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Abstract: One of the main benefits of Building Information Modelling is the capability of improving
the decision-making process thanks performing what-if tests on digital twins of the building to
be realized. Pairing BIM models to Building Energy Models allows designers to determine in
advance the energy consumption of the building, improving sustainability of the construction. The
challenge is to consider as many elements involved in the energy balance as possible and shuffling
their parameters within a certain range. In this work, the automatic creation of a relevant set of
design options to be analyzed for searching the optimum has been carried out. Firstly, the usual
workflow that would be applied manually has been automatically followed by running scripts
and codes, depending just on the initial setup given by the user. Although the procedure is very
resource consuming, the main advancement relies in the reduction of the manual intervention and
the possibility of creating large datasets of design options, avoiding gross errors. Secondly, Artificial
Neural Networks and Transfer Learning techniques are applied to speed up the process of dataset
creation. With such approach, the same dataset has been created, with about 30% of initial data and
without significant loss of accuracy.

Keywords: BIM; design optioonering; energy analyses; process automation; Artificial Neural Net-
works; transfer learning

1. Introduction

Building Information Modeling (BIM) has been used to transform the Architectural
Engineering Construction (AEC) industry or rather the way buildings are designed, con-
structed, maintained operational and even dismissed or renewed. In the whole life cycle
of a building, BIM technology is also being used to provide accurate, timely and relevant
information, dramatically improving the effectiveness of asset management [1]. By shifting
efforts in the early stages of a project, BIM enables designers to model structures before
they are built with great impact on decision-making of all involved stakeholders. In fact, by
exploiting the BIM approach and related technologies, architects, engineers, and building
owners can explore multiple options when planning for or manage facilities, infrastructure,
and environment. By creating a virtual model and applying different techniques, materials,
and designs, prior to the beginning of construction, reliable predictions can be made about
cost, functionality, stability and more [2].

Today, most stakeholders understand the implications and possibilities enabled by
using BIM as a tool to facilitate information flow and support better decision-making
throughout the building lifecycle. Among all the aspects, sustainability has raised the
profile of building lifecycle management [3]. The importance of long-term sustainable
construction in our current social climate is indisputable. BIM technology is a tool that
is being used to help make the AEC industry more economically and environmentally
sustainable [4].
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In this context, digital twins of buildings are tied to Building Energy Models (BEM)
allowing designers to perform what-if tests to determine the energy consumption of the
building, helping reduce waste and overall building costs. When BEM tool is integrated
within the BIM application and workflow, energy analyses can occur as early as the concept
stage, allowing for more informed design decisions [5]. Energy modeling tools use a range
of parameters to estimate the energy performance of a building. Some of this information,
e.g., building envelope, zones, rooms, structure, equipment, control scenarios, can often
come directly from the BIM system. However, for comprehensive energy modeling, a more
detailed level of information on energy characteristics is needed [6]. BIM model is made
up of various categories of ‘objects’, which include each unit of equipment in the building.
Objects can include different levels of detail, often provided by the equipment manufacturer,
which needs to be in a format the specific BIM system can understand [7]. For effective
energy modeling, the designer needs to include the right amount of information about
each piece of equipment or component, including at the very least: power consumption,
heating and cooling capacity (for HVAC equipment), thermal characteristics and behavior
(for passive systems).

The challenge is to consider as many elements involved in the energy balance as possi-
ble and shuffling their parameters in a plausible and meaningful range [8]. The permutation
of all considered design components and energy properties realize a set of combinations
among which the optimal solution must be searched. This optimization problem can
then be solved under different perspectives (e.g., minimum cost, best performance and
many others) [9–11]. Further complicating things is the fact that BIM design typically uses
multiple tools, each with a different focus, and separate BEM tools for energy modeling.
This requires data to be transferred between the BIM and BEM models, which is more
difficult and time-consuming when the tools are not integrated [12,13] or used through a
platform that manages them jointly [14]. Standards exist that enable the extraction and
sharing of data between BIM and BEM tools, including the Industry Foundation Classes
(IFC) and Green Building XML (gbXML). However, these require a middleware conversion
utility, and there is room for potential errors along the way or missing data during the
conversion process [15–19].

In terms of environmental sustainability, many factors are involved when computing
the energetic balance of a building, also interacting one to each other differently. Several
studies analyze this aspect, exploiting BIM technology and its capability of virtualizing
the design and construction process, therefore being able to perform preliminary analysis
in a more exhaustive way. In [20], BIM is used to perform a parametric analysis aimed
at designing the building performance parameters based on climate conditions towards
energy efficiency. They studied various design standards (exterior walls material, roofs
material and a set of window-to-wall ratios) in combination with building location. The
researcher found through results around 15% improvement in the energy consumption
due to change design options such as window-to-wall ratio, disregarding the location.
Piselli et al. [21] analyzed the impact of energy plant replacement for the retrofit of existing
buildings. Ground source heat pump system and existing gas boiler were compared
and results showed up to 73% heating energy need reduction and 69% CO2 emission
savings while maintaining the same operation and comfort conditions for the occupants.
Taha et al. [22] performed daylight and photovoltaic panel performance analyses on a
modelled two-floor educational facility. They quantified also the energy saving led by
design alternatives in terms of kWh/year, experimenting the use of BIM technology for
preliminary design assessments. In [23], De Gaetani et al. investigated the interdependency
of main building components in terms of both costs and energy consumption. They found
that depending on the expected life cycle of the building, the priority of investments on
more performing technologies should be accurately analyzed, being that not obvious.
Mohelníková et al. [24] analyzed several options for complex retrofits focused on building
envelopes and their window/shading systems together with the installation of efficient
technical systems for HVAC systems. Their analyses on heating energy demands in existing



Energies 2021, 14, 2956 3 of 18

old buildings showed the importance of renovations for their energy efficiency. On the other
hands, the thermal and daylight evaluation results showed that renovation improvements
could be sometimes counter-productive from the indoor comfort point of view.

The aforementioned researches are based on the generation of several BIM models by
differently combining factors influencing the energy analysis, carried out subsequently the
BIM modeling process. The objective was not finding the optimum in absolute terms but
identifying factors more affecting the energy balance or comparing different design options.
The bottle-neck of such comparisons were the limited amount of investigable alternatives,
due to operational and practical reasons. Among all the possible solutions there are the
automation of the whole process of modeling and analysis of the building or the estimate of
intermediate options so to densify the set of design alternatives. In this context, approaches
using BIM include work by [25] who created a generative design system on top of Autodesk
Revit [26] that manipulates window sizes and invokes the Autodesk Green Building Studio
API [27] to determine the resulting energy-analysis metric. In a subsequent work [28],
the authors used Autodesk Dynamo [29], a visual-programming tool, to solve a similar
problem, namely that of discrete window-size optimization for reducing daylight usage
and energy consumption. In [30], a framework for optimization BPOpt (BIM Performance
Optimization) based on Dynamo was created, which breaks the generative design into
fives phases: decision variables (input), initial random population (initial setup), fitness
functions (evaluation), generation loop (decision making), and writing to CSV File (output).
Depending on the problem the user plans to optimize, they could alter the input parameters
and develop the appropriate fitness functions, thereby making the problem seemingly
independent of the type of generative design.

However, recent advances in Information Technology have led to a new breed of
computer-based tools. Artificial Neural Networks (ANNs) are one of the best and most
widely utilized tools in the development of prediction models in different fields and BIM
exploitation for energy analysis is one of these. Alshibani and Alshamrani [31] described
the development, testing, and validation of a conceptual system to assist architects in
selecting the optimum alternative design that minimizes the cost of energy consumption of
residential buildings in Saudi Arabia. The proposed system incorporated BIM and ANN-
based models to predict energy cost. Different ANN models with different characteristics
were tested and built using real data on energy consumption collected from six cities
across the eastern province of the country. In [32], Ma et al. evaluated indoor personal
thermal comfort for a comfortable and green thermal environment. They proposed a
BIM-ANN based system for this purpose. The system included an ANN predictive model
considering three environment parameters (air temperature, air humidity, and wind speed
around the person), three human state parameters (human metabolism rate, clothing
thermal resistance, and the body position) and four body parameters (gender, age, height,
and weight) as inputs. In [33], the research focused on developing robust ANNs for use
as surrogate models for simulation by using data generated from the Simulation-Based
Multi-Objective Optimization (SBMO) model developed in a previous research [34]

The outcome of this study showed that the proposed ANN models could efficiently
predict the total energy consumption, life-cycle cost and life-cycle assessment for the whole
building renovation scenarios considering the building envelope, HVAC, and lighting sys-
tems.

In this work, a framework for automatic creation of large datasets where searching
the optimal combination of a set of given parameters of a BIM model is proposed, facing
also the problem of how to speed up the whole procedure. Such approach has been
implemented in two main steps. Firstly exploiting the possibility of automating the
model generation and analysis given by interfacing the involved software packages with
scripts and codes that replicate the human intervention avoiding gross errors and allows
for managing the complete procedure from an initial setup. Secondly, Artificial Neural
Networks and Transfer Learning technique has been applied, aiming at speeding up the
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dataset creation and increasing the parameters range resolution on the basis of a subset of
available design alternatives.

2. Methodology

In this work, the automatic creation of a relevant set of design options to be analyzed
for searching the optimum was carried out in two main steps. In the first step, the usual
workflow that would be applied manually was followed by running scripts and codes
that perform each stage (i.e., parameters setup, model creation, energy analysis, results
evaluation) sequentially and depending just on the initial setup given by the user. This
allowed a quick creation of design alternatives by greatly reducing the manual intervention
and consequently the possibility of gross errors and loss of time. At the end of this first
step a great amount of data could already be obtained but the process was time-consuming
and intermediate solutions should be obtained by repeating the scripts with different
setups. This aspect could be faced by exploiting the results of this first step as input for
predicting (instead of computing) the desired intermediate solutions. In the second step
of the proposed approach, ANNs were applied to increase the resolution of parameters
range and Transfer Learning technique was applied aiming at allowing the possibility of
evaluating options that were not considered in the initial setup. The following subsections
focus on the description of these two main steps that are the framework of the proposed
approach.

2.1. Automatic Design Options Creation

With the aim to build a framework that automates design options creation for energy
analysis, a relevant dataset had to be built as a first step. At the first stage, for energy
analysis, the following parameters of a building were accounted for: window-to-wall ratio
(WWR), shape of the building, rotation in plan, thermal characteristics of elements such as
floor, walls and roof. Each parameter had a certain range of variations, thus for a complete
analysis, each combination was considered. The general workflow of this step is presented
in Figure 1:

Figure 1. Automation of design options creation workflow.

After having determined the range of parameters of interest at the first stage, each
combination of these parameters was applied to an Autodesk Revit model one by one.
This was done using Revit API and Python programming language: they together made
it possible to interact with the authoring software through code. As combinations were
applied, current state of the Revit model is saved in gbXML file format, where each gbXML
file described the Revit model with a specific applied set of parameters from an energetic
point of view. Therefore, the output of the second stage was a collection of gbXML files,
with each file being a design option.

At the third stage, to conduct energy analyses of this collection of data, these gbXML
files were uploaded to Autodesk Green Building Studio using Dynamo, which is a part of
the out of the box Revit and is a visual programming tool. The Dynamo package used was
“Energy Analysis for Dynamo” [35], which requires a list of gbXML files created earlier, and
a Green Building Studio project ID, specified in the ProjectID node on Figure 2. The ID can
be found using GetProjectsList node from the package, given that a Green Building Studio
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project has already been created. Other than that, for Revit to be able to recognize the user,
one must have logged in in the Revit environment with valid Autodesk credentials.

Figure 2. Dynamo for Revit node linking the gbXML files to the Green Building Studio project Id.

After this Dynamo script was run, each file was uploaded to Green Building Studio,
and the energy analyses started automatically using DOE-2 engine. This concluded the
third stage of the workflow.

Upon completion of the analyses, additional design alternatives based on previous
design options were created. The additional design alternatives accounted for different
WWR ratios and they were accounted for by creating so-called “alternative runs” using
browser automation technique (i.e., Selenium Python package). GBS offers a wide range of
parameters to change in alternative runs; however in this case, advantage was taken only
of assigning different WWR ratios, which added the last level complexity to the analysis.
It is important to note, that windows added by GBS had a default R value of 0.5 W

m2K .
Analyses of added alternatives started automatically, and when completed, the results were
downloaded from the website using built-in function of GBS that allowed us to download
reports in Excel format. The results represented a set of Energy Use Intensity (EUI) values
for each design alternative. EUI estimated how good or bad a model performed from
energy consumption standpoint and was measured in kWh

m2year . The obtained EUI values
were the output for any given configuration considered and could be used as input to train
an ANN that could then predict additional EUI values for not considered configurations.

2.2. Design Options Prediction through ANN

The body of an ANN can be thought of as a series of matrices with gradually de-
creasing size. To get a prediction of EUI, the input vector was multiplied by the first
matrix, giving a vector that was in turn multiplied by the next matrix. This series of
operations eventually led to a single number, which was the EUI prediction. Conceptually,
just described ANN could be represented as in Figure 3:

Figure 3. Conceptualization of the implemented ANN architecture for EUI prediction on the basis of
the five considered input layers.
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Initially randomly generated values of the matrices got updated based on partial
derivative of so-called loss function used to assess predictions after each iteration described
above. This ensured that the prediction came closer to the ground truth value after
each iteration. This process was called training of a neural network, where each neuron
performed a weighted sum of the x values representing the input vector. By tuning the
weights of the neuron w, each of of them was capable of fitting well only data with linear
correlation, but if they were stuck atop each other, they formed a powerful system capable
of fitting quite complex data, which was indeed this case.

Usually, out of a dataset, a big amount of available data was used for training, and
small fractions—for validating, i.e., some data points were left out of training process
intentionally to check how good or bad the predictions based on part of the data were.
However, if an ANN trained for a similar task was available, then so-called transfer
learning could be applied. Transfer learning is a technique allowing to use already trained
neural network and retrain it for a new dataset. This is feasible because an already trained
ANN ‘knows’ how each input influences the outcome, therefore it knows general patterns.
Therefore, if a new dataset represents about the same distribution as the one for which the
existing ANN is trained, then with minor shifts of weights it is possible to make the ANN
fit the new data. The main benefits of using this technique is that it takes less time and data
to train an ANN built on other ANNs. In fact, being able to apply transfer learning has
been the key consideration behind this particular choice of ML technique. Based on this
reasoning, workflow depicted on Figure 4 emerges:

Figure 4. Workflow for properly exploiting Transfer Learning technique. A smaller amount of input
data is used for predicting values on the basis of previously trained similar Neural Networks.

According to the workflow, first, an ANN was trained on a set of data, and the ANN
was reused to be a foundation of other ANN to take advantage of Transfer Learning and
estimate time savings and predictions accuracy.

3. Case Study

This section is devoted to a practical implementation of the workflow previously
described. The considered parameters around which design optioneering revolved were
those reflected in Table 1.

Table 1. Design parameters.

Parameter Range of Values

RFloor 0.5–1–2–3–4–5–6–7–8–9–10–12.5 m2K
W

RWalls 0.5–1–2–3–4–5–6–7–8–9–10–12.5 m2K
W

RRoo f 0.5–1–2–3–4–5–6–7–8–9–10–12.5 m2K
W

Rotation 0°–45°

Shape Box–Prism (same Box wall area)–Prism (same Box volume)

WWR 0%–50%–95%

Regarding the shape parameter, three different geometries of the Revit model were
analyzed: a box shape and two hexagonal prisms reflecting the wall surface and the volume
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of the box reference shape. We called them Box A, Prism B and Prism C, respectively. The
reason for having two hexagonal models was the following: when evaluating an influence
of a parameter on a certain outcome, it is a good practice to change the parameter not
influencing other ones, but in case of different shape it is not possible (EUI refers to unitary
floor surfaces), so all variations conjugated with a shape change are accounted for.

As seen in Table 2, all options had the same floor area to exclude influence of this factor.

Table 2. Characteristics of the three considered model geometries.

Model Type Floor Area, m2 Volume, m3 External Wall Surface, m2

Box A 94 310 144

Prism B 94 337 144

Prism C 94 310 155

From Table 1 it is seen that number of combinations was 12·12·12·3·2·3 = 31104. This
large number of combinations required automation of their creation, which was achieved
using Revit Python Shell for Revit.

All Revit models were created using a build-in Revit HVAC system definition; namely,
Residential 14 SEER. It was kept constant throughout the study.

3.1. Creation of the Initial Dataset

As first step, thermal resistances of the materials of which the elements were made of
were subject to iterative change. Thermal resistance of an element is R = C

h , where C is
the thermal conductivity of the material measured in W

mK and h is the element thickness.
Therefore, knowing thickness of an element, it was possible to set desirable thermal
resistance, changing the thermal conductivity value, which was accessible in Revit through
the Material Browser and could be found as attribute of the material the element was made
of. Revit API was used to iteratively change the value of thermal conductivity of each
individual material, going through each combination of thermal resistances. The value of
thermal resistance that had to be set on each iteration was calculated, h being known, as
well as the desired R. To find each relevant material’s thermal asset, which is a Revit object
holding all thermal characteristics of materials, the script in Appendix A as Listing 1 was
run in Revit Python Shell with a Revit model opened.

Upon completion, those objects could be used to assign thermal resistances and
subsequently convert each Revit model state to a gbXML representation using Revit API.
The code in Appendix A as Listing 2 did that.

After each cycle of the loop, a rotation of 45° was applied to the current model to take
into account of orientation of the model.

At this point, 10368 gbXML models had been created. The last factor, WWR, was
accounted for on Green Building Studio website after all gbXML files were loaded onto the
GBS using Dynamo node (see Figure 2) where all paths came from parsing the directory
containing just obtained gbXML files, as per Python code in Appendix A as Listing 3.

Launch of this node marked the start of uploading process, after which energy analyses
of the design options started automatically using DOE-2 engine implemented in GBS. Green
Building Studio was then used to assign different WWRs for walls in North, South, West
and East directions. This was usually done by manually creating an alternative run with
the desired WWR but considering the number of alternative runs to be done, decision
was made to resort to browser automation technique. Thus, after having collected URLs
of all main ran into a single txt file, Listing 4 in Appendix A was implemented to assign
all WWRs.

After this, 31104 design alternatives were created and analyzed. In fact, at the end of
this stage GBS dashboard contained six projects with 5184 runs each. A summary of how
the dashboard looked like is presented in Table 3:
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Table 3. Summary of the GBS dashboard at the end of the automatic analyses.

Project Id Shape / Orientation No. of Runs

1 Box A/0° 5184

2 Prism B/0° 5184

3 Prism C/0° 5184

4 Box A/45° 5184

5 Prism B/45° 5184

6 Prism C/45° 5184

The results of the analyses can be downloaded for further analyses aiming at finding
the optimal configuration or assessing which, among the considered parameters, influenced
the final result more. This would be out of the scope of the presented work but with such
amount of design alternatives to be compared, a preliminary assessment can be done by
plotting them. This can be done by fixing three of the six considered parameters under
investigation so to be able to plot the EUI values obtained as function of the remaining
three parameters free to vary in their assigned range. An example is provided in Figure 5.

Figure 5. Example of visual inspection of automatic GBS results. The provided example shows the
impact of RFloor, RRoo f and RWalls in the case of Box A model shape with 0° of rotation and 50%
of WWR.

The cube in Figure 5 is identified by 1728 points where each point represents a single
combination of thermal resistance of walls, roof, and floor of a Revit model. In particular, it
refers to the Box A model results with 50% WWR and 0° rotation. Points are coloured on
the basis of the correspondent obtained EUI and the EUI scale beside the cube is common
for all the cubes obtainable with Box A setup. As a preliminary and qualitative assessment,
such a plot revealed that among all the alternatives of the Box A model, energy demand
had a range of about 365-2010 EUI. This meant that the worst configuration demands
about 5.5 more energy if compared with the best one. In the provided example, no red
points were present (lowest EUI of the scalebar), immediately leading to state that the best
configuration could not be found with 50% WWR and 0° rotation for Box A model. Further,
although it was obvious that opposite results were obtained along the edges of the cubes
with lowest/highest values of RFloor, RRoo f and RWalls, by navigating within the cube the
designer could easily check the impact of tuning the thickness (therefore the R value) of
one or two components. Although the presented qualitative analysis was out of the scope
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of the presented research, it described one of the possible practical applications exploiting
a large number of available processed design alternatives.

3.2. Neural Networks Implementation for Dataset Resolution Increase

Conducting such a set of experiments was a very time-consuming procedure. More-
over, the data were quite complex for these five parameters already. If we should refine the
above procedure, the number of factors will grow, making the data even more complex.
However, with neural networks it was possible to achieve the same results spending less
time and computational power and to get a scalable framework for design optioneering.

Main principles of ANNs were explained in the previous section. The implemented
ANN had the architecture shown in Figure 3, and it was built using Keras framework [36].
The green circles represent the input factors expressed in numbers, and the yellow circle
is the EUI value in output. Each blue circle is a single neuron. The ANN had five hidden
layers with 900, 500, 300, 128 and 32 neurons respectively.

Such an architecture was a product of a trial and error process. From one side, an
ANN should be complex enough to capture accurately all trends present in the data, so
that it does not underfit. From the other side, an ANN should not be very complex to
prevent overfitting. Therefore, an ANN model should be balanced between the two. This
could be achieved in several ways, for example: manual brute force selection, uniform
or random grid search available in Scikit learn Python package. Loss function, described
further, served as an indication of the ANN overfitting or underfitting the data.

The loss function used to compare N predictions ŷ with the ground-truth y was Root
Mean Squared Error (RMSE): it was sensitive to outliers in the data, which were not
present in the dataset, since it was prepared synthetically.

RMSE =

√
∑N

i=1(ŷi − yi)2

N
(1)

Along with RMSE, Mean Absolute Error (MAE) was used as metrics, only to see the
discrepancy between RMSE and MAE as it was a good indicator of different magnitude
among the N predictions.

MAE =
1
N

N

∑
i=1
|yi − ŷi| (2)

Additionally, the constant term of the last neuron was set to mean EUI value of
the available training set to accelerate learning during first training loops [37], and all
other weights were initialized as per Xavier [38]. The Adam optimizer [39] was used to
adjust gradient descent paths, so that convergence happened smoother and faster. The
learning rate of the optimizer, being the rate at which weights were updated with respect
to gradients, followed a linear descent as training progressed:

LearningRate = 3e− 5 ∗ 2500− epoch
2550

(3)

It was important to lower the learning rate as the predictions came closer to the
convergence point in order not to overshoot the target. Finally, all except the last neurons’
outputs were fed through Selu activation function. The activation function was applied to
a neuron output, so that the “activated” output was an input to the next layer. Activation
added non-linearity in the process and makes the learning possible. The last neuron had a
linear activation function. The Selu function was as follows [40]:

SELU(x) = λ

{
x if x > 0
αex − α if x ≤ 0

(4)
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where:

λ ≈ 1.67, α ≈ 1.05

Following the methodology and architecture described above, the NN was trained
using data of the Box A Revit model: 93.75% for training, and 6.25% for validation. After
training was completed, the ANN knew main patterns in the data, and how inputs influ-
enced the output. With this just trained ANN, a use could be made of the rest of the data
obtained from Prism B and Prism C models to put in evidence low amount of effort needed
to predict their EUI. For this, Transfer Learning (TL) technique was applied: in just trained
NN, four largest layers were frozen (their weights were set as non-trainable), and the rest
of the weights were retrained using only 6.25% of available data for training, as shown in
Figure 6.

Figure 6. Architecture of the ANN when Transfer Learning is applied.

The main benefit of this approach was its gain of speed and lower about of data
needed: only a small fraction of the weights was updated, and thus, less data were needed
when using pre-trained network. Lower level features determined general patterns in the
data, and they could remain frozen given that the data on which it was retrained came
from about the same distribution.

4. Results and Discussion

Predictions after training the first ANN with the Box A data are displayed in Figure 7
while their accuracy is reported in Table 4.

Figure 7. Predicted EUI values for training set on the left side and validation set on the right side.
Each point represents an EUI value for a certain combination of the input parameters.

By making use of the 10368 data points obtained from the Box Revit model, 93.75%
went for training, 6.25% for validation. The ANN was able to predict the real value with
RMSE = 0.5479 EUI for training set and RMSE = 0.7202 EUI for validation (data the ANN
had not seen). RMSE and MAE were of the same order of magnitude. This in turn put in
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evidence that non-linear patterns of the data could be captured along the whole range of
parameters considered.

Table 4. Box A data predictions accuracy.

Training Set Validation Set

RMSE [EUI] 0.5479 0.7202

MAE [EUI] 0.2711 0.3110

As per results of the transfer learning process, exploiting the ANN trained on the
Box A model dataset and used for Prism B and Prism C models, obtained predictions are
displayed in Figure 8 and summarized in Table 5.

Figure 8. Predicted EUI values for Prism B model on the left side and Prism C model on the right
side after applying transfer learning to the previously trained ANN based on Box A data. Each point
represents an EUI value for a certain combination of the input parameters.

Table 5. Prism B and Prism C data predictions accuracy.

Training Set Validation Set

Prism B model

RMSE [EUI] 0.7135 0.9493

MAE [EUI] 0.4065 0.5292

Prism C model

RMSE [EUI] 0.5767 0.6897

MAE [EUI] 0.2983 0.3587

In order to apply transfer learning (i.e., retrain to match the new data) to the Prism B
and Prism C datasets, the first four layers were then frozen (set as non-trainable). For this
step only 6.25% of the available data were used for training. Additionally, in these cases,
RMSE and MAE remained with the same order of magnitude. Prism C predictions got
very similar results to the original Box A model ones for both the training and validation
sets. Sligthly worse results were obtained for the Prism B model but considering the fact
that the training took approximately 1–2 min compared to about 3 h for the first neural
network, with the amount of training applied to those two models being exactly the same,
the improvement in applying transfer learning technique was indisputable.

This point was further investigated testing the amount of Box A model data needed
for applying transfer learning technique to Prism C model without loosing accuracy. For
this purpose, a different amount of the available data was used for training: 5.5%, 4%, 2%,
1%, 0.5% and 0.25%. As one can see in Figure 9, the performance started degrading at about
1–2% of the available training dataset. This amount of points (approximately 150) could be



Energies 2021, 14, 2956 12 of 18

obtained several times faster than the original 10,368 data points, thus taking about 10–20
min for the whole procedure if automated.

Figure 9. Ablation study results aiming at investigating the impact of reducing the size of the subset
of data to be used for applying transfer learning technique without significant loss of accuracy.

It was clearly seen that 1–2% training/validation split was the breaking point, lower
than which it was hard to achieve good performance, i.e., loss function did not reach the
plateau reached with a higher amount of data. At the same time, there was no need to feed
more data points as it did not improve the performance. However, prediction quality of
the Neural Network for different Revit models was somewhat different (Tables 4 and 5),
albeit fluctuations neutralized this effect to some extent. This implied that to train an ANN
for different models would take different amount of training, but most importantly, that
for different models the best approximation performance would differ. Summarizing, the
neural network that was obtained was able with lower effort and time to output a large
set of precise predictions of energy performance of a building in different configurations.
For this, few hundreds of data points would be required (that can be obtained using the
automation technique described in the previous sections) and just 1–2 min for training the
original neural network.

5. Conclusions

In this work, the creation of the dataset where searching the optimal combination of a
set of given parameters of a BIM model has been analyzed into two main steps.

First, a framework for automatic design options creation and analysys has been pro-
posed, implemented and tested on a case study. Such framework exploits the possibility of
replicating the usual manual workflow by means of scripts and codes. Revit API, Python
programming language and the Dynamo package interacted with the BIM authoring soft-
ware through code, that created and upload gbXML files to Green Building Studio for
completing the design alternative setup and performing energy analyses. The test case
considered several parameters (thermal characteristics of floors, walls, roofs, building
orientation, windows-to-wall ratios), each of them with different range values, constituting
10368 design alternatives for three different building shapes (31104 options in total). Al-
though the procedure is very time and resource consuming, the main advancement relies in
the reduction of the manual intervention and the possibility of creating a very large dataset
of design options, simply defining the initial desired set of parameters and avoiding gross
errors. Such amount of data would have been quite difficult to be obtained manually.

The second part of the investigation aimed at speeding up the dataset creation and
increasing the resolution of the considered parameters range. For this purpose, neural
network and transfer learning technique were applied, tested and compared with the
results obtained with the previous approach. First, a single building shape was considered
and 93.75% of the 10368 previously analyzed options was used to train a neural network
and predict the remaining 6.25%. Results showed a very good agreement in the validation
dataset, leading to the conclusion that with such approach, the resolution of parameters
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range can be increased without repeating the automatic computation process. More
interesting have been the results of the application of transfer learning technique to the
other two building shapes. By exploiting the neural network trained on the previous
building shape, the other two datasets have been predicted by using only 6.25% of the
available data, without significant loss of accuracy. This means that the complete initial
dataset of 10368 options for a given shape can be reduced down to only 648. Ablation
studies also showed that this percentage is redundant, and could be further reduced down
to about 1% or 100–150 design options.

It is important to note, that these 100–150 design options come from a model with
slightly different settings (i.e., different shape of the envelope), which makes it possible to
take another model located, for instance, in a different climate zone and conduct the same
type of analyses, which may require different amount of data to predict the EUI with high
accuracy; however for that more testing of the framework is required.

The use of transfer learning achieved its target of speeding up the process: the time
taken was 1 day to create the initial dataset for a model (10368 design options) and 3 hours
for training the ANN; however the transfer learning part would take around 10–15 minutes
to create only a fraction of that data and 2–3 minutes to re-train the ANN, which is a
significant speed-up.

The framework presented serves as a proof of concept, and obviously does not account
for all possible factors that influence the final EUI value. Additional input factors would be
handled in one of the two ways. In case of moderate number of new factors, a new neuron
should be added to the input layer for each factor, and the body of the ANN should be
adjusted accordingly. However, in case of extreme number of new inputs, they would be
grouped semantically to form a number of separate ANNs, output of which would be an
input to the main ANN. In other words, the system would become an assembly of ANNs,
where separation of concerns of each aspect is respected, and they only are mixed at the
later stage in the main ANN.
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Appendix A

Listing 1: Material Assets’ Properties Detection
### Impor t ###
import c l r
from Autodesk . Revi t .DB import *
c l r . AddReference ( ’ ProtoGeometry ’ )
from Autodesk . Des ignScr ipt . Geometry import *
c l r . AddReference ( " R e v i t S e r v i c e s " )
import R e v i t S e r v i c e s
from R e v i t S e r v i c e s . P e r s i s t e n c e import DocumentManager
from R e v i t S e r v i c e s . Transac t ions import TransactionManager
import Autodesk . Revi t . Creat ion
c l r . AddReference ( " RevitAPI " )

### L i s t o f n e c e s s a r y Thermal C o n d u c t i v i t y p a r a m e t e r s ###
FloorR =[1 , 0 . 5 , 0 . 2 5 , 0 . 1 6 6 6 6 7 , 0 . 1 2 5 , 0 . 1 , 0 . 0 8 3 3 3 3 ,
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0 . 0 7 1 4 2 9 , 0 . 0 6 2 5 , 0 .0555556 , 0 . 0 5 , 0 . 0 4 ]
WallsR = [ 0 . 6 , 0 . 3 , 0 . 1 5 , 0 . 1 , 0 . 0 7 5 , 0 . 0 6 , 0 . 0 5 , 0 . 0 4 2 8 5 7 , 0 . 0 3 7 5 , 0 . 0 3 3 3 3 ,

0 . 0 3 , 0 . 0 2 4 ]
RoofR =[1 , 0 . 5 , 0 . 2 5 , 0 . 1 6 6 6 6 7 , 0 . 1 2 5 , 0 . 1 , 0 . 0 8 3 3 3 3 ,

0 . 0 7 1 4 2 9 , 0 . 0 6 2 5 , 0 .0555556 , 0 . 0 5 , 0 . 0 4 ]
# L i s t o f m a t e r i a l s in t h e p r o j e c t .
# ’ doc ’ r e f e r s t o t h e c u r r e n t R e v i t document
mat= F i l t e r e d E l e m e n t C o l l e c t o r ( doc ) . OfCategory ( Bui l t InCategory . OST_Materials )
m a t e r i a l s = [ ]
for m in mat :

m a t e r i a l s . append (m.Name)

### Ass ign r e q u i r e d m a t e r i a l p r o p e r t y t o a v a r i a b l e ###
for m in mat :

i f m.Name== ’ Rigid i n s u l a t i o n ’ :
Wall=doc . GetElement (m. ThermalAssetId ) .

LookupParameter ( " Thermal Conductivity " )
i f m.Name== ’Wood Sheathing , Chipboard ’ :

Roof=doc . GetElement (m. ThermalAssetId ) .
LookupParameter ( " Thermal Conductivity " )

i f m.Name== ’ Structure , Timber J o i s t /R a f t e r Layer ’ :
F loor=doc . GetElement (m. ThermalAssetId ) .

LookupParameter ( " Thermal Conductivity " )

Listing 2: Material Assets
### S e t t i n g out Energy A n a l y s i s p a r a m e t e r s ###
opt=Analysis . EnergyAnalysisDetailModelOptions ( )
opt . EnergyModelType=Analysis . EnergyModelType . BuildingElement
opt . ExportMullions=Fa l se
opt . IncludeShadingSurfaces=Fa l se
opt . SimplifyCurtainSystems=True
opt . T ier=Analysis . EnergyAnalysisDetai lModelTier . SecondLevelBoundaries

### Loop o v e r a l l R c o m b i n a t i o n s and c r e a t e mode l s ###
for i in FloorR :

t =Transact ion ( doc , "R change " )
t . S t a r t ( )
Floor . Se t ( i /0 .3048 )
t . Commit ( )
t . Dispose ( )
for j in WallsR :

t =Transact ion ( doc , "R change " )
t . S t a r t ( )
Wall . Se t ( j /0 .3048)
t . Commit ( )
t . Dispose ( )
for k in RoofR :

t =Transact ion ( doc , "R change " )
t . S t a r t ( )
Roof . Set ( k /0 .3048)
t . Commit ( )
t . Dispose ( )
c=Transact ion ( doc , " Model Creat ion " )
c . S t a r t ( )
model=Analysis . EnergyAnalysisDetailModel .

Create ( doc , opt )
model . TransformModel ( )
GBopt=GBXMLExportOptions ( )
GBopt . ExportEnergyModelType=

ExportEnergyModelType . BuildingElement
doc . Export ( "C:\ Users\User\Desktop\ASD" ,

s t r ( round ( 0 . 5 / i , 1 ) ) + " , "+
s t r ( round ( 0 . 3 / j , 1 ) ) + " , "+
s t r ( round ( 0 . 5 / k , 1 ) ) , GBopt )

c . Commit ( )
c . Dispose ( )
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Listing 3: Directory Parsing

import os , sys
path = "D:\\New f o l d e r (2)\\ "
d i r s = os . l i s t d i r ( path )
paths = [ ]
for i in d i r s :

paths . append ( path+ i )
paths [ 0 ] # ’D:\\New f o l d e r ( 2 ) \ \ 0 . 5 , 0 . 5 , 0 . 5 . xml ’

Listing 4: WWRs Assignment

from selenium import webdriver
from selenium . webdriver . support . ui import S e l e c t
from selenium . webdriver . common . keys import Keys
from selenium . webdriver . common . by import By
from selenium . webdriver . support . ui import WebDriverWait
from selenium . webdriver . support import expected_condi t ions as EC
import time
d i r e c t = s t r ( input ( ’ Enter f i l e name ’+ ’ t x t ’ ) )
f i l e =open ( r ’C:\\ Users\\User\\ D i r e c t o r i e s \\ ’+ ’ d i r e c t ’ , ’ r ’ )
l i s = f i l e . r e a d l i n e s ( )
for i in range ( len ( l i s ) ) :

l i s [ i ]= l i s [ i ] . s t r i p ( )

dr iver=webdriver . Chrome ( ’D:\\ Python\\chromedriver ’ )
dr iver . get ( ’ h t tps :// gbs . autodesk . com/GBS/ ’ )

for i in range ( len ( l i s ) ) :

dr iver . get ( s t r ( l i s [ i ] ) )
t r y :

WebDriverWait ( driver , 1 3 ) . u n t i l (EC . tex t_ to_be_present_ in_e lement

( ( By .CLASS_NAME, " gbs " ) , "No change " ) )
WebDriverWait ( driver , 1 0 ) . u n t i l (EC .

f rame_to_be_ava i lab le_and_swi tch_to_ i t
( ( By . ID , " MainContent_PinTab1 " ) ) )

WebDriverWait ( driver , 1 0 ) . u n t i l (EC .
f rame_to_be_ava i lab le_and_swi tch_to_ i t
( ( By . ID , " __tab_area3 " ) ) )

except :
print ( ’ e r r ’+ s t r ( l i s [ i ] ) + s t r ( 5 0 ) )
continue

time . s leep ( 3 )

dr iver . switch_to . frame ( ’ MainContent_PinTab1 ’ )
dr iver . f ind_element_by_xpath ( ’ //*[ @id=" t a b i t e m 1 0 3 _ t i t l e " ] ’ ) . c l i c k ( )
dr iver . switch_to . frame ( ’ __tab_area3 ’ )
t r y :

ob j= S e l e c t ( dr iver . find_element_by_name
( ’ DataGrid1$ctl01$drpWindowtoWallRatio ’ ) )

ob j . s e l e c t _ b y _ v i s i b l e _ t e x t ( ’50% ’ )
except :

print ( s t r ( l i s [ i ] ) + s t r ( 5 0 ) )
continue

dr iver . switch_to . d e f a u l t _ c o n t e n t ( )

dr iver . switch_to . frame ( ’ MainContent_PinTab1 ’ )
dr iver . f ind_element_by_xpath ( ’ //*[ @id=" t a b i t e m 1 0 4 _ t i t l e " ] ’ ) . c l i c k ( )
dr iver . switch_to . frame ( ’ __tab_area4 ’ )
t r y :

ob j= S e l e c t ( dr iver . find_element_by_name
( ’ DataGrid1$ctl01$drpWindowtoWallRatio ’ ) )

ob j . s e l e c t _ b y _ v i s i b l e _ t e x t ( ’50% ’ )
except :
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print ( s t r ( l i s [ i ] ) + s t r ( 5 0 ) )
continue

dr iver . switch_to . d e f a u l t _ c o n t e n t ( )
dr iver . switch_to . frame ( ’ MainContent_PinTab1 ’ )
dr iver . f ind_element_by_xpath ( ’ //*[ @id=" t a b i t e m 1 0 5 _ t i t l e " ] ’ ) . c l i c k ( )
dr iver . switch_to . frame ( ’ __tab_area5 ’ )
t r y :

ob j= S e l e c t ( dr iver . find_element_by_name
( ’ DataGrid1$ctl01$drpWindowtoWallRatio ’ ) )

ob j . s e l e c t _ b y _ v i s i b l e _ t e x t ( ’50% ’ )
except :

print ( s t r ( l i s [ i ] ) + s t r ( 5 0 ) )
continue

dr iver . switch_to . d e f a u l t _ c o n t e n t ( )

dr iver . switch_to . frame ( ’ MainContent_PinTab1 ’ )
dr iver . f ind_element_by_xpath ( ’ //*[ @id=" t a b i t e m 1 0 6 _ t i t l e " ] ’ ) . c l i c k ( )
dr iver . switch_to . frame ( ’ __tab_area6 ’ )
t r y :

ob j= S e l e c t ( dr iver . find_element_by_name
( ’ DataGrid1$ctl01$drpWindowtoWallRatio ’ ) )

ob j . s e l e c t _ b y _ v i s i b l e _ t e x t ( ’50% ’ )
except :

print ( s t r ( l i s [ i ] ) + s t r ( 5 0 ) )
continue

dr iver . switch_to . d e f a u l t _ c o n t e n t ( )

dr iver . f ind_element_by_id ( ’ MainContent_btnAdd ’ ) . c l i c k ( )

t r y :
WebDriverWait ( driver , 1 3 ) . u n t i l

(EC . tex t_ to_be_present_ in_e lement
( ( By .CLASS_NAME, " gbs " ) , "No change " ) )

WebDriverWait ( driver , 1 0 ) . u n t i l
(EC . f rame_to_be_ava i lab le_and_swi tch_to_ i t
( ( By . ID , " MainContent_PinTab1 " ) ) )

WebDriverWait ( driver , 1 0 ) .
u n t i l (EC . f rame_to_be_ava i lab le_and_swi tch_to_ i t
( ( By . ID , " __tab_area3 " ) ) )

except :
print ( ’ e r r ’+ s t r ( l i s [ i ] ) + s t r ( 9 5 ) )
continue

time . s leep ( 3 )
dr iver . switch_to . frame ( ’ MainContent_PinTab1 ’ )
dr iver . f ind_element_by_xpath ( ’ //*[ @id=" t a b i t e m 1 0 3 _ t i t l e " ] ’ ) . c l i c k ( )
dr iver . switch_to . frame ( ’ __tab_area3 ’ )
t r y :

ob j= S e l e c t ( dr iver . find_element_by_name
( ’ DataGrid1$ctl01$drpWindowtoWallRatio ’ ) )

ob j . s e l e c t _ b y _ v i s i b l e _ t e x t ( ’95% ’ )
except :

print ( s t r ( l i s [ i ] ) + s t r ( 9 5 ) )
continue

dr iver . switch_to . d e f a u l t _ c o n t e n t ( )

dr iver . switch_to . frame ( ’ MainContent_PinTab1 ’ )
dr iver . f ind_element_by_xpath ( ’ //*[ @id=" t a b i t e m 1 0 4 _ t i t l e " ] ’ ) . c l i c k ( )
dr iver . switch_to . frame ( ’ __tab_area4 ’ )
t r y :

ob j= S e l e c t ( dr iver . find_element_by_name
( ’ DataGrid1$ctl01$drpWindowtoWallRatio ’ ) )

ob j . s e l e c t _ b y _ v i s i b l e _ t e x t ( ’95% ’ )
except :

print ( s t r ( l i s [ i ] ) + s t r ( 9 5 ) )
continue



Energies 2021, 14, 2956 17 of 18

dr iver . switch_to . d e f a u l t _ c o n t e n t ( )

dr iver . switch_to . frame ( ’ MainContent_PinTab1 ’ )
dr iver . f ind_element_by_xpath ( ’ //*[ @id=" t a b i t e m 1 0 5 _ t i t l e " ] ’ ) . c l i c k ( )
dr iver . switch_to . frame ( ’ __tab_area5 ’ )
t r y :

ob j= S e l e c t ( dr iver . find_element_by_name
( ’ DataGrid1$ctl01$drpWindowtoWallRatio ’ ) )

ob j . s e l e c t _ b y _ v i s i b l e _ t e x t ( ’95% ’ )
except :

print ( s t r ( l i s [ i ] ) + s t r ( 9 5 ) )
continue

dr iver . switch_to . d e f a u l t _ c o n t e n t ( )

dr iver . switch_to . frame ( ’ MainContent_PinTab1 ’ )
dr iver . f ind_element_by_xpath ( ’ //*[ @id=" t a b i t e m 1 0 6 _ t i t l e " ] ’ ) . c l i c k ( )
dr iver . switch_to . frame ( ’ __tab_area6 ’ )
t r y :

ob j= S e l e c t ( dr iver . find_element_by_name
( ’ DataGrid1$ctl01$drpWindowtoWallRatio ’ ) )

ob j . s e l e c t _ b y _ v i s i b l e _ t e x t ( ’95% ’ )
except :

print ( s t r ( l i s [ i ] ) + s t r ( 9 5 ) )
continue

dr iver . switch_to . d e f a u l t _ c o n t e n t ( )

dr iver . f ind_element_by_id ( ’ MainContent_btnAdd ’ ) . c l i c k ( )
time . s leep ( 2 )

dr iver . f ind_element_by_id ( ’ MainContent_btnSubmit ’ ) . c l i c k ( )
time . s leep ( 2 )

f i l e . c l o s e ( )
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