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Abstract: One common technique employed in control system design to minimize system model
complexity is model order reduction. However, controllers designed by using a reduced-order model
have the potential to cause the closed-loop system to become unstable when applied to the original
full-order system. Additionally, system performance improvement techniques such as disturbance
observers produce unpredictable outcomes when augmented with reduced-order model-based
controllers. In particular, the closed-loop system stability is compromised when a large value of
observer gain is employed. In this paper, a boundary condition for the controller and observer design
parameters in which the closed-loop system stability is maintained is proposed for a reduced-order
proportional-integral observer compensated reduced-order model-based controller. The boundary
condition was obtained by performing the stability analysis of the closed-loop system using the root
locus method and the Routh-Hurwitz criterion. Both the observer and the state feedback controller
were designed using a reduced-order system model based on the singular perturbation theory. The
result of the theoretical analysis is validated through computer simulations using a DC (direct current)
motor position control problem.

Keywords: proportional-integral observer; reduced-order model-based controller; stability analysis;
Routh-Hurwitz criterion; dc motor; robust control

1. Introduction

Among the various factors determining the performance of a control system, model
identification and accuracy in the design stage play a crucial role [1]. However, modeling
real world systems is not always a convenient task due to the computational complexity
that arises with the presence of certain dynamic characteristics. In such cases, model order
reduction is applied through a numerical computation to transform the original system
model into a more practical form that only captures the dominant characteristics and ignores
dynamic behaviors that either contribute less or make the computation complex [2,3]. Such
an order reduction enables fast and efficient parametric analysis of large-scale computational
models [4–7]. Regardless of the computational complexity, ignoring dynamic characteristics
that define a system’s input output behavior exposes the model to a relative degree uncertainty
causing the system performance to deteriorate under various circumstances. In other words,
the neglected states in the reduction process give rise to an unmodeled dynamics with a known
bound [8]. For this reason, the study of stability and performance improvement of reduced-
order model-based controllers (ROMBC) is a worthy research topic. Moreover, the topic
is timely as it can be applied for the system modeling and controller design of distributed
systems found in innovative fields such as microfluidics [9].

1.1. Literature Review

On account of its ability to compensate for the undesirable effects caused by various
classes of structured and unstructured uncertainties, disturbance observer-based control
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(DOBC) technique has been widely used to restore nominal control system performance and
numerous control studies have been presented on the topic [10–18]. To mention a few, in [14]
a predesigned cascade scheme controller which was used to regulate the output voltage of a
DC/DC boost converter was augmented with a reduced-order PIO to maintain the desired
voltage regulation performance under various uncertainties. The modified control scheme
successfully maintained nominal performance under the presence of plant uncertainties,
such as load fluctuation, parametric uncertainties, unmodeled dynamics and input voltage
variations. Similarly, [17], was able to improve the robustness of a predesigned cascade control
scheme of a single axis magnetic levitation system by nesting a PIO in both the inner and
outer-loop of the control system. Specifically, including an observer in both loops allowed
the control system to regain nominal performance in the presence of system parameter
uncertainties and external disturbances that existed in both loops.

The closed-loop stability of a DOBC has also been the topic of various researchers.
In particular, Ref. [11] presents a sufficient condition for the closed-loop system stability
of DOBC under the condition that the Q-filter has a sufficiently small time constant. The
paper makes the argument that for the closed-loop stability, the uncertain plant should be
of minimum phase, and for a given predesigned controller that can stabilize the nominal
plant, robust stabilization can be achieved by an appropriate choice of low-pass filter
without altering the controller.

Although there have been numerous studies performed on the performance im-
provement and stability analysis of DOBC subjected to system parameter uncertainty and
external disturbance, there has only been few studies performed on the stability analysis of
DOBC subjected to relative degree uncertainty caused by model order reduction (DOBC
combined with ROMBC). One of these studies is presented in [19]. The paper studies
robust stability of a DOBC when the relative degree of the plant is not the same as that
of the nominal model. Contrary to expectations, it was pointed out in [19] that using a
high-gain observer to compensate for the relative degree uncertainty caused by the model
order reduction gives rise to closed-loop system instability. Specifically, Ref. [19] states that
the closed-loop system becomes unstable with sufficiently fast Q-filter when the relative
degree of the plant is unknown. Implying that the performance improvement effort of the
observer risks destabilizing the closed-loop system.

The revelation made in [19] paves the way for further studies to be performed on the
closed-loop system stability analysis of a DOBC system under the influence of relative
degree uncertainty caused by model order reduction. Although the paper points out that
using a high-gain observer for a DOBC with unknown relative degree of the plant risks
making the closed-loop system unstable, it does not answer the question: How fast can
the observer employed for restoring nominal performance to an ROMBC be before it risks
destabilizing the closed-loop system? In other words, a specific boundary of the observer
design parameter that will improve system robustness against relative degree uncertainty
without risking closed-loop instability was not identified. Thus, this paper focuses on
answering this particular question. This paper identifies the boundary of the observer
design parameter in which the system robustness is improved without compromising
closed-loop system stability.

1.2. Proposed Analysis

This paper presents the stability analysis of an ROMBC combined with a reduced-
order PIO (ROPIO) to obtain the boundary of the design parameters of the observer and
controller in which system performance is improved without compromising closed-loop
system stability. The model order reduction undertaken in this paper is based on the
singular perturbation approach [2,4]. A stability boundary condition based on the closed-
loop system pole is established by applying the ROMBC to the original full-order system.
Following the stability analysis, an ROPIO is designed separately to compensate for the
effects of the relative degree uncertainty caused by the order reduction. Subsequently, the
stability analysis of the ROPIO compensated ROMBC is performed to establish boundary
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conditions based on the observer gain by using the Routh-Hurwitz stability criterion. The
boundary conditions from the theoretical analysis reveals that the value of the observer
gain must decrease as the feedback controller closed-loop pole increases. This implies
that there exists a break from the separation principle for a reduced-order model-based
observer and state feedback controller. It can be also said that an ROPIO designed using a
reduced model is not capable of compensating for the relative degree uncertainty resulting
from the order reduction.

The performances of both the ROMBC and the ROPIO compensated ROMBC are
tested via a numerical example based on a DC motor position control problem through
various computer simulations. The performance is examined by focusing on the transient
state performance and disturbance rejection ability. From the mathematical analysis and
the simulations carried out, the limitations of designing a controller and an observer using
a reduced-order model is pointed out. Finally, a relatively desirable performance region
based on the closed-loop pole and observer gain value is identified.

The contributions made by this paper can be summarized as follows:

1. Introducing a trade-off that exists between transient state performance and distur-
bance rejection ability in an observer compensated ROMBC through a mathematical
analysis and a simulation based validation.

2. Presenting analysis that supports the break from the separation principle that exists
for reduced-order model-based state feedback controller and observer.

3. Presenting a stability boundary condition for the closed-loop system based on the
ROMBC closed-loop pole and ROPIO gain.

4. Proposing a relatively desirable performance region based on the values of closed-loop
pole and observer gain for ROPIO compensated ROMBC.

The rest of the paper is organized as follows: Section 2 introduces the system model
and presents the design of a reduced-order model-based state feedback controller. The
stability analysis of the ROMBC is also presented in this section supported by a computer
simulation to test the performance of the controller. Section 3 deals with the ROPIO
designed for the purpose of restoring the nominal performance to the control system
against the relative degree uncertainty. In Section 3.1 the ROPIO is designed and applied to
the ROMBC. In this section, the drawbacks of applying a high-gain ROPIO on an ROMBC
are shown via a computer simulation. Next, in Section 3.2 a stability analysis is performed
on the ROPIO compensated ROMBC to shed a light on cause of the drawbacks observed in
the simulation. Section 4 elaborates the theoretical analysis performed thus far by applying
it to the position control problem of a DC motor. Through a series of simulations the section
presents further discussions on the stability and disturbance rejection performance of the
class of controllers under study. The paper is concluded in Section 5.

2. Reduced-Order Model-Based State Feedback Control

Consider the single-input linear time-invariant systems represented by

ẋ1 = x2

ẋ2 = x3
...

ẋn−1 = xn

ẋn = −a1x1 − a2x2 − a3x3 − · · · − an−1xn−1 − anxn + bu,

(1)

where xi (1 ≤ i ≤ n, n ≥ 2) is the system state, u is the control input, ai (1 ≤ i ≤ n) and b
are the system parameters.

When the parameter an > 0 has large magnitude, the dynamic characteristic of xn
behaves significantly faster than the rest of the states. Based on the singular perturba-
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tion theory [2,4], the original model (1) is simply reduced to the following quasi-steady
state model 

ẋ1 = x2

ẋ2 = x3
...

ẋm−1 = xm

ẋm = 1
an
(−a1x1 − a2x2 − a3x3 − · · · − amxm + b(u + dr)),

(2)

where m := n − 1 (m ≥ 1) and dr represents an uncertainty resulted from the system
order reduction.

Comparing the Laplace transforms of (1) and (2), the unstructured uncertainty (dr) is
obtained as

Dr(s) = −
s

b(s + an)
(−a1X1 − a2X2 − · · · − amXm + bU(s)). (3)

This paper investigates whether the mal-effects of dr could be relieved by using a
high-gain disturbance observer designed based on the reduced model (2).

Due to its simplicity, the reduced model is often considered to design a stabilizing
control law. In order to have all the closed-loop poles at a certain location s = −α; α > 0, a
state feedback control

u = −Kx[1,m]; x[1,m] =
[
x1 x2 · · · xm

]T (4)

is applied with K =
[
k1 k2 · · · km

]
. Since the closed-loop system (2)–(4) yields the

characteristic equation

sm +

(
am + bkm

an

)
sm−1 + · · ·+

(
a2 + bk2

an

)
s +

a1 + bk1

an
= 0, (5)

the feedback gains are set to

ki =
1
b

(
an

(
m

m− i + 1

)
αm−i+1 − ai

)
, 1 ≤ i ≤ m, (6)

where (m
r ) =

m!
r!(m−r)! .

Applying the ROMBC (4)–(6) to the original system (1) yields

ẋ1 = x2

ẋ2 = x3
...

ẋn−1 = xn

ẋn = −anαmx1 − an(
m

m−1)α
m−1x2 . . . − an(

m
2 )α

2xm−1 − an(
m
1 )αxm − anxn,

(7)

where m = n− 1. The characteristic equation of the closed-loop system (7) is described by

sn + an(s + α)m = 0. (8)

In order to establish a relation between α and an, as well as to study the stability
of (7), (8) is rearranged into a form more suitable for the root locus analysis as

1 +
an(s + α)m

sn = 0. (9)
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Out of n root trajectories starting from the origin, m(= n − 1) move towards −α
(multiple) and one towards −∞. The departure angles are obtained as (2k + 1)π/n, where
k is an integer number. Thus, when the system order n ≥ 3, some of the root trajectories
will move towards the right-half plane and turn to the left-half plane as an increases.
Figure 1 shows the root locus of (9) when n = 3 and α = 1000 for an example.
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-2000
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1000
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Figure 1. Root locus of (9) when n = 3 and α = 1000.

To find the boundary condition for α that maintains the stability of (7), the Routh-Hurwitz
criterion is applied to (8). Based on the analysis, a necessary condition is given by

an

(
m
1

)
α−

(
m
2

)
α2 > 0. (10)

According to (10), α must satisfy the condition below.

0 < α <
2an

m− 1
. (11)

This means that the design parameter α in (6) is limited by the system parameter an.
Based on the above analysis, the performance of (4) has been tested on a DC motor

position control problem as shown in Figure 2. The details of the computer simulations
are discussed in Section 4.2. The figure shows the performance of (4) using three different
values of α in {1000, 2000, 3000}, selected according to the stable range (11). In order to
test the disturbance rejection ability, the system was subjected to a step disturbance at
t = 0.07 s.

In Figure 2, the controller with a higher value of α is less susceptible to the external
disturbance. On the other hand, the large value of α increases the overshoot at the tran-
sient state. This is the outcome of the relative degree uncertainty (3) resulted from the
model reduction.

In such cases, a disturbance observer might be employed to recover the system
performance owing to its ability to restore control performance against system uncertainties
and disturbances [10,12]. In the next section a reduced-order proportional-integral observer
(ROPIO) is designed using the reduced model (2) to deal with the unstructured disturbance.
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Figure 2. Transient and disturbance rejection performance of ROMBC (4).

3. Stability Conditions for an ROPIO Compensated ROMBC
3.1. Design of an ROPIO Compensated ROMBC

The system model (2) is subjected to an unstructured uncertainty (dr) resulted from
the system order reduction. In addition, it might also experience external disturbances and
parameter uncertainties. To compensate for these effects, an ROPIO is designed separately
from (4). By assuming a constant equivalent disturbance [10], the reduced-order system
can be realized as

ẋ1 = x2

ẋ2 = x3
...

ẋm−1 = xm

ẋm = 1
an
(−a1x1 − a2x2 − a3x3 − · · · − amxm + b(u + d))

ḋ = 0.

(12)

From (12), an ROPIO can be derived as presented below:

˙̂d = l(d− d̂) =
l
b

(
an ẋm + a1x1 + a2x2 + · · ·+ amxm − b(u + d̂)

)
, (13)

where l > 0 is the observer gain and d̂ is the estimated equivalent disturbance. To avoid
the use of the time derivative (ẋm) in (13), a new variable xc is defined as

xc = d̂− l
b

anxm. (14)

Thus, the expression of the ROPIO (13) is rewritten as{
ẋc = −lxc +

l
b (a1x1 + a2x2 + . . . + (am − lan)xm)− lu,

d̂ = xc +
l
b anxm.

(15)

Subsequently, combining (4) with (15) yields an ROPIO compensated ROMBC
given as

u = −Kx[1,m] − d̂. (16)
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The performance of (16) has also been tested on the same DC motor control problem
as shown in Figure 3 (with same conditions as the simulation in Figure 2). In the second
simulation, the three controllers have been combined with an ROPIO as shown in (16) with
an observer gain of l = 5000.

Figure 3. Transient and disturbance rejection performance of ROPIO compensated ROMBC (16).

Contrary to common expectation, combining the ROMBCs with an ROPIO did not
improve the unstructured disturbance rejection capacity as shown in Figure 3. The per-
formance of the controllers with α = 2000 and α = 3000 has degraded as a result of the
ROPIO compensation. However, the controller with the lowest value of α = 1000 has been
improved by the ROPIO (blue line in Figure 3).

It is noted that the ROPIO has not improved the transient state overshoot caused by the
relative degree uncertainty (3). To understand the cause behind the ineffectiveness of the
ROPIO and eventually propose a solution that can improve the overall performance of the
ROMBC, a stability analysis is carried out on the closed-loop system in the following sections.

3.2. Stability Boundary for an ROPIO Compensated ROMBC

When the control law (16) is applied to the original system model (1), the closed-loop
system is governed by

ẋ1 = x2

ẋ2 = x3
...

ẋm = xn

ẋn = −anαmx1 − an(
m

m−1)α
m−1x2 − · · · − an(

m
2 )α

2xm−1 − an
(
(m

1 )α + l
)
xm − anxn − bxc

ẋc =
l
b
(
anαmx1 + an(

m
m−1)α

m−1x2 + · · ·+ an(
m
2 )α

2xm−1 + an(
m
1 )αxm

)
.

(17)
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Since the system matrix is

Acl =



0 1 . . . 0 0 0 0
0 0 . . . 0 0 0 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 . . . 0 0 1 0

−anαm −an(
m

m−1)α
m−1 . . . −an(

m
2 )α

2 −an
(
(m

1 )α + l
)
−an −b

l
b anαm l

b an(
m

m−1)α
m−1 . . . l

b an(
m
2 )α

2 l
b an(

m
1 )α 0 0


, (18)

one can obtain the characteristic equation of (17) as follows.

sn+1 + ansn + an

((
m
1

)
α + l

)
sm + · · ·+ an

(
αm +

(
m

m− 1

)
αm−1l

)
s + anαml = 0. (19)

To investigate the relations among α, an and l for the stability of (17), (19) is rearranged
into the following form for the root locus analysis:

1 +
anl(s + α)m

s(sn + an(s + α)m)
= 0. (20)

Obviously, the root trajectories start from the origin and the roots of (8) on the left-half
plane. Out of the (n + 1) root trajectories, m move towards −α. As for the remaining two
root trajectories, since the centroid σ and asymptotes θ according to l are derived as

σ =
αm− an

2
, θ = ±π

2
, (21)

they move towards σ± j∞. From (20) and (21), the stability of (17) is satisfied when the
gain l is small. In addition, under the condition σ ≤ 0, that is, αm ≤ an, the roots of (19)
remain on the left-half plane. To investigate the necessary conditions for l according to
α such that (17) is stable, the Routh-Hurwitz criterion is applied. Based on the analysis
carried out, a necessary condition is stated as

mα

(
an −

m− 1
2

α

)
+ l(an −mα) > 0. (22)

The stability condition is summarized by combining (11) and (22), as{
0 < l, f or 0 < α ≤ an

m ,

0 < l < mα
mα−an

(
an − m−1

2 α
)

, f or an
m < α < 2an

m−1 .
(23)

To further study the boundary of l according to α in (23), the time derivative of f (α),
defined below is taken into consideration.

f (α) =
mα

mα− an

(
an −

m− 1
2

α

)
, (24)

f ′(α) =
d f
dα

(α) = − m2(m− 1)

2(mα− an)
2

((
α− an

m

)2
+

m + 1
m2(m− 1)

a2
n

)
< 0. (25)

Since f ′(α) always has a negative value, it can be concluded that increasing α decreases
the range of l for the stability of (17).

For the purpose of validation, the analysis carried out thus far is detailed by applying
it to a DC motor position control problem in the next section.
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4. Further Analysis Using DC Motor Position Control System
4.1. Boundary Conditions for DC Motor Position Control

Consider a DC motor system described by
θ̇m = ωm

ω̇m = − Bm
Jm

ωm + Kt
Jm

ia

i̇a = −Kb
La

ωm − Ra
La

ia +
1
La

u,

(26)

where θm is the rotor angle, ωm is the velocity, ia is the armature current, Bm is the friction
coefficient, Jm is the rotor inertia, Kb is the back EMF constant, Kt is the torque constant, La
is the armature inductance, Ra is the armature resistance, and u is the input voltage.

Defining the state vector x =
[
x1 x2 x3

]T
=
[
θm ωm ω̇m

]T , (26) can be put into
ẋ1 = x2

ẋ2 = x3

ẋ3 = −a1x1 − a2x2 − a3x3 + bu,

(27)

where a1 = 0, a2 = (BmRa + KbKt)/(JmLa), a3 = Bm/Jm + Ra/La, and b = Kt/(JmLa).
Since the electrical dynamics of practical electric motors is considerably faster than

the mechanical ones, (27) can be represented by the reduced-order model{
ẋ1 = x2

ẋ2 = 1
a3
(−a1x1 − a2x2 + b(u + d)),

(28)

where d represents the equivalent disturbance including the relative degree uncertainty
from the model reduction.

Using (4)–(6), the control law that will place all the closed-loop poles at s = −α ; α > 0 is

u = −
(

a3α2 − a1

b

)
x1 −

(
2a3α− a2

b

)
x2. (29)

Applying (29) to the original system (27) yields the closed-loop system
ẋ1 = x2

ẋ2 = x3

ẋ3 = −a3α2x1 − 2a3αx2 − a3x3.

(30)

The characteristic equation of (30) can be rearranged into the following root locus form:

1 +
a3(s + α)2

s3 = 0. (31)

Since the departure angles of the root trajectories are −π/3, π/3 and π, two roots
of (31) move towards the right-half plane as a3 increases (seen in Figure 1). To find when the
root locus crosses the imaginary axis into the left half-plane, applying the Routh-Hurwitz
criterion to (31) yields the conditions below.

α(2a3 − α) > 0, a3α2 > 0. (32)

Since a3 > 0 and α > 0, α must satisfy the following condition as in (11):

0 < α < 2a3. (33)
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By adopting the same approach in Section 3.1, an ROPIO is designed to compensate
for the system uncertainties. From (15), the ROPIO is given by{

d̂ = xc +
l
b a3x2,

ẋc = −lxc +
l
b (a1x1 + (a2 − la3)x2)− lu.

(34)

Subsequently, (29) is modified into the following ROPIO compensated ROMBC:

u = −
(

a3α2 − a1

b

)
x1 −

(
a3(2α + l)− a2

b

)
x2 − xc. (35)

Applying (35) to (27) yields the closed-loop system equation
ẋ1 = x2

ẋ2 = x3

ẋ3 = −a3α2x1 − a3(2α + l)x2 − a3x3 − bxc

ẋc =
l
b
(
a3α2x1 + 2a3αx2

)
.

(36)

Thus, the characteristic equation is given as

s4 + a3s3 + a3(2α + l)s2 + a3

(
α2 + 2αl

)
s + a3α2l = 0. (37)

Before testing the Routh-Hurwitz criterion, (37) is rearranged for the root locus analy-
sis as follows:

1 +
a3l(s + α)2

s(s3 + a3(s + α)2)
= 0. (38)

Under the condition (33), since the root locus centroid σ = (2α− a3)/2 and asymptote
θ = ±π/2, the roots are located on the left-half plane when σ ≤ 0, that is, 2α ≤ a3.

Otherwise, when 2α > a3, the system eventually becomes unstable with a large value
of l. To find its exact stability boundary, the first column of the Routh-Hurwitz criterion
on (37) is derived as

s4 : 1 > 0 (39)

s3 : a3 > 0 (40)

s2 : h11 = (a3 − 2α)l + α(2a3 − α) (41)

s1 : h21 =
2a3α(a3 − 2α)l2 + 4a3α2(a3 − α)l + a3α3(2a3 − α)

h11
(42)

s0 : h31 = a3α2l > 0. (43)

It can be first observed in (41) that, regardless of the positive gain l, h11 is negative
when α > 2a3. This implies that the upper boundary of α for the stability of (30) cannot be
extended by the ROPIO action. In other words, even though the ROPIO improves system
performance against various system uncertainties, it cannot compensate for the effects of
the relative degree uncertainty caused by the model order reduction undertaken in the
controller design stage.

The necessary and sufficient condition on l in accordance with α for the stability of (36),
that is, h11, h21 > 0, are further investigated as follows. From (41), the boundary condition
for h11 > 0 is readily obtained as{

0 < l , f or 0 < α ≤ 0.5a3,

0 < l < α(2a3−α)
2α−a3

, f or 0.5a3 < α < 2a3.
(44)
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Since the denominator of h21 is h11, the condition for h21 > 0 is divided as in (44). In
the range 0 < α ≤ 0.5a3, all the terms in the numerator of h21 are positive when l > 0.

In the range 0.5a3 < α < 2a3, since the coefficient of the highest order term of
the numerator is negative, the quadratic formula is employed to obtain the roots (l1, l2)
given as

l1 =
α
(

2(a3 − α) +
√

4(a3 − α)2 + 2(2α− a3)(2a3 − α)
)

2(2α− a3)
=

α
(
2(a3 − α) +

√
2a3α

)
2(2α− a3)

, (45)

l2 =
α
(

2(a3 − α)−
√

4(a3 − α)2 + 2(2α− a3)(2a3 − α)
)

2(2α− a3)
=

α
(
2(a3 − α)−

√
2a3α

)
2(2α− a3)

. (46)

Since l1 > 0 and l2 < 0, the condition for h21 > 0 is{
0 < l, f or 0 < α ≤ 0.5a3,
0 < l < l1, f or 0.5a3 < α < 2a3.

(47)

To identify the intersection of the two boundaries (44) and (47), the difference between
the two values is obtained as

α(2a3 − α)

2α− a3
− l1 =

α
√

2a3
(√

2a3 −
√

α
)

2(2α− a3)
> 0, f or 0.5a3 < α < 2a3. (48)

From the above inequality, the boundary condition for the stability of (36) has been
proved to be (47). It can be noted that the upper limit l1 goes to ∞ as α→ 0.5a3, and a high
observer gain will not destabilize the closed-loop system when 0 < α ≤ 0.5a3 as shown in
Figure 4.

At this point, to investigate the impact of α on l1 in (47), l1 is realized as

l1 = f (α) =
α
(
2(a3 − α) +

√
2a3α

)
2(2α− a3)

=
α
(

2
(

1− α
a3

)
+
√

2 α
a3

)
2
(

2 α
a3
− 1
) , f or 0.5 <

α

a3
< 2. (49)

Defining a new variable β2 := 2α/a3, (49) can be rewritten as

f (β) =
a3

4
· β2(2− β2 + β)

β2 − 1
=

a3

4
· −β4 + β3 + 2β2

β2 − 1
, f or 1 < β < 2. (50)

Taking the derivative of (50) with respect to β yields

f ′(β) =
d f (β)

dβ
= − a3

4
·

β(β + 1)2
(

2
(

β− 5
4
)2

+ 7
8

)
(β2 − 1)2 < 0, f or 1 < β < 2. (51)

Thus, the value of l1 decreases as α increases.
The major implication of (47) is, despite having a separately stable state feedback

controller and stable high-gain observer, combining the two does not guarantee a stable
closed-loop system if the observer is designed based on a reduced-order model. In other
words, there is a trade-off between α and l to maintain the closed-loop system stability. This
is further emphasized by (51), which states that as the closed-loop pole value increases, the
observer gain must decrease such that the closed-loop system remains stable. Therefore, the
separation principle does not hold for the reduced-order model-based ROPIO compensated
system. This property can be visualized in Figure 4 for better understanding of the stability
boundary conditions.



Energies 2021, 14, 2881 12 of 18

Figure 4. Stability boundary for values of α and l.

4.2. Simulation Studies for Improving Transient and Robust Performance

To validate the theoretical analysis in this paper, computer simulations have been
carried out using the system model (26). Based on the parameters in Table 1, one can obtain
that a3 ≈ 2885.8. At t = 0.07 s the magnitude of the step disturbance is 50 V. It should
be noted that a control input saturation of 1000 V has been used in the simulations to
prevent the controlled output from diverging when the closed-loop system is unstable.
This limitation explains why the trajectories in Figure 3 exhibit bounded oscillations while
their closed-loop poles are located on the right-half plane as shown in the left root locus
plots of Figures 5 and 6.

Table 1. DC Motor System Parameters [12].

Parameter Value Unit

Ra 0.605 [Ω]

La 0.210 [mH]

Kt 0.0234 [Nm/A]

Jm 86.57 [g-cm2]

Bm 4.2167 × 10−2 [mNm/(rad/s)]

Kb 0.0233 [V/(rad/s)]
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Figure 5. Root trajectories of ROPIO compensated ROMBC when α = 2000 for l = 5000 (left) and
l = 0.1l1a = 463.95 (right).
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Figure 6. Root trajectories of ROPIO compensated ROMBC when α = 3000 for l = 5000 (left) and
l = 0.1l1b = 189.43 (right).

In Figure 7, the simulations of Figure 3 in Section 3.1 are repeated by changing
the ROPIO gains in accordance with α, since l1 decreases as α increases as illustrated in
Figure 4. Instead of using l = 5000 for all the three controllers in Figure 3, l = la =
0.1l1a = 463.95 was used for α = 2000 and l = lb = 0.1l1b = 189.43 for α = 3000.
Compared to Figure 3, the disturbance rejection performance (beginning at t = 0.07 s) of
the controllers with α = 2000 and α = 3000 has been significantly improved in Figure 7. In
particular the controllers with the modified observer gain values: α = 2000, l = 463.95 and
α = 3000, l = 189.43, recovered from the external disturbance within 0.01 s and 0.025 s.

Figure 7. Performance improvement of ROPIO compensated ROMBC with lowered l according to α.

The performance improvement can further be understood by looking at the root locus
plots of the two controllers in Figures 5 and 6. Figure 5 exhibits the root locus trajectories
of (38) when α = 2000 for 0 ≤ l ≤ 5000 (left root locus) and 0 ≤ l ≤ 0.1l1a (right one) where
0.1l1a = 463.95. It can be seen that the left root locus in Figure 5 crosses the imaginary
axis into the right half-plane, thus implying that the system becomes unstable by using a
large observer gain l = 5000. This is owing to the root locus centroid σ > 0. Because of the
input saturation used in the simulation, however, the system response in Figure 3 does not
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diverge in the simulation. On the other hand, the right root trajectories in Figure 5 remain
in the stable region and the disturbance rejection ability can be improved when the ROPIO
gain is adjusted based on the value of α such that it is selected to be under the value of
l1a = 4639.5 from (49).

A similar conclusion can be reached by observing the root locus plot in Figure 6 when
α = 3000 and l1b = 1894.3 from (49). It is also seen that the starting points of the root locus
in Figure 6 have moved rightward when compared to those in Figure 5. Subsequently,
the left plot of Figure 6 crosses the imaginary axis faster than that of Figure 5 and the
closed-loop system stability deteriorates with l = 5000. While using an observer gain less
than the value of l1b, for example, l = 0.1l1b allows the disturbance rejection ability of the
controller to be improved without altering the stability of the closed-loop system. From
the root locus analysis, it is verified that as the closed-loop pole value (α) increases, the
observer gain (l) must decrease in order to maintain the closed-loop stability.

Despite the improvement made on the disturbance rejection capability of the controllers,
no observable improvement was made on the transient performance in Figure 7. Thereby
implying that the ROPIO has no effect on the transient performance of the controller, and
the value of α is solely responsible for the transient performance. However, using the
information gathered from (47) and the simulations, it can be said that a value of α < 0.5a3
exhibits more stable transient performance compared to higher values of α. Thus, the non-
oscillatory transient performance of the controller using α = 1000 in Figure 7 is a result of
α = 1000 < 0.5a3 = 1442.9. As mentioned in (47), for the range 0 < α < 0.5a3, any value of
l > 0 can be used to improve the controller robustness against external disturbances. This
property is further investigated by selecting α = 0.2a3 and studying the overall performance
improvement for various values of l in the following simulations.

The purpose of the simulations in Figure 8 is to show that in the first range of α in (47),
0 < α ≤ 0.5a3, the counted-on characteristics of an observer remain consistent. That
is, in this range a higher value of l produces a better disturbance rejection performance.
When α = 0.2a3, this property can be noticed in Figure 8 whereby the best performance is
obtained from the highest value of the gain l = 8× 104 (black broken line).

Figure 8. Performance comparison of ROPIO compensated ROMBC by increasing l with α = 0.2a3.

To analyze the performance of the controllers in Figure 8, the root trajectories are pre-
sented in Figure 9. As the trajectories approach the infinities of the imaginary axis along a
stable asymptote line, a higher observer gain does not risk the closed-loop system stability.
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Figure 9. Root trajectories of ROPIO compensated ROMBC by increasing l with α = 0.2a3.

Thus, at this point it is reasonable to pursue a relatively desirable performance that
can be attained using the ROPIO compensated ROMBC (35). So far it has been established
that the ROMBC can provide a steady transient performance and an adjustable disturbance
rejection performance for a value of α in the range 0 < α ≤ 0.5a3 regardless of the value of
l. Therefore, the range 0 < α ≤ 0.5a3, represented as Region B in Figure 10, is the relatively
desirable performance region proposed by this paper. However, the combined region
0 < α ≤ 2a3 or the union of Region A and Region B in Figure 10 still yields stable response
of the ROMBC.

Figure 10. Relatively desirable performance region of ROPIO compensated ROMBC.

The next simulation provides an insight on how the controller performance is affected
in Region B as the value of α is increased from α = 0.2a3 to α = 0.5a3. It might be expected
that a higher value of α puts the closed-loop poles further away from the imaginary axis
and improves the transient performance as α increases. However, Figure 11 shows that
at the boundary of Region B, that is when α = 0.5a3, a high observer gain produces a
stable but oscillatory performance. While the same value of observer gain does not result
this oscillatory response for the controllers with a smaller value of α. This can be further
analyzed using their root trajectories.
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Figure 11. Performance comparison of ROPIO compensated ROMBC by increasing α with l = 8× 104.

In the root locus plots in Figure 12, it is seen that as the value of α increases the root
trajectories approach the imaginary axis. Thus, the most crucial information gathered from
this revelation is the existence of a trade-off between transient performance and disturbance
rejection ability for the ROPIO compensated ROMBC. Increasing the value of α improves
transient performance, while reducing its flexibility to work with high-gain observer that
can be used to improve robustness against system uncertainties and external disturbances.

Figure 12. Root trajectories of ROPIO compensated ROMBC by increasing α with l = 8× 104.

From the simulations carried out so far, it is concluded that the desirable performance
obtained from the ROMBC is by using a value of α near 0.4a3 (black broken line plot in
Figure 11). At this value of α, the state feedback controller produces a satisfactory transient
performance while not risking instability caused by high-gain observers.



Energies 2021, 14, 2881 17 of 18

5. Conclusions

Since the effects of the ignored fast dynamics are reflected by poor transient and robust
performance, this paper provides the stability analysis of a reduced-order model-based state
feedback controller (ROMBC) combined with a reduced-order proportional-integral observer
(ROPIO) via the root locus approach and the Routh-Hurwitz stability criterion. The stability
boundary condition from the theoretical analysis reveals that, in order for the closed-loop
system stability to be maintained, the value of the observer gain must decrease as the feedback
controller pole increases. This implies that there exists a break from the separation principle
for a reduced-order model-based observer and state feedback controller.

A variety of computer simulations have been performed on a DC motor position
control problem to examine the transient performance and the disturbance rejection abil-
ity of the ROPIO compensated ROMBC. Contrary to common expectations rather than
improving the control system’s overall performance, the mathematical analysis and the
simulations have shown that there exists a trade-off between transient state performance
and disturbance rejection ability. The paper concluded by recommending a region based
on the closed-loop pole and observer gain value that provided a relatively preferable
performance for an ROPIO compensated ROMBC. Future studies could fruitfully explore
the effects of employing a different type of controller methods such as a Linear Quadratic
Regulator (LQR) with a disturbance observer to improve robustness of an ROMBC with a
larger model order reduction.
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