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Abstract: The use of renewable energy sources and carbon emissions has been debated from various
perspectives throughout recent decades. However, the causal relationship between green energy
sources and carbon emissions volatility has received limited attention. This study aims to close a
knowledge gap in this area. The current study analyzes the renewable energy sources (wind, hydro,
and geothermal) and carbon emissions of four ASEAN countries (Indonesia, Thailand, Vietnam, and
the Philippines) between 2000 and 2019. The present study combined Chudik and Pesaran’s (2015)
newly developed Dynamic Common Correlated Effects (DCCE) with cutting-edge investigation tools
such as first- and second-generation unit root tests; CS-dependence; Variance inflation factor test for
multicollinearity; and Pedroni, Kao, and Wester Lund tests of co-integration. The Granger causality
test is also used to check the short-term and long-term causal effects within the renewable energy
sources and green energy sources, and carbon volatility. According to the empirical results, green
energy sources make a positive and vital contribution to reducing carbon emissions growth in the
above-noted ASEAN economies. Furthermore, short- and long-run causality runs from green energy
sources to carbon emission volatility in the region. A significant causality relationship has also been
observed within the green energy sources of ASEAN.

Keywords: carbon-neutral; green energy; climate change; ASEAN; granger causality

1. Introduction

The world’s climate is changing because of promoting prosperity to the detriment of
the atmosphere. Since the dawn of the industrial era, economies have shifted their focus
to large-scale production and commerce, resulting in a rise in energy use. Historically,
economies have relied heavily on conventional energy sources, including oil, gas, and
coal, which are key market sources of the greenhouse effect (GHG) [1]. Increased GHG
concentrations have impacted climatic changes by accelerating greenhouse gases. Global
warming poses a challenge, especially with the rise in the world’s surface temperature
caused by GHG emissions. Carbon dioxide accounts for the most considerable portion
of GHG emissions (CO2). According to [2], CO2 accounted for approximately 60% of
GHG and posed a significant threat to environmental quality. By the end of 2050, the
average warming is expected to exceed 3 ◦C, resulting in increased natural disaster risks
and increased biosphere pressure [3]. In this context, [4] hypothesized that the impact of
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temperature disruption could result in a drop in growth in countries worldwide if there
are no environmentally sustainable measures to tackle emerging global stress. In particular,
the researchers contend that the developing nations are more sensitive to climate change
and are projected to see an annual growth drop of 2–4% by 2040 and 10% by 2100.

Among emerging regions, ASEAN economies maintain a crucial status for continuing
faster productivity, particularly in Asia. Notably, the area is recognized as the center
of major economies that have succeeded in changing growth [5]. The economic activity
of the area is primarily due to high industrialization, modernization, and urban sprawl.
Nevertheless, ASEAN countries are also blamed for polluting the climate.

In these circumstances, [6] concluded that the increase in prosperity, financial progress,
and foreign direct investment are among the key factors responsible for the ASEAN region’s
environmental decline. Given that the ASEAN’s economy is still developing, its carbon
pollution rates, particularly in Malaysia, the Philippines, Indonesia, Vietnam, and Thailand,
are considerably large.

Industrial production, chemicals, and automation—labeled energy-intensive—are all
critical sectors committed to ASEAN development. Therefore, because of the increasing
climate turmoil in the ASEAN area, the ASEAN economies’ prosperity in the age of
globalization is associated with environmentally sustainable economic activity. Due to
these increased evolutionary challenges, the area experienced an increased incidence
of ecological and climate change through rising temperatures and resource depletion,
demanding economic progress that is found to be environmentally acceptable. Testifying
that traditional energy sources have a detrimental impact on carbon emission, several
experiments aim to explore environmental solutions to meet countries’ energy requirements.
The global economy, in the Paris Climate Convention, affirms decarbonization of the energy
market by reducing carbon emissions’ atmospheric concentrations [1]. In this respect, the
economy will be focused on adopting energy policies that are environmentally sustainable
and concentrate on alternative energy sources.

Renewable energy (henceforth GE) is energy produced from the earth’s renewable
energies. The aim of generating GE is to take advantage of the planet’s ecological assets,
such as water, sun, wind, and biomass, to meet countries’ inescapable energy needs for
household and commercial usage. Observing administrations’ growing preference for GE
acceptance, various researchers evaluated the effect of GE in a country’s social [7], eco-
nomic [8], and financial [9] development. Concerning ASEAN economies, [10] asserted that
since early 2000, the region had faced increased concerns about future sustainability due to
deteriorating energy supplies, emissions, and resource innovation obstacles. Similarly [11],
advocated for increased economic integration, sustainable energy, and socioeconomic
growth through greener fuels. They did, nevertheless, criticize the ASEAN economies un-
der the growth of GE schemes. In recent times, critical ASEAN nations have increased their
focus on renewable energy generation outlets. Intending to transition ASEAN economies
to green growth by 2030, the ASEAN region’s economies have also committed to increasing
GE’s share of their energy mix by 23%. By the end of 2030, the Philippines is expected to
reduce its GHG emissions by 65%, led by Malaysia at 40%, Singapore at 35%, Indonesia at
27%, Thailand at 22%, and Vietnam at 9% [12,13].

Due to the countries’ increasing focus on GE, the present study will examine GE’s
effect on environmental pollution in the top four ASEAN economies of Indonesia, Thailand,
the Philippines, and Vietnam. The objective of this research is to determine the contribution
of GE utilization to Decarbonisation in the area. The recent analysis provides value to the
current body of knowledge in two distinct ways: (I) This review focuses exclusively on
the relationship between GE use and CO2 emissions of ASEAN economies. (ii) Chudik
and Pesaran’s (2015) novel Dynamic Common Correlated Effects (DCCE) model is used to
investigate the causal relationship between GE use and CO2 emissions. It is a one-of-a-kind
approach that transcends techniques in various corresponding patterns. For example,
DCCE estimation acknowledges the underlying structure of interconnectedness between
the examined data and is therefore considered robust against over-estimated residuals.
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This approach provides causality with the mean but not with the variance and appraises
the causality that exists at the extremes of the cumulative relationship between variables.
Additionally, these predictions support the current study’s review of causal relationships
with variance. The results of this study aid in determining the causal relationship between
GE and CO2 in ASEAN member countries.

The remaining analyses are as follows: Section 2 summarizes the literature review on
geothermal energy and CO2 emission use. Section 3 described the methods for DCCE and
short- and long-run causality while discussing and identifying the advanced econometric
results. The fifth and final section is dedicated to the conclusion and policy suggestions.

Literature Review

In light of the ecological concerns, existing literature has concentrated on finding
potential products and services to satisfy economic needs while still addressing climate
change [14]. Carbon dioxide is the primary greenhouse gas responsible for global warming,
accounting for about 60% of greenhouse gas emissions [2]. Recognizing the significant
negative impact of carbon emissions into the environment, several studies explored causes
that could result in a decrease in CO2 emissions, including innovation [15], plantations [16],
and energy conservation [17]. In recent times, clean energy has been described as a critical
element in mitigating climate change by reducing greenhouse gases into the air [18].

The authors of [3] examined the impact of GE on environmental damage in OECD
economies using panel FMOLS and DOLS techniques. The results indicated that an
increase in GE decreased greenhouse gases in the underlying economies. Additionally [3],
investigated GE’s impact on environmental pollution in African countries utilizing Panel
GMM econometric techniques to carry out the quantitative assessment. The statistical
research findings indicate that increasing GE reduces CO2 emanation in the test database.
Additionally, for the G-7 countries, [1] examined the impact of GE on environmental
devastation using Granger causality approaches; the findings verified the existence of
a significant causal relationship between the factors in the nations of Germany and the
United States. More precisely, the results indicated that GE has a one-way causal impact on
the USA’s CO2 emissions. Conversely, in the case of Germany, there was a bi-directional
causal relationship between the factors. Additionally, [19] examined GE’s effect on the
degradation of the BRICS regions’ climate factors employing panel co-integration and
Granger causality to the proposed task. The findings of this study established a feedback
relationship between variables in the BRIC countries.

Another research [20] examined GE’s impact on environmental destruction in Europe
using panel DOLS econometric techniques. The study outcome showed a consistent GE role
in influencing environmental protection and the negative relationship between GE and CO2
emissions in Europe. Additionally, [21] investigates the impact of GE on the environment.
Using panel FMOLS procedures, the findings showed that GE has a substantial impact
on ecological sustainability. The research results indicated that an increase in GE lessened
carbon emissions in the economies studied.

Correspondingly, [22] examined GE’s effect on environment destruction, and utilized
System GMM and FMOLS econometrics for its proposed assessment. The quantitative
findings demonstrated GE’s substantial effect on environmental factors, indicating that
GE inflation is significantly correlated with CO2 emissions in the cases studied. The
authors of [23] examined the impact of GE on environmental devastation, emphasizing
Asia’s developing countries using panel FMOLS and DOLS methods, indicating that
GE has a negligible influence on global sustainability in Asian developing economies.
Similarly, [24] investigated the impact of GE on environmental pollution in a group of four
ASEAN economies, utilizing panel FMOLS and DOLS econometric techniques to assess
the situation. The study’s findings indicate that GE has a substantial influence on global
circumstances, with GE negatively correlated to greenhouse gas emissions in the four
ASEAN economies. In [25], GE’s effect on China’s ecological degradation was examined
using time series analysis. Based on the ARDL analysis method, the review discovered
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that GE has a substantial long-run effect on the environmental factors. According to
the research evidence, GE’s growth is inversely linked to CO2 emissions in the Chinese
economy. Comparable findings were published by [14,19,26] in their investigations of the
renewable-CO2 nexus in China.

Additionally, [27] explored GE’s impact on India’s atmosphere using ARDL methods’
econometrics to propose task measurement. The study’s findings, comparable to those
of [26], established that GE has a sizable impact on various factors, emphasizing that GE’s
inflation is significantly linked to its carbon dioxide emissions. Another research [28]
evaluated the effect of GE on Malaysia’s environmental pollution. The experiment con-
cluded that an increase in GE decreased carbon emissions in the Malaysian economy when
the F-bounds, VECM Granger causality, CUSUM, and CUSUMSQ hypotheses were used.
Similarly, in Thailand, [29] investigated the impact of GE on environmental degradation.
The inquiry used the econometrics of J-J co-integration and ECM methods to conduct the
empirical evaluation.

In contrast to [27,28], the study’s findings indicate that renewable energy has a negli-
gible effect on environmental deterioration at the source of carbon dioxide emissions in
Thailand. Additionally [30], examined the role of GE in contributing to Indonesia’s envi-
ronmental destruction. Using ARDL analysis techniques, the results suggested GE’s critical
position in influencing environmental protection by demonstrating that GE’s improvement
decreased carbon emissions in Indonesia.

2. Materials and Methods

This study investigates the relationship between green energy sources and carbon
emission in the selected countries of ASEAN. For this purpose, a dataset from 2000–2019
of green energy sources (wind, hydro and geothermal) and carbon emission has been
collected from world bank indicators 2019. The literature survey reveals that investigators
did not understand transversal effects and instead focused on homogeneous pathways in
past findings [31]. The corresponding studies reveal multiple panel data regression tools
such as GMM, random effect, and fixed-effect models. The interaction shifts between the
transverse units in these models leave a high level of homogeneity. This statement is not
accurate, and findings could be deceptive.

Because of these factors, in recent years, researchers have been drawn to panel data
evaluation with heterogeneous coefficients between cross-sections across extended dura-
tions [32]. Experts are also concerned about cross-sectional units’ reliance [33]. This analy-
sis has implemented [33] dynamic standard correlated effect methodology (DCCE). This
method is based on the concepts of the [34] PMG evaluation, the Pesaran and Smith evalua-
tion of MG (1995) [35], the Pesaran CCE calculation (2006) [36], and the Chudik and Pesaran
analyses (2015). However, for large non-stationary and heterogonous databases, [37] pro-
posed the xtpmg command (pooled mean group estimator) because the PMG estimation
method somehow does not accept cross-sectional dependency. Without pooled coefficients
or DCCE, [38] reported typical corresponding results. Furthermore, the CCE estimate
does not regard the endogenous variable’s lag-value as an explanatory variable [33]. In
contrast, the DCCE approach recognizes the importance of homogeneous and heteroge-
neous parameters and the DCCE and even transversal dependency. This approach includes
heterogeneous paths and cross-sectional dependency by considering cross-sectional means
and taking delay into account.

Besides, this process works well for limited data sets using correction procedures [33].
Another significant advantage of using this technique is its complete description, leading to
structural database breakage [39]. This method also works adequately for uneven dynamic
panels [40]. We have used the dynamic equation of Chudik and Pesaran’s (2015) DCCE
framework:

CO2it = αiCO2it−1 + δixit +
PT

∑
P=0

γxipXt−p +
PT

∑
P=0

γyipyt−p + µit (1)
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CO2 belongs to carbon dioxide emission in Equation (6); α i CO2 (it−1) is the lag of
CO2 in an explanatory variable; β i x it refers to several predictor variables; and PT is the
limit of lags found in averages through cross-sections.

This study used Pesaran’s unit root test (2004) [41], which dealt with the null hypothe-
sis’s false refusal in cross-sectional dependency statistics.

ait = δi + βitbit + µit (2)

Equation (1) shows the connection between ait that relies on residuals µit and time-
invariant dimensions of nuisance δi. The pitches to be measured are βit, and bit is the
volume of regressors. The “i” belongs to the cross-section and “t” in the subscription to the
span. The subsequent dimension is measured to determine cross-sectional dependency
between sample sizes.

H0 = piz = pzi = cor(µit,µit) = 0 for i 6= z (3)

H1 = piz = pzi = cor(µit; µit) = 6= 0 for some i 6= z (4)

The connection between both roots confirms the CSD as mentioned above in
Equations (3) and (4). The null hypothesis (H0) shows no cross-cutting dependency be-
tween cross-cutting units and vise-versa for alternating ones (H1).

Pedroni (2004) [42] indicates that the model with heterogeneous co-integration vectors
is subject to two different test metrics. Let ûit = yit− δ̂

′
i dit− β̂

′
ixit Denote the OLS residual

of the co-integration regression. Pedroni identifies two different groups of t-tests: (i)
a “panel statistics” equal to root units for homogenous alternatives and (ii) the “mean
statistics group” like root panel tests for heterogeneous substitutes. The t statistical versions
are described as follows:

As Panel

ZPt =

(
σ2

NT

N

∑
i=1

T

∑
t=1

û2
i.t−1

) 1
2
(

N

∑
i=1

T

∑
t=1

û2
i.t−1ûit − T

N

∑
i=1
λ̂i

)
(5)

group-mean

Z̃Pt =
N

∑
i=1

(
σ2

ie

T

∑
t=1

û2
i.t−1

) 1
2
(

T

∑
t=1

û2
i.t−1ûit − Tλ̂i

)
(6)

where λ̂i is a stable one-sided long-term volatility estimation method λi =
∞
∑
j=1

E
(
eitei,t−j

)
,

eit = uit − δiui,t−1, δi = E(uitui,t−1)/E
(

u2
i,t−1

)
, σ2

ie denotes the estimated variance of

eit and σ̃2
NT = N−1 ∑N

i=1 σ
2
ie. Pedroni presents values of µp, σ2

p and µ̃p, σ̃2
p such that(

ZPt − µp
√

N
)

/σp and
(

Z̃Pt − µp
√

N
)

/σ̃p The regular natural null hypothesis restricts
probabilities. The latest update from Westerlund (2005a) [43] is supported by data from the
Variance Ratio, which does not include modifications for the residual serial correlations.

A literature review demonstrates that co-integration methods have already been used
extensively in scientific studies. Such co-integration strategies have traditionally been
closely monitored to estimate long-term data. Several studies have suggested that these
integration procedures show more significant application problems with time and much
less data frequency [44]. In this analysis, we explored the long-term association between
the variables under analysis, using the co-integration illustration of the process by [45]. It
is more effective than many other strategies of co-integration. For instance, it considers
systemic breakdowns into view, compared to [42] guide to joint integration. Besides, were
applying to short-term results, this theory utilizes lead-lag longness [46].
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Equation (7) means the solution suggested by Westerlund and Edgerton for the
bootstrap panel co-integration.

∆yit = δ′dt + αi

(
yi,t−1 − βi′xi,t−1

)
+

qi

∑
j=−qi

aij∆yi,t−1 +
qi

∑
j=−qi

γij∆xi,t−1ei,t (7)

The equation mentioned above illustrates the connection between the dependent
variables ∆yit, it, and the probabilistic portion in three different cases. Subscript t and i
refer respectively to the period and cross-sectional units.

The goal is to transform data into two unnoticed subsystems for all those experiments:
one with a highly cross-sectional correlation and a largely unit-specific characteristic. The
test process is constantly the same and composed of two essential stages: the first stage
includes data de-factored, consisting of panel unit root test statistics based on defaced
data or established practices. These metrics do not struggle as they influence generic
assessments focused on the presumption of cross-sectional freedom while common factors
occur aboard. In this sense, the [47] include an entire process for checking the level of serial
integration.

yit = a Component of determinism + common element of factor structure + error
unorthodox.

Rather than checking the existence of a root in y it explicitly, Bai and Ng recommend
testing common factors and the peculiar elements independently.

Let us introduce a framework with specific features and no pattern in period:

yit = αi + λ
′
iFt + eit (8)

when Ft is a r× 1 general parameters vector, and µi is a composite reliability vector? In the
first differences, the relevant version is as follows:

∆yit = λ′ift + zit (9)

where zit = ∆eit ∧ ∆ft = Ft with E(ft) = 0.
The likely consequences in ∆yit The primary component process calculates something.

We should indicate f̂i λ̂i, the relevant charging factors, and ẑit, the residuals estimated.
The analysis approach for ‘differentiation and re-cumulation’ is based on the cumulative
parameters defined as follows:

F̂mt =
t

∑
s=2

f̂ms êit

t

∑
s=2

ẑis (10)

f ort = 2, . . . , T, m = 1, . . . , r∧ i = 1, . . . , N.

with the method utilizing F̂mt and êit, both Bai and Ng evaluate the unit root hypothesis in
the individual portion êit and in the usual factors Ft.

To measure the non-stationary nature of the particular element

∆êit = δi,0ê,t−1 + δi,1∆ê,t−1 + . . . + δi,p∆ê,t−p + µit (11)

Enable ADFc
ê(i) to be t-statistical for the ith country’s peculiar part. The asymptotic

distribution of ADFc
ê(i) agrees with the range of Dickey-Fuller in the event of no static.

Let denote Pc
ê(i) the p-value of the ADFc

ê(i) test, this statistic is

Zc
ê =
−∑N

i=1 log[Pc
ê (i)]−N√

N
d→

T,N→∞
N (0, 1) (12)
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Only 1 Number (N) of factors is standard (r = 1); a regular ADF test in a template with
an intercept is used.

∆F̂1t = c + γi,0F̂1,t−1 + γi,1∆F̂1,t−1 + . . . + γi,pF̂1,t−p + vit (13)

The subsequent ADF t-statistical, delineated ADFc
F̂, has the same limiting distribution

for the static only case as the Dickey-Fuller test.
Let us consider the following ADF model:

∆yit = αi + ρiyi,t−1

pi

∑
j=1
βi,j∆yi,t−j + εit (14)

ρi =

[
F
(

yl,i

)′
yl,i − F

(
yl,i

)′
Xi
(
X′iXi

)−1X′iyl,i

]−1[
F
(

yl,i

)′
εi − F

(
yl,i

)′
Xi
(
X′iXi

)−1X′iεi

]
(15)

Zi =
ρ̂i
σ̂ρ̂i

d→
T→∞

N (0, 1) for i = 1, . . . N (16)

The experimental and quasi, and the short-and long-run stability can be represented
using an error correction model, according to co-integration theory (ECM). The resid-
ual panel co-integration impact assessment process co-integrates renewable energy, CO2
emissions, and economic development. The co-integrating partnerships, however, could
not offer guidance. Consequently, the short- and clear long-term correlation was investi-
gated with a panel-based error correction model with error correction representation. The
Granger causality process was conducted in the Vector Error Correction Model (VECM).
The cause test Granger is defined as follows along with the error correction term (ECT):

∆CO2it = ∅0 +
p

∑
i=1

∅1i∆Hydylt−1 +
p

∑
i=1

∅2i∆Windt−1 +
p

∑
i=1

∅3i∆Geot−1 + ρ1εt−1 + µ1t (17)

∆Hydyit = ∅0 +
P

∑
i=1

∅1i∆CO2t−1 +
P

∑
i=1

∅2i∆Windt−1 +
P

∑
i=1

∅3i∆Geot−1 + ρ2εt−1 + µ2t (18)

∆Windit = ∅0 +
P

∑
i=1

∅1i∆Hydyt−1 +
P

∑
i=1

∅2i∆CO2t−1 +
P

∑
i=1

∅3i∆Geot−1 + ρ3εt−1 + µ3t (19)

∆Geoit = ∅0 +
P

∑
i=1

∅1i∆Windt−1 +
P

∑
i=1

∅2i∆Hydyt−1 +
P

∑
i=1

∅3i∆CO2t−1 + ρ3εt−1 + µ3t (20)

where, ∆ and ρ mark the first means of expressing and lag framework. The residual
(µ1, µ2, µ3, µ4 ∧ µ5) were presumed to be sequentially separate with a zero mean and εt−1
was the error correction term for a time.

Multicollinearity appears if a regression model is strongly correlated with two or
more explanatory factors. The Variance Inflation Factors (VIF) is one method of measuring
multicollinearity, evaluating how much the variance of an expected regression coefficient
rises if factors are associated. A 5 to 10 VIF is indicative of a highly troubling correlation.
The value of R2 is calculated to decide how well the certain predictor parts of a parameter
are represented. A higher value of R2 shows a strong connection between the parameter
and the other parameters. It is reflected in the following VIF:

VIF = 1/(1− R2) (21)

Thus, the closer the value R2 to 1, the greater the value VIF and the greater the
multicollinearity with the separate variable. In comparison, multicollinearity can be used
in the correlation matrix and dispersion plots. However, their results suggest only the
bivariate effect of predictor variables. Therefore, VIF is chosen because its connection
to a group of other variables can be seen. Panel data can be subject to overwhelming
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cross-sectional dependency, which correlates all units in the same cross-section. It is often
due to the influence, while possible in various ways, of certain unknown factors, specific to
all units and affecting each.

3. Results

This study investigates green energy causal effect in the four leading ASEAN countries,
including Philippines, Thailand, Indonesia, and Vietnam, concerning Carbon emissions.
Current research utilizes renewable energy as a metric for green energy determined by the
percentage of renewable energy from energy content for the statistical analysis. Recent
studies have also used Carbon emission as a pollution reduction instrument expressed
in metric tons per capita to mitigate environmental consequences. The present research
utilizes an annual dataset from 2000–2019. The current research is intended to apply DCCE,
which prescribes the application of numerous observations. This study also measures
the short and long-run causality between variables in the said countries of ASEAN. The
following step is the descriptive statistics mentioned in the proposed investigation in
Table 1.

Table 1. Results of Descriptive Statistics.

CO2 Hydyl Wind Geo

Mean 0.5381 23.2742 17.6101 18.4631
Median 0.4819 23.0145 18.1508 18.5144

Maximum 1.4386 25.2117 22.4582 23.3753
Minimum −0.3983 21.9837 13.8155 13.8155
Std. Dev. 0.5388 0.77385 2.4489 4.5612
Skewness 0.2220 1.0103 −0.2424 −0.0016
Kurtosis 1.8634 3.3661 1.8794 1.0103

Jarque-Bera 4.9630 14.0567 4.9684 13.1963
Probability 0.0536 0.0008 0.0533 0.0013

Sum 43.0499 1861.936 1408.812 1477.052
Sum Sq. Dev. 22.9361 47.3092 473.7898 1643.586
Observations 80 80 80 80

CO2 1
Hydyl −0.1931 1
Wind 0.4834 −0.1466 1
Geo −0.5028 −0.2246 −0.2192 1

Table 1 describes the description of significant data characteristics in the descriptive
metrics and correlation metrics, LFDI L. Hydyl, L. wind, and L.Geo separately. The
correlation analysis between the parameters is shown in the table, and there is an essential
connection between pollution and clean energy. Table 1 provides descriptive statistics
consisting of average, minimum, maximum value, standard deviation, skews, kurtosis,
Jarque-Bera, statistics on probability. The result showed that the mean value in each
variable flatter for all countries. Hydyl (23.2742) accompanied by Geo is the highest
average GE value (18.4631). The lowest average value for CO2 (0.5381) and the wind is
(17.6101). Moreover, the Kurtosis results are around 1–3 for almost all variables, suggesting
an indication of linearity between the variable in all variables.

Furthermore, the Kurtosis outcomes for nearly all parameters are around 1–3, which
implies linearity between the variables. Additionally, the current research utilized the
Jarque-Bera test to verify data normality. The results demonstrated that the null hypothesis
is rejected at a mixed level by all variables being statistically significant and that all variables
are normally distributed. The results of the JB tests have also verified the linearity of the
parameters for all ASEAN countries.

To avoid cross-sectional dependency [48] against cross-sectional units and deceptive
criteria, we utilized the [49] cross-sectional dependence (CD) test in consideration of
transversal dependency between transversal entities. We have used CD-testing, scaled
LM-testing, and bi-corrected scaled LM [49,50], which are more accurate for CSD and
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direct the methods in that case as mentioned in Table 2. The null hypothesis of the CD
test reflects independence in cross- or non-sectional groups. The results presented in the
table conclude that there is cross-sectional dependency across cross-sectional units. The
CD test also makes it convenient to determine whether first-generation root unit panel tests
or second-generation panel tests are needed [51].

Table 2. Panel Unit Root Test for Cross-Sectional Dependence.

Pesaran CD Pesaran Scaled LM Breusch-Pagan LM

CO2 8.29 *** (0.0000) 18.66 *** (0.0000) 70.64 *** (0.0000)
Hydyl 0.36 (0.7114) 5.54 *** (0.0000) 25.21 *** (0.0003)
Wind 8.95 *** 0.0000 21.69 *** (0.0000) 81.16 *** (0.0000)
Geo −0.96 (0.3352) 1.37 (0.1699) 10.75 ** (0.0503)

Source: Authors’ Estimations using STATA. Note: ***, ** indicate the level of significance at 1% and 5% respectively.

The variance inflation factor (VIF) test of multicollinearity performed in Table 3. Based
on equation No.21 statement, there is no issue of multicollinearity in the underline dataset.

Table 3. Variance inflation factor (VIF Matrix) testing multicollinearity).

CO2 Hydyl Wind

Hydyl 1.04 – –
Wind 1.31 1.02 –
Geo 1.34 1.05 1.05

Source: Authors’ Estimations using STATA.

The unit root test for accurate results was performed in first-generation (see Table 4) [51],
however, the cross-sectional dependence is ignored in the first-generation unit root anal-
ysis. For this, second-generation unit root test of CIPS trial by [41] also applied. Results
demonstrate that the parameters are of mixed integrative order since the variables are
stationary at 1st difference with different significance level.

Table 4. Unit Root (First & Second Generation) Tests Results.

First-Generation Unit Root Tests (LLC & IPS)

Level 1st Difference

Variables Levin, Lin, and Chu Im, Pesaran, and Shin W-stat Levin, Lin, and
Chu

Im, Pesaran,
and Shin W-stat

CO2 −2.2065 *** 0.4793 ** −4.9751 *** −3.4264 ***
Hydyl −0.0571 0.3054 −6.4232 *** −5.5715 ***
Solar −0.5633 0.6721 0.2866 0.7493
Wind 2.0002 3.3803 −2.0246 ** −1.6716 **
Geo −0.1411 0.2247 −4.7077 *** −4.1577 ***

2nd-Generation Unit Root Tests (LLC & IPS)

Level 1st Difference

Variables CIPS Im, Pesaran,
and Shin W-stat

CO2 1.369 −2.825 **
Hydyl −0.643 −2.601 ***
Wind −0.508 −2.624 ***
Geo −0.208 −2.502 **

Source: Authors’ Estimations using STATA. Note: ***, ** indicate the level of significance at 1% and 5%, respectively.
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The results of cointegration tests by Pedroni demonstrate that there is no long-term
correlation among the intended factors. In Table 5, the findings from the Pedroni are
discussed within and between co-integrated studies. We can refute from seven tests the
non-cointegration hypothesis in one test (at 10 percent significance) while maintaining its
near p-value. We assume a long-term relationship between renewable energy and CO2 per
capita as such. Therefore, we follow various co-integration tests to verify these findings
for the reliability coefficient. However, all the panels in Padroni text are not showing
co-integration. Therefore, we conduct a further co-integration test like Kao and Westerlund
to make a confirmation statement in this regard.

Table 5. Pedroni Co-integration Test.

Alternative Hypothesis: Common AR Coefficients. (within-Dimension)
Statistic Prob. Weighted Statistic Prob.

Panel v-Statistic −1.5488 0.9393 −1.6910 0.9546
Panel rho-Statistic 1.23477 0.8915 1.33050 0.9083
Panel PP-Statistic −0.9948 ** 0.0599 −1.0082 ** 0.0567

Panel ADF-Statistic −0.9599 0.1685 −0.8954 0.1853
Alternative Hypothesis: Individual AR Coefficients. (between-Dimension)

Statistic Prob.
Group rho-Statistic 1.7134 0.9567
Group PP-Statistic −0.7119 0.2382

Group ADF-Statistic −1.6155 0.0531 *

Source: Authors’ Estimations using STATA. Note: **, * indicate the level of significance at 5% and 10% respectively.

Table 6 reports the summary of the Cointegration test for the Kao residual column.
The result strongly rejects the null hypothesis of no cointegration as it significant at 1%
level. It confirms the existence of a long-term correlation between the independent.

Table 6. Results of Kao Test.

Null Hypothesis No Co-Integration

ADF
Kao t-Stat Prob.

−3.987 *** 0

Residual variance 0.005
HAC variance 0.006

Source: Authors’ Estimations using STATA. Note: *** indicate the level of significance at 1%.

Furthermore, we have also performed the Westerlund Cointegration test, the second
generation [52], which is superior to the standard cointegration test for various reasons.
It includes crucial issues neglected by the conventional co-integration test, including [53]
cross-sectional dependency, structural data breaks, heteroscedasticity, and serial corre-
lation [52]. The [54] co-integration test discusses cross-sectional dependency, systemic
breakdowns, serial correlation, and hetero scene problems and offers consistent results
compared to conventional co-integration studies. The co-integration findings from the boot-
strap panel in [52] confirm the existence of a long-term association or co-integration among
CO2, Hydyl, Wind, and Geo. The probability rates for co-integration tests of Gt and Pt [46]
are less than 0.05 that rejects the null hypothesis of no co-integration. The co-integration
test findings are shown in Table 7 below, which provides the varying findings.
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Table 7. Westerlund co-integration tests.

H0: No Co-Integration Value p-Value

Gt −3.483 ** 0.012
Ga −3.119 0.998
Pt −6.072 ** 0.049
Pa −2.813 0.988

Source: Authors’ Estimations using STATA. Note: ** indicate the level of significance at 5%.

Table 8 displays the findings of the Dynamic Common Correlated Effects (DCCE).
As per the empirical investigation results, the dependent variable of all independent
variables has a mixed effect. All the independent indicators of renewable energy have a
significant and negative impact on carbon emissions. The Hydyl coefficient is 0.06 and
statistically significant, which means that one percent growth in Hydyl would support
0.06 percent to impose environmental impact of these nations of the ASEAN region. The
hydropower infrastructure makes a significant contribution to reducing emissions in this
area. Also, the wind energy source is statistically significant. According to its coefficient,
0.6% environmental restoration in the ASEAN region can be improved due to a 1% increase
in the level of wind-induced green energy. Lastly, with a negative sign, Geo-Thermal
also has a significant effect on carbon emissions. The Geo-Thermal Coefficient shows
that a 1% rise in this green energy source factor would contribute to 0.1% environmental
improvements in selected ASEAN countries. Overall results show that the ASEAN green
energy source contributes to restoring environmental status in the region.

Table 8. Long-run results (DCCE).

Regressors Coefficient p-Value

CO2(−1) −0.44 *** 0.009
Hydyl −0.06 ** 0.049
Wind −0.01 ** 0.038
Geo −0.01 ** 0.041

Source: Authors’ Estimations using STATA. Note: ***, and ** show the significance levels at 1% and 5%, respec-
tively.

The results of short and long-run Granger causality presented in Table 9. According
to long-run results, there is Granger causality running from Hydyl to CO2 and Geo to
Hydyl in the case of Indonesia. There is Granger causality running from Geo to CO2 at a
1% significant level, while from Hydyl to Wind there is a 10% significant level in Thailand.
There is a 10% long-run Granger causality from wind to CO2 and Geo to Hydyl for the
Philippines. The long-run Granger causality runs from CO2 to Hydyl at a 5% significant
level, while wind to CO2 has a 10% significant level in Vietnam.

Based on the outcome of short-run Granger Causality, Hydyl Granger-causes CO2 to
10% of its significance, and Geo causes Hydyl to 10% of its significance in Indonesia. In the
Philippines, short-term Granger Causality results indicate that wind causes Hydyl at 10%
significance. In Thailand, the results estimated demonstrate that Granger causality runsg
from Hydyl to CO2 at a 10% significant level. In the Vietnam case, approximate findings
indicate that Hydyl causes CO2 at 10% significance.

According to these results, there is running long-run causality from GE to CO2 volatil-
ity in almost every ASEAN country at different significance levels. The same trend has
also been observed in the short-run Granger causality from GE to Carbon volatility except
in Thailand. Furthermore, it has also been observed that GE’s elements (Hydro, Wind,
and Geo) have Granger causality with each other. Additionally, the findings established a
significant causal relationship between GE and CO2 exposure volatility in the Philippines,
Thailand, Indonesia, and Vietnam. The results demonstrate a significant causal association
between GE and the returns and volatility of CO2 emissions in ASEAN member countries
when the climate is worse.
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Table 9. Results of Causality.

Long-Run Granger Causality Short-Run Granger Causality

Variables CO2 Hydyl Wind Geo Variables CO2 Hydyl Wind Geo

Indonesia

CO2 1 0.9074 0.7691 2.1000 ∆CO2 1 1.0126 2.0945 2.1000
Hydyl 4.3398 ** 1 1.3921 1.1616 ∆(Hydyl) 3.1132 * 1 0.4604 1.6462
Wind 2.6514 0.2259 1 0.10747 ∆(Wind) 0.2548 0.0841 1 0.1268
Geo 1.4604 13.7402 *** 2.7116 1 ∆(Geo) 1.4604 3.2130 * 1.7617 1

Thailand

CO2 1 1.2509 0.0029 1.0089 ∆CO2 1 0.9814 1.8099 0.0743
Hydyl 1.5660 1 3.2034 * 1.8419 ∆(Hydyl) 1.3117 1 1.7858 1.5147
Wind 0.3272 2.0473 1 0.6291 ∆(Wind) 0.2868 2.9488 * 1 0.0661
Geo 9.1607 *** 1.3160 1.1550 1 ∆(Geo) 0.9725 0.3300 0.0572 1

Philippines

CO2 1 1.6336 0.2105 1.4700 ∆CO2 1 1.3397 0.2105 0.2417
Hydyl 2.2180 1 1.0200 0.4289 ∆(Hydyl) 2.1801 * 1 0.4604 1.6462
Wind 2.9353 * 0.6206 1 1.0163 ∆(Wind) 0.5427 0.0841 1 0.1268
Geo 0.8077 2.9452 * 2.4239 1 ∆(Geo) 0.4091 1.7441 1.7617 1

Vietnam

CO2 1 4.3914 ** 1.7941 0.1145 ∆CO2 1 0.5088 0.2039 2.1000
Hydyl 1.1546 1 1.4314 0.0565 ∆(Hydyl) 2.9581 * 1 0.1471 0.5595
Wind 3.4533 * 1.7207 1 0.2486 ∆(Wind) 0.3378 3.1201 1 0.1776
Geo 1.7609 1.3456 0.0432 1 ∆(Geo) 1.4604 1.9616 5.0108 1

Source: Authors’ Estimations using STATA. Note: ***, ** and * show the significance levels at 1% 5% and 10%, respectively.

4. Conclusions

With the onset of industrialization, societies shifted their focus to large-scale manu-
facturing and commerce, resulting in a rise in energy use. Historically, economies have
relied heavily on conventional energy sources such as oil, gas, and coal, which are widely
regarded as the primary indicators of environmental deterioration. To mitigate the de-
struction of the environment, economies’ attention should be shifted toward ecologically
responsible renewable energies, with a great reliance on alternative green energy sources.
Due to the region’s increasing focus on GE, the present study uses time-series data from
2000 to 2019 to examine GE’s influence on environmental deterioration in the ASEAN
countries, namely Indonesia, Thailand, Philippines, and Vietnam. The present study’s task
is to identify GE’s contribution to regional decarbonization. for this purpose, the current
study used a novel DCCE approach and Granger causality procedure. The results indicated
that GE has a critical determinant effect on Carbon footprint levels in ASEAN member
states.

Additionally, the findings established a significant causal relationship between GE
utilization and Carbon emissions volatility in all nations in the long run. The analysis
found a 5% significant long-run level of a causal relationship between renewable energy
(Hydyl) and Carbon emissions volatility only in Vietnam. There is no causality between the
abovementioned variables in any other country in the short or long run. The current study
proposed that the policymakers and representatives implement various measures (such as
wind or hydro energy investment) to mitigate environmental damage in ASEAN member
states. The causality relationship between green energy sources and carbon emission must
be accounted for during the policy design for carbon mitigation through renewable energy
sources.
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