize the sum of the least square
errors between the target value and the modeled one. In this work, the same set of features
is used for both the temperature and consumption models. The selected features are the
building temperature in the previous time step (Tt−1), the ambient temperature (Tt

amb)
and the switching status of the HVAC systems (Ot). Though the selected features do not
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directly include the set-point temperature, it is implicitly included in the switching sta-
tus. In commercial buildings, the switching status does not mean fully turning on/off the
HVAC. It reflects a temperature set-point that the chiller and the cooling coil should achieve.
According to the American Society of Heating, Refrigerating and Air-Conditioning Engi-
neers (ASHRAE) standards, the ’on’ status can mean a working-hour temperature set-point
of 74 ◦F (23.3 ◦C) or 75 ◦F ( 23.9 ◦C), while the ’off’ status means a setback temperature of
80 ◦F ( 26.7 ◦C). These numbers are adopted by many researchers [41]. Of course, other
features such as the air flow rate, fan power of the air handling units and other variables
can be added as features, but, in this work, only the three basic features are chosen because
they are readily available in all BASs. Other variables may or may not exist depending on
how advanced the BAS system is. The developed linear regression models are illustrated
by Equations (1) and (2), where bi and ci are the regression model coefficients and the
subscript k refers to the building number.

Tt
k = b0,k + b1,kTt−1

k + b2,kOt
k + b3,kTt

amb,k (1)

Pt
k = c0,k + c1,kTt−1

k + c2,kOt
k + c3,kTt

amb,k (2)

3.2. Polynomial Linear Regression

Polynomial linear regression is an extension of the conventional linear regression. It is
used to show that even with limited features, more complex models can be developed.
The main difference between the conventional linear and polynomial regressions is the
set of features that is used. The polynomial regression uses extra synthetic features that
are generated from the basic features by using polynomial functions of the given features.
In this work, a polynomial of degree 2 is used in addition to the basic features. Examples of
the extra added higher-order features are (T2

amb), (Tamb ∗ Tt−1), (Tamb ∗O), (Tt−1 ∗O). It is
worth highlighting that no extra data or sensors are needed to have a polynomial regression
model because the synthetic polynomial regressors are merely functions of the given basic
set of features. The main intuition behind the polynomial regression is to have a more
flexible model that can capture the non-linear relationships between the target/output and
the feature set. Based on this, the obtained polynomial regression models are:

Tt
k = d0,k + d1,kTt−1

k + d2,kOt
k + d3,kTt

amb,k + d4,kTt
amb,kTt

amb,k+

d5,kTt−1
k Tt

amb,k + d6,kTt
amb,kOt

k + d7,kTt−1
k Ot

k

(3)

Pt
k = e0,k + e1,kTt−1

k + e2,kOt
k + e3,kTt

amb,k + e4,kTt
amb,kTt

amb,k+

e5,kTt−1
k Tt

amb,k + e6,kTt
amb,kOt

k + e7,kTt−1
k Ot

k

(4)

where di and ei are the polynomial regression model coefficients.

3.3. Support Vector Regression

Support vector regression belongs to the general umbrella of support vector machines,
where the objective is to find a function of the form shown in Equation (5) to mimic the
building dynamics. In this equation, φ(x) corresponds to the mapped features using a
kernel function. A linear kernel is used in this work. The model parameters Z and Ψ are
found by solving the optimization problem in (6), where Lε(Yi − fxi) is the loss term, which
is a function of the difference between the target value and the modeled one. ε is a control
variable that controls the number of support vectors used in the training. A small value
is used in this work to avoid over-fitting. H is the number of training samples and M is
a penalty for large errors. The second norm ‖Z‖ is meant to ensure smooth fitting. More
information about support vector machines can be found in [42].

f (x) = Zφ(x) + Ψ (5)
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min.
1
2
‖Z‖+ M

1
H

H

∑
h=1

Lε(Yh − f (xh)) (6)

4. Building-Level Optimization

The main objective of the building-level optimization is to minimize the energy cost
while ensuring that the building temperature is within the comfort range required by the
building manager. The main objective is formulated in Equation (7), where πv,k represents
the virtual price signal for building k that is received from the higher-level optimization. Pk
is the power consumption of the building that is modeled in Section 3. D is the temperature
deviation outside the comfort range while F is a penalty value to penalize any temperature
deviation. The second part of Equation (7) is added to ensure that a feasible solution will
exist while the upper optimization is scanning the search space. A high value of F is used
to ensure that the deviation will only be allowed if the building optimization problem
becomes infeasible. It is worth highlighting that the cost obtained by (7) is not the actual
cost of purchased power by the microgrid operator.

min. ∑
t

(
πt

v,kPt
k + FDt

k

)
(7)

The building is subject to constraints defined by constraints (8)–(10). Constraint (8)
enforces the temperature to be between minimum and maximum values. These minimum
and maximum values are not constant across the day. Mostly, they differ between the
working and non-working hours of the day. In addition, they are different from one
building to another.

The case study under consideration is for a hot region. Therefore, the HVAC is required
to cool down the building. Based on this, the deviation term is added to the right-hand
side of the constraint to relax the upper bound in case of infeasability. This means that the
temperature can go beyond the maximum allowed temperature if the problem becomes
infeasible due to a modeling error or tight values of the virtual prices. Bounds on the
deviation are enforced by constraint (9), which limits the maximum temperature deviation
at any time step to be less than 0.5 ◦C. The building temperature Tt

k is forecast based on the
models in Section 3.

To limit excessive cycling of the HVAC equipment, which can reduce its life time,
constraint (10) puts a limit on the minimum up and down times, where O is the switching
status of the HVAC, which is the main decision variable in the lower-level optimization.
This constraint ensures that if the HVAC is switched on, it will be on for at least some time,
which is defined to be 20 min in this paper. The same applies for the switching-off periods.

Tt
min,k ≤ Tt

k ≤
(

Tt
max,k + Dt

k

)
(8)

0 ≤ Dt
k ≤ 0.5 (9)

Ot+1
k ≥ Ot

k −Ot−1
k

Ot+2
k ≥ Ot

k −Ot−1
k

1−Ot+1
k ≥ Ot−1

k −Ot
k

1−Ot+2
k ≥ Ot−1

k −Ot
k

(10)

5. System-Level Optimization
5.1. Problem Formulation

One of the motivations for implementing the control scheme is to coordinate the con-
flict between cost, voltage deviations and system-wise losses. Without proper coordination
from the microgrid operator, each building will optimize its own energy cost without
considering the system demand charges and voltage deviation issues. The resulting HVAC
schedules will be highly similar because the buildings are more or less subjected to the
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same weather conditions of the geographical area, and the ToU peak time periods, which
they try to avoid, are exactly the same. Such scheduling will result in similar load profiles
among the buildings and an accumulated high peak load of the entire microgrid would
occur. This could cause an increase in the total electricity cost.

The electricity cost of commercial buildings contains two charges that can be reduced
through proper scheduling, energy charges and demand charges [43]. The minimization of
energy cost and demand charges is contradictory. Their lower bounds cannot be achieved at
the same time because the energy cost is calculated upon the total energy consumption and
demand charges are related to the peak load power. In other words, if the buildings were
allowed to individually optimize their consumption and costs, the decrease in the optimized
energy costs may be counteracted by the increase in the demand charge. An extension
to this contradictory relationship is the relation between the voltage deviations of the
network and the minimization of the energy costs, where the increase in the system peaking
might cause voltage deviations. Hence, energy charge, demand charge, and the voltage
deviations are considered as the main objectives in this work. These objectives are the
most common concerns in microgrid operations [44]. The three objectives are formulated
in Equations (11)–(13), where πa refers to the actual energy price signal that is received
by the microgrid operator and Psub is the total power consumed by the entire microgrid.
rbase in (12) refers to the base demand charge rate and rpeak is the cost of kW of electricity
during the peak period. The tariff structure adopted here follows the Duke energy tariff for
commercial buildings [43]. Finally, Equation (13) refers to the sum of voltage deviations
from the standard values. ANSI standards for distribution systems [45] are followed in this
work, where the voltage should be limited between V = 0.95 p.u and V = 1.05 p.u.

EC = ∑
t

πt
aPt

sub (11)

DC = rbase max
(

Pt
sub|t ∈ TS

)
+ rpeak max

(
Pt

sub|t ∈ TSpeak

)
(12)

∆V =
T

∑
t=1

N

∑
i=1

max {Vt
i −V, V −Vt

i , 0} (13)

As mentioned in Section 2, the system-wise constraints are considered in the upper
level. Equation (14) describes the power flow model of the microgrid. The Pi and Qi are
the real and reactive power consumptions at bus i and Equation (15) represents the line
flow limits [46]. 

Pt
i =

N

∑
j=1
j 6=i

Vt
i Vt

j

(
Gij cos

(
θij
)
+ Bij sin

(
θt

ij

))
)

Qt
i =

N

∑
j=1
j 6=i

Vt
i Vt

j

(
Gij sin

(
θij
)
− Bij cos

(
θt

ij

))
)

(14)

Pt
l ≤ Pl,max (15)

5.2. Multi-Objective Optimization

The upper layer of the proposed framework generates virtual price signals, which
are used in the lower buildings’ layer, by solving a multi-objective problem that aims at
minimizing the energy charge, demand charge and voltage deviations associated with dif-
ferent HVAC schedules. Generally speaking, there are two methodologies in the literature
that are usually used to solve multi-objective problems: the aggregate weight functions
and Pareto optimization. In this work, Pareto optimization is used because in a Pareto
optimality, a set of optimal points that meet the constraints are obtained, which gives a
comprehensive picture about different possible solutions and the correlation among the
different objectives. Unlike the aggregate sum method, Pareto optimization eliminates the
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need for deciding on and assigning different weights to the different objectives. In addi-
tion, Pareto optimization does not fail to generate feasible solutions on the non-convex
portions of the optimum solution front [47]. In this work, non-dominated sorting genetic
algorithm II (NSGA-II) [48] is used to generate the Pareto solutions, known as the Pareto
Front. In NSGA-II, the genetic algorithm is first used to scan the entire search space and
find the different possible optimal solutions that can be obtained if certain control signals
are used. Then, a sorting algorithm is used to eliminate the dominated solutions (those
solutions that are less optimal in one objective or another compared to the others). This
will result in a set of optimal solutions, which the decision-maker can use based on his/her
preference. Genetic algorithm consists of three main operators, which are the crossover,
mutation and selection. In this work, simulated binary crossover (SBX), in which the search
power of a crossover operator is defined in terms of the probability of creating an arbitrary
child solution from a given pair of parent solutions, is used. SBX is found to be useful
in problems having multiple optimal solutions with a narrow global basin [49]. For the
mutation operator, a polynomial probability distribution is used to perturb the solution
in a parent’s vicinity [50]. The commonly used tournament selection is adopted for the
selection process. Information about the details and parameters of the simulated binary
crossover and polynomial probability mutation can be found in [49,50].

5.3. Optimal Point Selection

Once the set of optimal solutions is obtained, the system operator needs to select one
solution to operate the system. In this work, Technique of Order Preference Similarity to
the Ideal Solution (TOPSIS) is used. TOPSIS is based on finding an ideal and an anti-ideal
solution and comparing the distance of each one of the alternatives to those points [51].
The technique consists of six main steps, which are:

Step 1: the obtained optimal solutions are normalized to get rid of the units and a
normalized matrix is obtained. Vector normalization is used in this work.

Step 2: the decision-maker decides on the importance of each objective. Then,
the wighted normalization decision matrix is calculated by multiplying the normalized
decision matrix with the weight associated with each of the objective. Equal weights for
the different objectives are used in this work.

Step 3: determine the ideal and anti-ideal solution. This is done by selecting the best
performance of each objective from the normalized decision matrix. In this work, all the
objectives are to be minimized so the ideal solution will be the one with the lowest value of
the objective and the anti-ideal will be the one with the highest value for each objective.

Step 4: calculate the Euclidean distance of each of the alternatives in the normalized
decision matrix to the ideal and anti-ideal values to find the separation measures.

Step 5: calculate the degree of closeness to the ideal solution based on the calculated
separation measures.

Step 6: rank the degree of closeness and choose the closest solution to one which will
be the best solution of all solutions.

6. Case Study

In this case study, the microgrid operator is assumed to have five different buildings
under its jurisdiction. The HVAC systems of these buildings are assumed to be the only
controllable loads in the system. The considered buildings represent different types of
commercial buildings, which are a large office, a medium office, a strip mall, a super
market and a restaurant. These buildings represent five of the thirteen reference buildings
considered by the US department of energy. Their data are obtained from running the Ener-
gyPlus models available in [52]. The buildings have different HVAC structure, occupancy,
schedules and comfort temperatures. The buildings are connected to a modified IEEE
13-bus system, as shown in Figure 2. The numbers shown in the figure are the original ones
used in the 13-bus standard system. Some fixed loads are replaced in the original system by
the buildings’ loads. The buildings are connected to the 3-phase buses in the system as it is



Energies 2021, 14, 3024 10 of 18

the conventional norm for commercial buildings. The demand profiles of the uncontrolled
loads in the different buildings are shown in Figure 3. It is assumed that the buildings have
a 0.95 power factor. Other fixed loads connected to other buses in the network are shown
in Table 1. The optimization part of the algorithm has been implemented in Python version
3.5.1, where the Gurobi solver was used to solve the cost minimization of the buildings.
OpenDSS has been used for simulating the power network and was interfaced with Python
through the COM module. In this case study, the accuracy of the data-driven models will
be assessed. Then, the results from the multi-objective optimization will be presented
and discussed.

Figure 2. Modified IEEE 13-bus feeder.

Figure 3. Uncontrolled loads.

Table 1. Specifications of the fixed loads.

Bus Type Phase-A Phase-B Phase-C
kW kVAr kW kVAr kW kVAr

611 Y-I - - - - 170 80
645 Y-PQ - - 170 125 - -
646 D-Z - - 230 132 - -
652 Y-Z 128 86 - - - -
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6.1. Accuracy of Data-Driven Models

All the data-driven models are trained using the same set of weather data, which
represent a typical summer month. It is assumed that the buildings are located in Orlando,
Florida. Hence, a typical yearly weather dataset for Orlando was used in EnergyPlus to
generate the training data. Each of the models uses the set of features that was discussed
in Section 3 for training. Then, the models are used to predict the temperature and
consumption of a different day that does not exist in the training samples. A graphical
representation of the different predictions is shown in Figure 4. The figure illustrates
that the models perform well in modeling the buildings’ temperature. However, they
are less accurate in predicting the buildings’ power consumption, where they usually
underestimate the power consumption in general.

To have a more qualitative measure of the modeling accuracy, Table 2 depicts the root
mean squared errors for the different models of different buildings. The table confirms
that the models perform better in terms of predicting the building temperature compared
to the building consumption. This may be attributed to the slow changes in the building
temperature from one time step to another. In addition, usually, the building temperature
changes in a very narrow range, close to the upper value of the comfort temperature, as
shown in the left part of Figure 4. The table also shows that the polynomial regression has
the highest accuracy in general compared to the other two methodologies. This is because
of the use of higher-order and more complex features in the polynomial regression, which
helps it to capture the non-linear relations in the dynamics.

It is worth mentioning that other advanced machine learning algorithms such as
support vector machine with Gaussian kernels or random forests can be used to develop
more accurate models, as suggested in [53,54]. However, the developed models are highly
non-linear, not convex, and cannot be used in optimization problems solved by most
commercial solvers; this is why linear regression is still considered the most common type
of data-driven model in the literature.

The table also illustrates that improvements in the modeling are not guaranteed
for different types of buildings. For example, while the polynomial regression greatly
improves the modeling of the medium office and the supermarket modeling, there is only a
marginal improvement for the case of the large office and the mall. This highlights the fact
that different building types may require different sets of features or different modeling
methodologies for better modeling of the building dynamics.

Figure 4. Accuracy of data-driven models.
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Table 2. RMSE errors of different models.

Linear Regression Polynomial Regression Support Vectors
Temperature Power Temperature Power Temperature Power

Medium Office 0.247 3.54 0.0701 3.468 0.2565 3.625
Mall 0.05283 6.5 0.05083 6.13 0.0672 6.446

Supermarket 0.1057 5.0686 0.0965 4.596 0.1244 5.371
Large Office 0.174 86.476 0.176 83.68 0.2654 86.46
Restaurant 0.0862 4.246 0.0807 3.885 0.14 4.337

6.2. Optimization Results

This subsection presents the results obtained from the decentralized multi-objective
framework. In obtaining these results, the initial population of the genetic algorithm
is chosen to be 500 and the number of generations is selected to 2000. Three cases are
tested and compared. In each case, one of the proposed modeling methods is used for
all buildings. This is to show how the accuracy of the building model affects the overall
expected system costs. In the different cases, the outside ambient temperature is assumed
to be that of a summer day, as shown in Figure 5. The uncoordinated case is also considered
and presented. The uncoordinated case here refers to the case where the all the buildings
receive the same ToU signal. It is to be observed that the results of the uncoordinated case
also depend on the adopted building model. This is why three uncoordinated cases are
used, where the multi-objective optimization and the uncoordinated case using the same
building models are compared.

Figure 5. Outside temperature.

Figure 6 shows 2D projections of the relationships between the energy costs, demand
charge costs and the voltage regulation. Each row in the figure represents the system-level
results under each of the three building models. The figure depicts a sample of the different
solutions obtained by the genetic algorithm as well as the Pareto front for the different cases.
In addition, on each of the projections, the selected optimal point obtained by TOPSIS as
well as the benchmark point are plotted. The figure shows that the way the buildings are
modeled greatly affects the optimization results and expected costs. For example, the high
accuracy of the polynomial regression leaves narrow room, and hence low flexibility, for
controlling the HVAC consumption and minimizing the cost. The middle row of Figure 6
shows that the obtained Pareto Front is a constant line with an extremely narrow range.
For example the range of change in the energy cost is around USD 4 and there is no variation
at all in the demand charge cost or any improvement in the voltage profile. This mainly
happens due to the very high accuracy of the building models, which results in almost no
change from the benchmark case. In other words, no matter how the upper layer changes
the virtual price signals sent to the different buildings, the optimized building schedules,
and hence the load profile, are more or less the same. This mostly happens because the
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temperature predictions developed by the building models result in values very close to
the temperature comfort boundary, which means that any switching off of the HVAC will
make the building temperature higher than the required comfort temperature (constraint
violation), which will make the optimizer turn on the HVAC. It is worth mentioning that the
temperature relaxation in constraint (8) in the building-level optimization is not activated
because of the high associated penalty, which is higher than the electricity cost.

Figure 6. Optimization results.

Figure 6 also depicts the inverse relationship between the different objectives, where it
is most obvious in the third rows of the figure and less obvious in the first row. The Pareto
Fronts in these two rows illustrate that the lower the energy costs are, the higher the
demand charge paid by the microgrid operator and vice versa. The same inverse relation
between the energy costs and the voltage regulation is observed. The lowest demand charge
occurs when all buildings try to avoid the peak period of the price signal simultaneously,
which results in the lowest energy cost but will lead to a high system peak when all the
buildings turn on the HVAC in the next time step simultaneously. The increase in the
system peak will lead to worse bus voltages as well as higher charge demands.

The fact that the optimizer was able to generate compromises for the case of conven-
tional linear and support vector regressions compared to the polynomial regression means
that the building modeled flexibility is a function of the modeling accuracy. To improve
energy-saving and limit the voltage deviations, it might come at the expense of minor
temperature deviations at the building level. This also necessitates the importance of vali-
dating building models against actual data to investigate the possible flexibility that certain
buildings can yield as well as the range of possible temperature deviations, if any. Figure 7
shows the different building temperatures for the selected optimal points. The figure
shows that the temperature is always maintained below the required cooling limit. Indeed,
temperature deviations are not expected to occur in the final optimized solution because of
the high penalty associated with temperature deviation.

The next subsection quantifies the possible savings associated with the different
models based on the optimal point selected by TOPSIS.
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Figure 7. Optimized temperature.

6.3. Numerical Comparison of Optimized Schedules

In this section, the numerical results associated with the coordinated and uncoordi-
nated cases are compared. In addition, a base case is also compared. The base case here
refers to the common bang-bang controller usually used in commercial buildings. The ob-
jective of the controller is maintain the temperature comfort. Table 3 shows the voltage
regulation defined by objective (13). In general, the table illustrates that lower modeling
flexibility (associated with higher accuracy) results in higher voltage deviations due to
narrower controlling temperature boundaries. The voltage regulation in the coordinated
case using the proposed framework is always better than the uncoordinated case and both
optimizations are better than the base case, which results in a 1.03 voltage regulation value.
Moreover, the table shows that support vector regression results in sensible coordinated
voltage improvement compared to the other modeling methodologies where the voltage
regulation is 0.353 p.u with an improvement of 18.4% compared to the uncoordinated case.

Table 4 shows the different costs of the uncoordinated cases where all the buildings
receive the same ToU signal. Regardless of the building modeling methodology, the un-
coordinated optimization is always better than the base case. Table 5 shows the different
costs associated with the optimal points selected by TOPSIS. In comparison with the un-
coordinated cases in Table 4, the point selected by TOPSIS always results in lower costs,
except for the support vector regression cost. The reduction in costs for the polynomial
regression is very small compared to the uncoordinated case as the building’s flexibility
is very limited by the building models. The increase in costs associated with the support
vector regression stems from the sensible improvement in voltage regulation in Table 3.
This happened because the selection of the optimal points by TOPSIS partly depends on
the importance of each objective for the decision-maker reflected in the weights associated
with different objectives. Since all the objectives are given the same weights in this case
study, the improvements in the voltage by the support vector regression case came at the
expense of the total cost. This means that the weights assigned by the decision-maker play
an important role in the selection of the final operating point.
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Table 3. Sum of voltage deviation comparison in p.u.

Linear Regression Polynomial Regression Support Vector

Uncoordinated 0.4378 0.4944 0.4326
Coordinated 0.4354 0.4928 0.353

Table 4. Uncoordinated case cost comparison in USD.

Base Case Linear Regression Polynomial Regression Support Vector

EC 6075.5 5901.89 6122 5520.11
DC 1672.78 1555.05 1569.02 1562.42

Total 7748.28 7456.94 7691.02 7082.53

Table 5. Coordinated case cost comparison in USD.

Base Case Linear Regression Polynomial Regression Support Vector

EC 6075.5 5888.45 6120.17 5539.14
DC 1672.78 1548.40 1569.02 1561.58

Total 7748.28 7436.85 7689.192 7100.72

7. Conclusions

This paper presented and compared three data-driven models, which are the lin-
ear regression, polynomial regression and support vector regression. The three methods
are convex and compatible with numerical optimization. They were used to model the
temperature and consumption dynamics of commercial buildings. The accuracy of the
different models was compared and assessed. It was found that polynomial regression
can better capture the non-linear relationships between the features and the targets and
can better mimic the building dynamics compared to the other two methods. In addi-
tion, a multi-objective optimization formulation, which coordinates and considers the
requirements of the building managers as well as the microgrid operator, was developed.
The formulation used NSGAII as the main technique because of its ability to handle the
non-linearity associated with the load flow of the power grid and eliminate the need to
assign subjective weights to the different objectives. The proposed framework handles
the objectives in a decentralized manner, which is advantageous as it reduces the need for
expensive communication infrastructure and maintains the privacy and data of different
buildings. The proposed framework optimizes the energy costs, demand charge costs and
voltage regulation of the system simultaneously, which achieves Pareto optimality under
different building modeling and operating conditions. The three developed data-driven
models have been used in the multi-objective formulation one at a time to see how the
modeling of buildings will affect the optimized objectives. The results showed that lower
modeling flexibility resulted in higher voltage deviations. The results also showed that
coordinated optimization results in lower costs, except for the support vector regression
cost, when compared to the uncoordinated case.

A future extension of this paper is how to deploy relaxation techniques of the power
flow to allow the use of the numerical optimization for both the building and network levels
simultaneously. This will help to ensure faster and better convergence of the optimization
and allow the algorithm to be used in real-time applications.
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Abbreviations
The following abbreviations are used in this manuscript:

EC Energy cost
DC Demand charge
ToU Time-of-use tariff
NSGA Nondominated sorting genetic algorithm
MOOP Multi-objective optimization problem
PF Pareto frontier
MILP Mixed-integer linear programming
Variables and Parameters
b Linear regression temperature coefficient
c Linear regression temperature coefficient
d Polynomial linear regression temperature coefficient
e Polynomial linear regression temperature coefficient
Z Support vector regression coefficient vector
Ψ Support vector regression bias
O HVAC switching status (on/off)
Tk Building indoor air temperature
D Indoor temperature deviation
Pk Building power consumption
Pi Bus active power
Qi Bus reactive power
V Bus voltage
Pl Line power
Psub Total active power at the substation
πv Virtual energy price signal
φ(x) Support vector regression kernel mapping function
M Support vector regression penalty
Lε Support vector regression loss function
V Bus voltage upper limit
V Bus voltage lower limit
∆V Sum of voltage deviations outside the standard
rbase Demand charge base rate
rpeak Demand charge peak rate
G Line conductance
B Line susceptance
θ Voltage angle
πa Actual energy price signal
Tamb Outside ambient air temperature
Tmin Lower bound of occupant comfort zone
Tmax Upper bound of occupant comfort zone
F Indoor temperature deviation penalty
Pl,max Maximum allowed line power
N Number of buses
H Number of training samples
TS Set of all time steps
TSpeak Set of on-peak time-of-use steps
Subscripts and Superscripts
i, j Bus number indexes
l Line index
k Building index
t Time index
h Training sample index
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