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Abstract: In this study, analysis of core-loss occurring in the magnetic flux modulation core of a linear
magnetic gear and the core of each mover is presented, using an analytical method. Losses in electric
machines were generally calculated and analyzed using the finite element method (FEM). However,
in the case of core-loss, the exact loss value could not be calculated using FEM data. Therefore,
we considered the harmonic component of the air-gap magnetic flux density waveform with the
modified Steinmetz equation, and performed a more accurate core-loss analysis with magnetic
behavior analysis. Thus, we performed a calculated core-loss characteristic comparison with the FEM
and the modified Steinmetz equation.

Keywords: core loss; finite element method (FEM); linear magnetic gear; linear machines; permanent
magnet machines

1. Introduction

Gears are mechanical devices that transmit rotation or power through two or more
axes. Gears are used in various fields such as automobile systems, generators, and systems
that require speed acceleration/deceleration, owing to their high torque and efficiency [1,2].
However, mechanical gears are driven through the physical engagement of teeth. Owing
to such physical contact, efficiency is reduced because of the damage and loss of gears
during long-time operation or system overload. In addition, they yield noise and vibration
due to friction and require regular maintenance using lubricating oil [3]. Therefore, in
order to compensate for the problems of mechanical gears, using permanent magnets of
Neodium (NdFeB) and Samarium Cobalt (Sm2Co17), which are excellent in recent high
magnetic energy and temperature characteristics, various studies propose non-contact
magnetic gears that are capable of transmitting power. Magnetic gears, unlike mechanical
gears, can minimize loss, noise, vibration, and dust, due to contactless operation using
permanent magnets rather than teeth, and can be used semi-permanently by preventing
damage to the gears through system overload slip [4,5]. In addition, since there is no
physical contact, it has the advantage of not requiring regular maintenance. In general, the
loss of a permanent magnet machines includes core-loss in the core, eddy current loss in
the permanent magnet, copper loss in the coil, and friction loss due to mechanical contact.
However, linear magnetic gears do not have coils, and due to non-contact driving, copper
loss and friction loss do not occur, but core-loss and eddy current loss occur.

An active research on the core-loss analysis of permanent magnet machine began with
the model proposed by Steinmetz. Since then, many researchers proposed a more advanced
method of core-loss analysis. In most paper, core-loss analysis is computed or analyzed
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through FEM to accurately identify the convenience and distribution of the analysis.
However, in core-loss analysis using the FEM, the core-loss coefficient is inaccurate, and
only the maximum value of the magnetic flux density is used [6]. In addition, it is difficult
to accurately analyze the core-loss because the rotating magnetic field is not considered,
and the magnetic field behavior analysis is very important for core-loss analysis. As for
the core-loss, the magnitude of the loss varies, depending on the magnetic field behavior.
Additionally, since the magnetic flux density generated by harmonics increases the core-loss,
it is necessary to perform an accurate core-loss analysis in consideration of the harmonics
and the magnetic field behavior for accurate core-loss prediction.

Therefore, in this study, the normal component magnetic flux density and tangential
component of each region was obtained through FEM, after deriving the core-loss coeffi-
cient function of the equation through a modified Steinmetz equation. This was carried
out using curve fitting based on the core-loss data provided by the core manufacturer and
the magnetic flux density was analyzed by Fast Fourier Transform (FFT). The harmonic
analysis and components of the linear magnetic gear magnetic flux density waveform
were considered, and the characteristics of the rotating magnetic field and the alternating
magnetic field were analyzed through magnetic field behavior analysis. Therefore, a more
accurate core-loss analysis was performed than the core-loss analysis of FEM, and the
proposed core-loss analysis process is shown in Figure 1; as shown below.
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Figure 1. Proposed core-loss analysis flow chart.

- Derivation of the core-loss curve fitting and core-loss coefficients according to the
frequency of the core provided by the manufacturer.

- Analysis of magnetic flux density and magnetic field behavior according to the
core region.

- Calculation of core-loss using modified Steinmetz equation of linear magnetic gears,
taking into account magnetic field behavior and harmonics.

2. Core Loss Analysis of Linear Magnetic Gear
2.1. Analysis Model of Linear Magnetic Gear

Figure 2 shows the shape and test bed of the linear magnetic gear used in this study.
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Figure 2. Structure and prototype of the linear magnetic gear.

Magnetic gears have permanent magnets attached to both their movers, and a mag-
netic flux modulation fixed-pole is located between the inner and the outer movers. The
flux modulation fixed-pole modulates the magnetic field by the permanent magnet of the
mover and the rotating magnetic field of the flux modulation fixed-pole, to produce a
harmonic component corresponding to the pair number of low speed mover poles to have
the characteristics of the gear [7]. The number of flux modulation fixed poles of a magnetic
gear could be calculated by using the number of poles of the inner and outer permanent
magnets, which could be calculated by Equation (1) [8].

Fpole = Plow + Phigh (1)

Fpole is the number of for flux modulation fixed-pole cores, and Plow and Phigh are the
number pole pairs of high-speed and low-speed mover permanent magnets. The designed
gear has 8 poles of high-speed mover permanent magnets and 46 poles of low-speed mover
permanent magnets, but if you calculate the number of flux modulation fixed poles with
a pair of poles, it was calculated to be 27ea. In addition, the gear ratio (Gr) of the gear
could be calculated by the number of poles of the high-speed mover and low-speed mover
permanent magnets, which is shown in Equation (2) [9].

Gr =
Plow
Phigh

(2)

The gear ratio calculated through Equation (2) was 5.75. Then, by calculating the
gear ratio of the magnetic gear, the moving speed of each mover can be calculated, using
Equation (3).

ωout = −ωin
Gr

(3)

ωhigh and ωlow refer to the speed of high- and low-speed movers. Since the high-speed
mover speed of the designed linear magnetic gear is driven at 1 m/s, the moving speed
of the low-speed mover calculated through Equation (3) is about −0.174 m/s. At this
time, the negative sign in Equation (3) is because both movers rotate in opposite directions
through the modulated magnetic field.

The linear magnetic gear designed in this study uses the NdFeB permanent magnet
material with high magnetic energy, in order to deliver efficiency and force characteristics
that are close to those of mechanical gears. However, such high magnetic energy causes
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tensile stress and shear stress between the permanent magnet and the magnetic flux
modulating iron core, on both sides of the linear magnetic gear.

Since this force can cause deformation of the linear magnetic gear, the core material of
each mover was made of iron with excellent rigidity. For the flux modulation fixed-pole,
50PN470 electrical steel sheet manufactured by POSCO was used. Electrical steel sheet
has a disadvantage of lower rigidity than iron, but has an advantage that is superior to
iron in terms of loss, due to a low eddy current. Then, based on the magnetic flux density
generated when the high-speed mover moved at 1 m/s and the low-speed mover was at
−0.174 m/s, the core-loss analysis in each core was performed. The design specifications
are as shown in Table 1.

Table 1. Design specifications of the linear magnetic gear.

Parameters Value

High-speed mover length 322 mm
Low-speed mover length 702 mm

Thickness of low-speed core 10 mm
Thickness of low-speed mover permanent magnet 8 mm

Thickness of air-gap 2 mm
Thickness of flux modulation fixed-pole 9 mm

Thickness of high-speed core 10 mm
Thickness of high-speed mover permanent magnet 8 mm

High-speed mover number of poles 8
Low-speed mover number of poles 46
Moving speed of high-speed mover 1 m/s

Gear ratio 5.75

2.2. Coreloss Characteristic Equation

Electromagnetic losses include core-losses consisting of hysteresis losses and eddy
current losses. Core-loss generates a magnetic field that changes in the positive and
negative directions over time in the iron core when the AC power of the electric device was
applied. Heat was generated due to this effect, which is called hysterical loss. In addition,
the eddy current loss was linked to the iron core when the alternating magnetic field in
the iron core changed with time, thereby generating organic electromotive force. This is a
principle according to Faraday’s law, where heat is generated due to organic electromotive
force, and the heat loss that occurs at this time is called the eddy current loss. If this is
expressed as an equation, it can be calculated by the Steinmetz equation, as shown in
Equation (4) [10].

The core-loss (Pc) comprises the hysteresis loss (Ph) caused by the time-varying mag-
netic field and the eddy current loss (Pe) caused by the conductivity of the iron core. It
can be seen that Pc is proportional to the frequencies f and Bn, and Pe is proportional to f 2

and B2.

Pc = Ph + Pe = kh f Bn + ke f 2B2 (4)

Here, f is the frequency of the magnetic field, B is the magnetic flux density of the
iron core by the permanent magnet. kh and ke are the hysteresis loss and eddy current loss
coefficients, respectively, n is the Steinmetz constant. However, the Steinmetz core-loss
characteristic equation in Equation (4) is applied under the assumption that the magnetic
flux density of the core is not saturated and the hysteresis loop is linear.

Therefore, the magnetic flux density in the iron core is 1 T or more, or a large error
occurs in a high-frequency region. In addition to the hysteresis loss and eddy current loss
components, an anomalous eddy current loss component was generated by the microscopic
magnetic domain width or tension, such as structural changes in the material. Therefore,
in order to accurately analyze the core-loss, it must be considered in Equation (4).
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Considering the anomalous current loss in Equation (4) by Bertotti, it could be ex-
pressed in the modified Steinmetz equation, as shown in Equation (5).

Pc = Ph + Pe + Pa = kh f Bn + ke f 2B2 + ka f 1.5B1.5 (5)

Here, Pa is the anomalous eddy current loss, and ka is the anomalous eddy current
loss coefficient [11,12]. Since the anomalous eddy current loss could vary in the thickness,
cross-sectional area, and conductivity of the material, the magnetic flux density was more
than 1.5 T or the anomalous eddy current loss was considered in a high-frequency range,
so more accurate core-loss analysis was possible. The size of the core-loss coefficient varied,
based on the iron core material, and the size of the core-loss coefficient changed nonlinearly
with frequency.

Therefore, it was crucial to obtain the precise values of the core-loss coefficients, such
as kh, ke, and ka in Equation (5), when predicting the use of the analytical method for
core-loss. Core-loss data are mainly provided by manufacturers with products, and the
difference in core-loss varies, depending on the frequency. Therefore, in this study, the
curve fitting method was used to calculate the correct core-loss frequency. In order to
calculate the core-loss coefficient for the unit frequency, the Steinmetz equation was divided
by the frequency, as shown in Equation (6).

Pc

f
=

Ph + Pe + Pa

f
= khBn + ke f B2 + ka f 0.5B1.5 (6)

Figure 3 shows the result of calculating the core-loss coefficient for each frequency
by substituting the core-loss data provided by the manufacturer into Equation (6) and
comparing it with the measured core-loss value for each frequency. At this time, the
hysterical loss coefficient, eddy current loss coefficient, and anomalous eddy current loss
coefficient according to each frequency were calculated, as shown in Table 2.
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Table 2. Core-loss coefficient according to frequency.

Frequency kh [w/kg] ke [w/kg] ka [w/kg]

50 [Hz] 0.018721 0.000458748 1.39192 × 10−5

60 [Hz] 0.0188188 0.000458518 1.38762 × 10−5

100 [Hz] 0.0216049 0 0
200 [Hz] 0.0150994 0.000461586 1.56562 × 10−5

400 [Hz] 0.0162534 0.000465451 1.49788 × 10−5

1000 [Hz] 0.0217835 0.000391975 1.4123 × 10−5
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2.3. Magnetic Field Behavior Analysis

In the literature of the core-loss analysis previously studied, it was confirmed through
an experiment that the amount of core-loss generated in the alternating magnetic field
and the rotating magnetic field differed about twice as much, based on the same magnetic
flux density. Therefore, magnetic field behavior analysis is very important in core-loss
analysis. The magnitude of the core-loss varies according to the magnetic field behavior
characteristics, and the magnetic flux density generated by the harmonics increases the core-
loss, so for accurate core-loss prediction, an accurate core-loss analysis should be performed
by considering the harmonics and the magnetic field behavior [13]. Therefore, in order
to increase the precision of the core-loss analysis, each analysis area was subdivided and
calculated for magnetic field behavior analysis, and magnetic flux density analysis of linear
magnetic gears through FEM. In addition, by performing FFT analysis on the derived
magnetic flux density, the harmonics contained in the magnetic field were analyzed. The
more subdivided the analysis model, the more accurate data on the magnetic field behavior
and magnetic flux density in each region could be obtained, and thus more accurate core-
loss analysis was possible. However, the number of subdivisions of the analysis model
depended a lot on the experience of the designer for analysis time and accurate analysis
results. Figure 4 shows the subdivided shape of each analysis area of the linear magnetic
gear. The high-speed mover core was subdivided into 644 pieces, the flux modulation fixed-
pole was subdivided into 432 pieces, and the low speed mover core was subdivided into
936 pieces. Figure 5 shows the results of the normal component and tangential component
magnetic flux density analysis at arbitrary points (1-29, 1-504, 2-70, 2-75, 3-38, 3-499) in
each region. Figure 6 shows the definition of the axis ratio for magnetic field behavior
analysis. The definition of the axial ratio could be classified into a rotating magnetic field
and an alternating magnetic field, by the ratio of the maximum and minimum values of
the magnetic flux density of each component of the magnetic flux density in the vertical
direction and the magnetic flux density in the tangential direction [14,15]. The alternating
magnetic field has the characteristic of changing only the direction of the magnetic pole,
and a rotating magnetic field meant that the magnetic field completes rotations. Therefore,
when the ratio of the minor axis to the major axis was less than 0.1, the direction of
magnetization was classified into an alternating magnetic field in which the direction of
magnetization was not largely rotated in space but mainly changed in size in one direction,
and when the ratio of the minor axis to the major axis was greater than 0.1, it was classified
as a rotating magnetic field in which the size and direction changed together.
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Figure 6 shows the magnetic field behavior of the first, third, and fifth harmonics
derived from the magnetic flux density of the normal and tangential magnetic flux com-
ponents at an arbitrary point (1-29, 1-504, 2-70, 2-75, 3-38, and 3-499) in the core region,
separately. Points 1-504, 2-70, 2-75, and 3-38 indicate the rotating magnetic field because
the axial ratio of the first harmonic component exceeded 0.1. In addition, points 1-29 and
3-38 yielded the result of the alternating magnetic field because the axial ratio of the first
harmonic component was less than 0.1. The modified Steinmetz equation considering the
magnetic flux density, based on the harmonic order, enabled a more accurate core-loss
calculation using Equation (7).

Pc =
∞

∑
l=1, odd

khl fl Bn
l + kel f 2

l B2
l + kal f 1.5

l B1.5
l (7)
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When the magnetic flux density of the core-loss was the same, the rotational magnetic
field generated twice as much core-loss, as compared to the alternating magnetic field.
Therefore, the final core-loss equation considering the magnetic field behavior analysis of
each region could be calculated using Equation (8) [16]. Where l represents the harmonic
order, and α is a constant, accounting for the rotating magnetic field. It has a value of 1
in an alternating magnetic field and 2 in a rotating magnetic field. α compensates for the
inaccuracy of the core-loss coefficients derived, based on the Epstein data.

Pc =
∞
∑

l=1,odd
α
(
khl fl Bn

l + kel f 2
l B2

l + kal f 1.5
l B1.5

l
)

{
α = 1, alt. f ield
α = 2, rot. f ield

} (8)

Figure 7 shows the core-loss calculated using the modified Steinmetz equation, in con-
sideration of the alternating magnetic field and the magnetic flux density of the harmonic
component and the core-loss result analyzed through FEM. The total core-loss obtained
through the modified Steinmetz equation and FEM was 561.08 mW and 512.4 mW, respec-
tively, and the core-loss derived through the two methods showed a difference of about
48.68 mW. At this time, the reason why the core-loss value of the FEM was lower was
because the alternating and rotating magnetic fields were not considered, so a lower result
was obtained.
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3. Conclusions

Core-loss comprises hysteresis, eddy current, and anomalous eddy current losses, due
to time varying magnetic fields. It is difficult to accurately interpret core-loss owing to
the harmonics of the magnetic flux density in the core and the magnetic field behavior.
However, in this study, the core-loss coefficient function of the equation was derived
through the modified Steinmetz equation using curve fitting, based on the core-loss data
provided by the manufacturer, and then the core-loss analysis of the linear magnetic gear
was performed.

Then, through the modified Steinmetz equation, the final derived core-loss in consid-
eration of the harmonics and magnetic field behavior and the derived core-loss using FEM
were compared. As a result of the comparison, by substituting the magnetic flux density
values of the alternating magnetic field, the rotating magnetic field, and the harmonic com-
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ponent into Equation (6), Equation (7) was derived, and the modified Steinmetz equation
based on this, resulted in a higher core-loss value.

In general, an experiment for measuring core-loss of an electric device is difficult,
because it is difficult to obtain accurate data according to the characteristics of nonlinear
materials. Accordingly, in many studies, reliability verification was performed by compar-
ing the electromagnetic characteristics and efficiency of the device [15]. Figure 8 shows the
comparison result of FEM and the experimental characteristics of the manufactured linear
magnetic gear. As a result of the comparison of the experimental measurements, the error
was about 2.3%, and the displacement amount and the measured speed of each mover over
time were well-matched to the gear ratio of 5.75. In addition, the load analysis results of
the linear magnetic gear are shown in Table 3, and the output of about 54 W was derived.
As a result of comparing the core-loss derived through the modified Steinmetz equation
and the core-loss of the conventional analysis method, an error rate of about 9.5% was
obtained, and the total loss increased by 1.3% due to this error. As the total loss increased,
the efficiency of the gear using the modified Steinmetz equation was reduced, as compared
to the core-loss efficiency calculated through FEM.
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Figure 8. FEM and experiment comparison results—(a) Pull-out force of the high-speed mover,
(b) pull-out force of the low-speed mover, (c) displacement amount of the high-speed mover, and
(d) displacement amount of the low-speed mover.

Table 3. Analysis results of the linear magnetic gear.

Parameters Modified Steinmetz
Core-Loss

FEM
Core-Loss

Input Power [W] (high-speed mover) 58.4 58.1
Output Power [W] (low-speed mover) 54.65 54.41

Solid Loss [W] 3.18
Core-Loss [mW] 561.08 512.405

Efficiency [%] 93.59 93.64

Therefore, it was considered that the core-loss analysis using the modified Steinmetz
equation presented in this paper could analyze the electromagnetic performance character-
istics, considering the more accurate core-loss than the core-loss derived through FEM.
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