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Abstract: The restriction on the battery life of sensors is a bottleneck for wireless sensor networks 
(WSNs). This paper proposes a new feed-forward multi-clustering protocol (FFMCP) to boost the 
network lifetime. The utilization of fuzzy logic helps to overcome the uncertainties in the value of 
input parameters. The proposed protocol selects the most suitable cluster heads (CHs) using the 
multi-clustering method. A multi-clustering technique is defined utilizing the node’s information 
of the previous round and a fuzzy inference system to decide the CHs. The sensor nodes spend 
energy due to non-uniform CH distribution and long-distance data transmission by member nodes. 
The main focus of the proposed protocol is to reduce the member node distance. Our proposal dis-
tributes CH nodes uniformly using unequal clustering. The simulation outcome reveals that the 
proposed algorithm(FFMCP) has better performance in terms of tenth node death (TND), half node 
death (HND), remaining energy after 800 rounds (E_800), and average energy spent per round 
(AVG_PR) as compared to standard clustering schemes in the past. 

Keywords: multi-clustering protocol; wireless sensor network; fuzzy inference system; unequal 
clustering 
 

1. Introduction 
The definition of a wireless sensor network considers many cheap nodes with limited 

energy and processing capability to facilitate the sensing/collection of environmental pa-
rameters. The wireless sensor network helps in the formation of IoT infrastructure and is 
a crucial research area. 
To preserve the sensor node’s energy is the thrust part, as sensor nodes have a limited 
power supply. Nodes with a limited power supply will reduce the network performance; 
hence, designing a better routing algorithm is a challenge [1–3]. The different areas for 
better application of wireless network systems (WSNs) are environment monitoring [4,5], 
battle ground observation [6,7], patient monitoring [8,9], monitoring of manufacturing 
process [10], structural monitoring [11,12], building intelligent homes [13,14], vehicle su-
pervision and recognition [10,15], etc. Clustering performs a key role in maintaining en-
ergy efficiency and improving network lifetime [16–20]. Clustering enables an extraordi-
nary node called the cluster head (CH) to work as a leader node. The nodes joining the 
CHs to form clusters are cluster member (CM) nodes. The CH performs the data gathering 
task from CMs and then forwards it to the base station (BS), the unlimited battery power 
node [21,22]. The way to perform CH selection ensures performance gain, saves the node’s 
energy, and guarantees better communication and scalability in the network [23–28]. 

The multi-clustering protocol is successful because of proper input parameter selec-
tion in a particular round of algorithm execution. The contributions of the feed-forward 
multi-clustering protocol (FFMCP) method are: 
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• Definition of two different combinations of input parameters for CH selection in a 
round of algorithm e;xecution. Each grouping of input parameters works separately 
for deciding CHs; 

• Network structure in a round act significant function in deciding the CHs in the 
forthcoming round of the algorithm execution. Proper consideration of the input 
parameters, so that network information propagates forward and contributes to 
finalizing the CHs; 

• Carry out the analysis of the proposed protocol with notable clustering methods for 
WSNs. 

2. Related Works 
Clustering has been a fundamental research area in all kinds of networks, particularly 

for WSNs. Fuzzy logic adds extra benefits to perform clustering. This section expresses 
relevant protocols to perform clustering in WSNs. 

The low-energy adaptive clustering hierarchy (LEACH) [29] method is the basic clus-
tering technique using probability-based randomization for nodes. The nodes of different 
clusters calculate threshold value by applying the following equation: 

11 ( mod )( )
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p if n M
p rT n p
otherwise

 ∈ −= 



 (1)

where the letters M, n, p, r represent the group of non-cluster head (member) nodes for 
the previous round, node’s ID, the probability for CH, and round number, respectively. 
LEACH completes the task of execution in two consecutive phases. Initial processing car-
ries out in the cluster set-up phase, and then the steady-state phase executes. Threshold 
computations by nodes and comparison with randomly generated numbers occur in the 
cluster set-up phase. Lesser is the value of a randomly generated number in comparison 
to the threshold value, greater will be a chance for the node to employ as a CH. Cluster 
formation takes place by considering the nearest CH node to form different groups. CHs 
carry out data transmission via a single-hop method and lose more residual energy. Clus-
ter head selection using simple probabilistic calculation is the advantage of the LEACH 
protocol. 

Threshold sensitive energy efficient sensor network protocol (TEEN) [30] is a data-
centric protocol using a probabilistic approach. It works hierarchically and transfers data 
only if a particular event occurs. It works reactively, especially for applications where time 
is critical. It is defined as homogeneous networks. Cluster head selection executes like 
LEACH protocol; additionally, TEEN introduces a hard and soft threshold to minimize 
the transmission. The hard threshold value permits less data transmission. The TEEN pro-
tocol is not suitable for periodic data gathering. 

Fuzzy energy-aware unequal clustering algorithm (EAUCF) [31] execute clustering 
in a distributed manner by using a technique based on fuzzy logic. The decision for a 
proper cluster radius ensures better savings of the node’s energy. Fuzzy logic uses nodes’ 
remaining energy and distance from the base station to calculate the cluster radius. The 
initial phase of the algorithm calculates a set of tentative CHs using the probabilistic 
method. Generally, the threshold value changes in algorithm execution rounds, but it is 
unchanging for the EAUCF algorithm. The comparison of random numbers with thresh-
old value decides the final CHs and completes the algorithm execution task. The lower 
energy tentative CH in the communication range of another higher energy tentative CH 
quits from the election. 

Fuzzy logic based energy efficient clustering hierarchy (FLECH) [32] evaluates clus-
ters assuming a non-uniform WSN scenario. The probable value for CH considers three 
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input parameters. It performs calculations utilizing fuzzy concepts in Matlab. The major 
drawback is limited fuzzy output calculation. The algorithm executes in two phases to 
complete the task of clustering. 

Distributed unequal clustering using fuzzy logic (DUCF) [33] calculates the cluster 
radius of each node and defines the unequal cluster size. It uses fuzzy logic to decide the 
size of the cluster and perform the CH selection. It requires residual energy, distance to 
BS, and node degree to calculate the output (chance value) parameter. It utilizes another 
set of inputs (distance to BS and node degree) to generate cluster size. In contrast to other 
protocols that use only one output parameter, DUCF considers cluster radius and limit 
for the number of member nodes simultaneously to finalize CHs. It broadcasts different 
messages for an unusual purpose. 

DUCF shows the advantage of restricting the size of each cluster in terms of the sta-
bility of the network and also the longevity of the network. DUCF restricts the number of 
member nodes for each cluster, which may not appropriately work for some of the clusters 
and result in the premature death of nodes. 

Energy-efficient fuzzy-based scheme for unequal multihop clustering (EEFUC) [34] 
performs clustering based on fuzzy logic techniques. It utilizes a multi-hop technique to 
transmit data to BS. The unequal clustering is the basis to form different clusters for data 
aggregation. The fuzzy logic architecture performs clustering in four stages: competition 
radius evaluation, CH calculation, CM grouping, and determination of relay nodes. 
EEFUC applies fuzzy logic technique with various input parameters, such as distance to 
BS, distance to CH, residual energy, and delay distance at different stages. 

In [35], the author proposes challenges in handling big data for WSNs. The large vol-
ume of data in WSNs introduces many challenges. Data aggregation tasks become a criti-
cal task for such a scenario. The proposed work classifies the challenges and explains 
many analytics tools for WSNs. 

 Fuzzy-based energy-efficient clustering approach (FEECA) [36] demonstrates a 
fuzzy logic-based clustering approach for WSNs. The proposal defines the fuzzy rules to 
select optimal cluster head candidates. FEECA selects the master CH node from the set of 
optimal CHs. The diagonal division of the area of interest reduces the cost of communica-
tion. The decision for best CH takes place based on four parameters: remaining energy, 
average distance, the likelihood of CH, and communication quality. 

Power Efficient and Adaptive Latency (PEAL) [37] explains the multi-path clustering 
protocol for WSNs. It handles the trade-off between network lifetime and transmission 
latency. The simulation result shows that PEAL extends 47% network lifetime as com-
pared to LEACH protocol. The protocol works in two phases: cluster set-up phase and 
steady-state phase. 

The many state-of-the-art protocols [38–42] use fuzzy logic to perform clustering for 
WSNs. 

3. Network Model 
The network model describes the sensor node’s placement in the area. Consider a 

square area for the deployment of n sensor nodes. Nodes send data via a wireless medium. 
Each round of algorithm selects a certain number of cluster heads and performs clustering. 
Cluster size is different and per the capability of the CH. An extraordinary node called 
base station (BS) collects the data from different CHs in a multi-hop fashion. The BS loca-
tion is in the center of the area/corner of the field and does not change. Nodes are assigned 
a unique ID to perform communication. The ID will remain the same for the entire dura-
tion of execution. 

3.1. Assumptions 
Sensor nodes have their limitations, so algorithm formulation adopts certain re-

strictions. 
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• The node location is a crucial parameter for the algorithm’s analysis and thus 
assumes random deployment; 

• The configuration of the nodes in the network is similar; 
• Assume the same initial energy for each node; 
• The node’s position value is constant in each scenario of the network; 
• The base station, centered in the area or positioned in the corner, has unrestricted 

power; 
• The sink will remain stable for the entire protocol execution round; 
• The ability of sensor nodes is limited in terms of liveliness; 
• Received signal strength indicator (RSSI) is utilized to determine the distance value 

between nodes. 

3.2. Energy Model 
The radio energy model of [29] is the standard for most of the clustering algorithms 

in WSNs, so consider it for different implementation activity (Figure 1). 

 
Figure 1. Radio energy model. 

Equation (2) shows the energy spent in data transmission: 

2
0
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0
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Where d and l are distance measurement value and data size, respectively. 
Equation (3) expresses the energy spent on receiving purposes: 

R elecE E l= ∗  (3)

where Eelec is the value of energy to run the electronic circuitry, and Efs, and Emp stand for 
free-space amplifier energy and multipath amplifier energy, respectively. 

Equation (4) illustrates the threshold value of distance (d0): 

0
fs

mp

E
d

E
=  (4)

4. Proposed Algorithm 
Clustering preserves the energy expenditure of the network. A single combination of 

input parameters does not decide CHs properly, resulting in network performance and 
lifetime degradation. The proposed protocol (FFMCP) defines and further uses a different 
set of parameters relevant for CH selection. FFMCP improves the performance by using 
multiple combinations of input parameters for CH nomination. Consider the hierarchy of 
two levels for data routing and assume that the first level performs CH selection and the 
second layer handles the task of data routing. After sensing the environmental data, 
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member nodes send data to the CH for onward transmission to the BS. FFMCP considers 
the modalities of a fuzzy inference system (FIS) to define the complete working properly. 

Fuzzy logic is used for the decision-making of unclear events; the results of these 
events can not be labeled “yes” and “no” or “true” and “false”. It mimics the decision-
making of humans; there may be possible outcomes between “yes” and “no”. It primarily 
consists of four modules, shown in Figure 2 below: 

 
Figure 2. Fuzzy logic system. 

Fuzzification: in this module, crisp input is transformed in to fuzzy sets based on 
linguistic terms. Each variable of linguistics is quantified by the membership function, to 
determine the suitable range of input. 

Knowledge: this module consists of rule-based knowledge that is provided by the 
experts or a rigorous evaluation of the set of linguistic rules. It requires database 
knowledge for determining control and management rules. 

Inference Engine: it has a function for determining the true value and rules to inter-
pret the reasoning, for “if-then” logic. As an example, if the energy of the sensor node is 
high, then there is a strong probability for this sensor node to be the CH. 

Defuzzification: the module transforms fuzzy sets acquired from the inference engine 
in to crisp output values, having proper weight with the center of gravity. 

The execution of the protocol takes place for a predefined number of rounds. Two 
different combinations of input-output parameters are responsible for CH selection. Ta-
bles 1 and 2 describe the input variables, output variables, and relationships among vari-
ables required for chance value calculations. FFMCP uses multiple chance values during 
the CH selection process. 

Table 1. Fuzzy “if-then” mapping rule for chance 1. 

Residual Energy Count Chance 1 
Low Low Verylow 

Medium Low Low 
High Low Medium 
Low Medium Low 

Medium Medium Medium 
High Medium Medium 
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Low High Medium 
Medium High High 

High High Veryhigh 

Table 2. Fuzzy “if-then” mapping rule for chance 2. 

Residual Energy MCH Chance 2 
Low Far Very small (VS) 

Medium Far Small (S) 
High Far Rather small (RS) 
Low Medium Mediumsmall (MS) 

Medium Medium Medium (M) 
High Medium Mediumlarge (ML) 
Low Close Ratherlarge (RL) 

Medium Close Large (L) 
High Close Verylarge (VL) 

4.1.Opening Phase 
The opening phase consists of three major sections. The first phase deals with infor-

mation collection and sharing, the second phase performs distance calculation, and the 
third phase performs degree and range calculation. 

4.1.1. Information Collection and Sharing 
Nodes are deployed randomly in WSNs and should share the location and other in-

formation with neighboring nodes. Sensor nodes broadcast messages to inform the loca-
tion and working characteristics of the proposed protocol. 

4.1.2. Distance Calculation 
After the node’s deployment in the region of interest, BS broadcasts the message to 

evaluate the BS distance from sensor nodes. The signal strength indicator is the parameter 
to perform distance calculation of sensor nodes. The difference of distance from the BS 
gives input to calculate the distance between two sensor nodes. The following equation 
shows the distance evaluation: 

z a bd d d= −  (5)

where dz is the distance between two nodes, and da and db are the maximum and minimum 
distances of a node from BS, respectively. 

4.1.3. Degree and Range Calculation 
The degree of a node tells about the neighbor density of a sensor node and has sig-

nificant importance. Further range of each sensor node is as shown below: 

( )( ) (1 )d i
i i

d d

MA DBS SCR S q R
MA MI

 −= − × × − 
 (6)

where R = range, q = constant parameter, MId = the minimum distance of a sensor node 
from BS, MAd = the maximum distance of a sensor node from BS, and DBS (Si) = distance 
of a sensor node from BS. 

  



Energies 2021, 14, 2866 7 of 21 
 

 

4.2. Set-up Phase 
The set-up phase works in four parts. The first part is responsible for the node’s in-

formation advertisement, the second performs tentative CH selection, the third carries out 
final CH selection, and the fourth part handles cluster formation. 

4.2.1. Advertisement Phase 
The different information of a sensor node is distributed to the neighboring nodes in 

the advertisement phase. Each sensor node broadcasts three parameters, namely ID, com-
petition radius, and sensor energy to other nodes in the communication range and finally 
decides the tentative CHs. Each sensor node maintains two separate tables for retaining 
network information. The first table maintains the self-information of each node while the 
second table keeps the information of the other neighboring nodes. Self attributes of a 
node are location, range, and ID of a node. 

4.2.2. Tentative CH Selection Phase 
We apply a fuzzy C-mean clustering approach to select the tentative CH nodes [43]. 

Each sensor node has some membership value in all the clusters; a sensor can belong to 
every group with a different membership value. For every sensor, the total sum of the 
membership value of all the clusters is 1. Membership value depends on the distance be-
tween cluster centroid and data point. The lesser the distance value is, the higher the mem-
bership value, and vice-versa. 

C = {c1, c2, …… ck} is the set of the centroids of k number of clusters, U = {µij}n*k is 
membership matrix and µij is the membership degree to which observation ith node pi be-
longs to cluster having a centroid ci. The aim is to minimize the objective function present 
in Equation (7) by FCM technique: 

2

1 1
( , )

k n
m
ij i i

j i
J U C p cμ

= =

= −  (7)

where ∑ 𝜇 = 1 ∀i, m is a fuzzifier that is constant and controls the degree of fuzziness; 
it ranges between 1 < m < ∞. The degree of membership for the ith node in jth cluster is 
calculated by Equation (8). 
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The centroid point of each cluster in iteration is updated and is calculated by Equa-
tion (9). 

1

n
m
ik k

i
Pμ

=

 
  
  (9)

4.2.3. Final CH Selection Phase 
Algorithm 1 describes the detailed working of the FFMCP method. The inputs of Al-

gorithm 1 are the number of rounds (n_round), deployment area, probability, the position 
of the sink (sink_p), the initial energy of nodes (initial_e), range (c_range), number of 
nodes (n_nodes), and type of nodes (t_node). The outputs of Algorithm 1 are a set of CHs 
and a set of alive nodes. Line1 performs parameter initialization. FFMCP executes for 
n_round rounds. In each execution round, Algorithm 1 uses the degree and competition 
range for different types of evaluations. Lines 4–8 perform to check for alive nodes. The 
proposed algorithm utilizes two different combinations of input-output parameters for 
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the CH chance value. Rounds 4, 7, 11, … consider residual energy and count of tentative 
CH nodes to calculate the chance value. Rounds 2, 5, 8, … do not perform the CH selection 
and uses the alive CHs of the previous round. Rounds 3, 6, 9, ... use the energy and nearest 
CH distance to calculate the CH chance value. Nodes perform maximum energy saving 
since FFMCP consider energy in each round for CH chance value calculation. Initial CHs 
are selected using the fuzzy C-mean (FCM) clustering approach in round 1. Lines 3–25 
and lines 29–46 show pseudo-code for first clustering and second clustering. In lines 26–
28, data transmission takes place using previous alive CHs. The design of fuzzy inference 
system and defuzzification method is carried out using the Mamdani inference system. 
Figure 3 shows the detailed working of Algorithm 1. Each round of Algorithm 1 selects 
CHs based on fuzzy input parameters. 

Algorithm 1: FFMCP Algorithm 
Input: n_round, deployment area, p, sink_p, initial_e, c_range, n_nodes, t_node 
Output: R_VALUE={CHs, alive_n} 
1: Initialization; 
2: for r = 1 to n_round 
3: if (mod(r,3) == 1) 
4: for I =1 to n 
5:   if(S(i).energy <= 0) 
6:    alive=alive−1; 
7:   end if 
8: end for 
9: SAY_ HI_MESSAGE (ID, CR, SE) 
10: if r=1  
11: apply FCM algorithm to select the initial tentative CHs 
12: end if 
13: if r > 1 
14: S(i).chance1 = evalfis ([S(i).energy S(i).count_tch], z); 
15: end if 
16: if(S(i) = best(chance1) 
17:    S(i).t_node = TCH; 
18: CONFIRM_TCH_MESSAGE (ID) 
19: end if 
20: if (S(i).E < S(j).E) 
21: S(i).type = N; 
22: end if 
23: Nodes with S(i).t_node =TCH will be declared final CH 
24: MEMBER_JOIN_CH_MESSAGE(ID) 
25: End if 
26: if (mod(r,3) == 2) and previous CHs are alive 
27: transmit the date to the CH 
28: else select the best chance CH 
29: if (mod(r,3) == 0) 
30: for I =1 to n 
31:   if(S(i).energy <= 0) 
32:    alive = alive − 1; 
33:   end if 
34: end for 
35: SAY_ HI_MESSAGE (ID, CR, SE) 
36: S(i).chance2 = evalfis ([S(i).energy S(i).mch], z); 
37: if(S(i) = best(chance2) 
38:    S(i).t_node = TCH;  
39: CONFIRM_TCH_MESSAGE (ID) 
40: end if 
41: if (S(i).E < S(j).E) 
42: S(i).type = N; 
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43: end if 
44: Nodes with S(i).t_node = TCH will be declared final CH 
45: MEMBER_JOIN_CH_MESSAGE(ID) 
46: end if 
47: end for 
48: Return R_VALUE 

 
Figure 3. Detailed explanation of Algorithm 1. 

Figures 4–8 show the membership function of the node’s remaining energy, tentative 
CH count, minimum distance to CH, chance 1, and chance 2 values, respectively. 

Each node calculates chance value using the rules of Tables 1 and 2 and further final-
izes CHs with maximum chance value. 

Due to uncertainty, FIS supports selecting the CHs whose fitness value is superior. 
FIS development took place to perform the CH selection and supervise the member nodes 
to join the suitable CH. The key benefit of the FIS is the low computational complexity. 
FFMCP selects CHs having a higher chance value in a particular round of algorithms. 

 
Figure 4. Membership function for residual energy. 
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Figure 5. Membership function for count. 

 
Figure 6. Membership function for min CH distance. 

 
Figure 7. Membership function for chance 1. 
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Figure 8. Membership function for chance 2. 

The range of input variables for residual energy, count of tentative CHs, and mini-
mum distance to CH is (0, 1), (0, 15), and (0, 70), respectively. The range of output variables 
for chance 1 and chance 2 is (0, 1) and (0, 100) respectively. The linguistic variables of the 
input values (RE, COUNT) are low, medium, and high; linguistic variables of the input 
value (MCH) are close, medium, and far. The linguistic variables of the output value 
(chance 1) are very low, low, medium, high, and very high; linguistic variables of the out-
put value (chance 2) are very small, small, rather small, medium small, medium, medium 
large, rather large, large, and very large. 

Inference engine based on fuzzy logic: it is complex and difficult to design a mathe-
matical model for a changing WSN scenario. It is not easy to extend the mathematical 
model, which is designed for static WSN scenarios and can cater to some specific require-
ments. The value of environmental variables changes frequently, so the WSN deployment 
scenario becomes more dynamic. Energy, proximity, and inter-node distance are popular 
variables for controlling and monitoring different WSN scenarios. A fuzzy inference en-
gine supports the uncertainty management of monitoring variables and enhances the ac-
curacy of the results. Fuzzy rule-based systems are significant because of the approximate 
reasoning when there is a degree of uncertainty and imprecision in the data in the reason-
ing process. Membership functions are inputs and fuzzy rules perform decision-making 
for the inference engine. 

Membership functions: membership functions show the truth degree of the variables 
(input/output) and represent quantitative measures through a set of vaguely defined val-
ues. The tuning of the membership function and reduction in system design time occurs 
for parameterizable functions. The optimization of parameters for proper CH selection 
requires time and computational cost. FFMCP performs several simulations to finalize the 
input parameter’s membership functions. For example, intersection points determine the 
peak value of the membership function. Membership function tuning takes place with the 
help of fuzzy results to cover the desired situation. In FFMCP, some membership func-
tions are modified due to the uncertainty of parameters. Proposed work performs simu-
lation rounds and considers network size and node density to tune the membership func-
tion. Triangular and trapezoidal membership functions are easy for tuning and suitable 
to handle network dynamism. The change in the parameter’s value is directly related to 
the desired changes in the two membership functions. 

“If-then” rules: there is a set of linguistic rules to map the input parameters with out-
put parameters as given by: 
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IF X, THEN Y, X represents a group of input parameters (energy level, degree, dis-
tance) and connections (NOT, OR, AND), and Y represents a group of output variables 
(chance value). We have two different combinations of input-output variables. In each 
group, there are two inputs and one output variable. The output variable corresponds to 
chance for CH. There are nine different rules in each case to control the uncertainty. 

The defuzzification is based on the center of area (COA) method to calculate the crisp 
value. 

Trapezoidal membership function (Equation (10)) is applied for boundary variables 
and triangular membership function (Equation (11)) for intermediate variables. 
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4.2.4. Cluster Formation Phase 
Each node selects the nearest CH and forms the cluster by broadcasting the message 

in the competition range using a non-persistent carrier sense multiple access (CSMA) 
MAC. The message announcement contains the ID of the CH. After receiving the message, 
sensor nodes finalize suitable CH for cluster formation. The smaller the communication 
range, the smaller the cluster size will be, saving the energy efficiently. Once the cluster 
formation completes, CH performs data collection from the cluster member using the 
TDMA schedule. TDMA execution performs with the help of members of the CH. TDMA 
also controls the collision during data transmission. It schedules the member nodes using 
the sleep-wake protocol; member nodes will save energy by going to a sleep state once 
the data transmission work finishes. 

4.3. Data Transmission Phase 
Data transmission takes place after the set-up phase finishes execution. CH uses the 

TDMA schedule to transmit data to the BS. Multiple communications take place during 
data transmission. Cluster members send data to the CH via intra-cluster communication 
and CHs collect the data. The data collected by the CH is further transmitted to the BS via 
inter-cluster communication. 

Equation (12) approximates total energy usage for the cluster formation (ECintra) and 
the multihop (ECinter) transmitting to BS in one complete round. 

int inttot ra erE EC EC= +  (12)

The ECintra includes the energy used in transmitting from cluster member to its CH 
(ECHmember), energy used to receive data at CH (ECHreceive), and also data aggregate (EDA) 
from all its members for forwarding purposes. It can be shown in Equation (13) as: 
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int ra member receiver DAEC ECH ECH N E= + + ×  (13)
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The ECinter only requires enough energy to forward information from all the CH 
through multiple hops to BS as in Equation (16): 
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 (16)

Here, transmission order is from CHi−1 to CHi, with CH1 as the initial CH of m inter-
mediate CHs. 

Time synchronization is an essential feature for the functioning of WSNs. Many 
pieces of research regarding time synchronization have been accomplished in recent 
years. Numerous protocols are proposed [44–46] for this problem. The clock of the sensor 
nodes should converge quickly to synchronize the different operations among sensor 
nodes. In [44], the author proposed three protocols for time synchronization, with a com-
mon goal of clock convergence. FFMCP protocol can use the protocol of [44] to perform 
the different operations in a synchronized manner; due to lesser message transmissions, 
this will save the energy of sensor nodes. 

5. Comparative Analysis of Result and Simulation Work 
Proper algorithm analysis and performance comparison in different network scenar-

ios is the key aim of the simulation. All simulations for evaluation of performance carry 
out using the Matlab tool. The performance of FFMCP with that of LEACH, EAUCF, 
FLECH, DUCF, and EEFUC in terms of tenth node death (TND), half node death (HND), 
remaining energy after 800 rounds (E_800), and average energy spent per round 
(AVG_PR) is plotted in Figures 9–12, respectively. Tables 3–5 show the quantitative de-
tails. Simulations perform in three different scenarios, considering the resultant value of 
the average of 10 different simulations in each case. 

 
Figure 9. TND in different scenario. 
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Figure 10. HND in different scenario. 

 
Figure 11. Residual energy after 800 round in a different scenario. 

 
Figure 12. Average energy spent per round. 
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Table 3. Performance of scenario 1. 

Algorithm TND HND E_800 AVG_PR 
LEACH 433 629 1.01 0.0612 
EAUCF 591 639 1.26 0.0609 
FLECH 611 665 2.21 0.0597 
DUCF 671 737 4.28 0.0571 
EEFUC 689 791 5.21 0.0553 
FFMCP 926 985 9.98 0.0500 

Table 4. Performance of scenario 2. 

Algorithm TND HND E_800 AVG_PR 
LEACH 445 761 1.12 0.0611 
EAUCF 651 811 1.81 0.0602 
FLECH 665 825 2.44 0.0594 
DUCF 711 854 5.15 0.0560 
EEFUC 732 887 6.65 0.0559 
FFMCP 1084 1103 13.38 0.0457 

Table 5. Performance of scenario 3. 

Algorithm TND HND E_800 AVG_PR 
LEACH 141 472 9.12 0.0612 
EAUCF 225 522 10.11 0.0582 
FLECH 234 537 11.06 0.0532 
DUCF 244 546 12.8 0.0511 
EEFUC 245 551 13.54 0.0501 
FFMCP 295 611 18.54 0.0481 

FFMCP establishes its importance and produces better results than other protocols 
(LEACH, EAUCF, FLECH, DUCF, and EEFUC). FFMCP discards the analysis for first 
node death and last node death. The network performance does not suffer much due to 
the death of a small number of nodes. The network performance decreases significantly 
after 50% of the nodes die. The simulation results analyze the effectiveness of FFMCP for 
the following three scenarios: 

− First scenario, S#1 (Figure 13) considers the network area of (200*200) with the base 
station located at (100, 100) and the initial energy of each node as 0.5 joules; 

− Second scenario, S#2 (Figure 14) has an area of (100*100), base  station location as (50, 
50) initial energy of each node as 0.5 joules; 

− Third scenario, S#3 (Figure 15) has an area of (500*500), base station location as (500, 
500) initial energy of each node as 5 joules. 
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Figure 13. First scenario. 

 
Figure 14. Second scenario. 

 
Figure 15. Third scenario. 
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The other necessary parameters for our simulation to work in different scenarios are 
mentioned in Table 6. FFMCP always performs better than the other considered protocols. 

Scenario 1: the deployment of 100 homogeneous (same initial energy) nodes in a 
large area (200*200) for reasonable comparison among protocols is considered. Table 3 
demonstrates the performance of scenario1. 

Table 6. Parameters considered for simulations. 

#Parameters #Value 
Nodes totality 100 

Eelec 50 nJ/bit 
Efs 10 pJ/bit/m2 

Emp 0.0013 pJ/bit/m4 
EDA 5 nJ/bit/message 

Datasize 4000 bits 
Control message 200 bits 

TND parameter is 113.9% better than LEACH, 56.7% better than EAUCF, 51.6% better 
than FLECH, 38% better than DUCF, and 34.4% better than EEFUC. HND parameters per-
form 56.6% better than LEACH, 54.1% better than EAUCF, 48.1% better than FLECH, 
33.6% better than DUCF, and 24.5% better than EEFUC. The residual energy for FFMCP 
is eight times more than that of LEACH, seven times that of EAUCF, three times that of 
FLECH, twice that of DUCF, and 91.6% better than EEFUC for 800 rounds. The average 
energy spent per round for FFMCP is 18.3% less than LEACH, 17.9% less than EAUCF, 
16.2% less than FLECH, 12.4% less than DUCF, and 9.6% less than EEFUC. 

Scenario 2: its area is smaller (100*100) than scenario 1 but has the same initial energy. 
The purpose of this scenario is to analyze the behavior of the protocols for small area net-
works. The performance of the protocols is described in Table 4. FFMCP shows superior-
ity over other protocols under consideration. Table 4 shows different performance-asso-
ciated parameters in scenario 2. TND parameter is 143.6% better than LEACH, 66.5% bet-
ter than EAUCF, 63% better than FLECH, 52.5% better than DUCF, and 48.1% better than 
EEFUC. HND parameters perform 44.9% better than LEACH, 36% better than EAUCF, 
33.7% better than FLECH, 29.2% better than DUCF, and 24.4% better than EEFUC. The 
residual energy for FFMCP is much higher than other protocols for 800 rounds. The resid-
ual energy for FFMCP is 103.3% better than LEACH, 83.4% better than EAUCF, 67.6% 
better than FLECH, 44.8% better than DUCF, and 101.2% better than EEFUC. The average 
energy spent per round for FFMCP is 21.4% less than LEACH, 17.4% less than EAUCF, 
9.6% less than FLECH, 5.9% less than DUCF, and 18.2% less than EEFUC. 

Scenario 3: the area is more (500*500) as compared to scenario 1 and scenario 2. The 
initial energy is also larger than the other two scenarios. The purpose of this scenario is to 
analyze the behavior of the protocols for large area net works. The performance of the 
protocols exists in Table 5. FFMCP shows superiority over other protocols under consid-
eration. Table 5 shows different performance-associated parameters in scenario 3. TND 
parameter is 109.2% better than LEACH, 31% better than EAUCF, 26.1% better than 
FLECH, 20.9% better than DUCF, and 20.4% better than EEFUC. HND parameters per-
form 29.5% better than LEACH, 17.1% better than EAUCF, 13.8% better than FLECH, 
11.9% better than DUCF, and 10.9% better than EEFUC. The residual energy for FFMCP 
is much higher than other protocols for 800 rounds. The average energy spent per round 
for FFMCP is 25.2% less than LEACH, 24.1% less than EAUCF, 23.1% less than FLECH, 
18.4% less than DUCF, and 3.9% less than EEFUC. 

The simulation work reveals that the FFMCP protocol performs better than other 
protocols for tenth node death (TND), half node death (HND), and remaining energy after 
800 rounds (E_800), and average energy spent per round (AVG_PR). The parameters used 
for the performance evaluation are popular for WSN clustering. The network performance 
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decreases as the node’s energy reduces below a threshold limit. After 10% of nodes die, 
the network performance hampers significantly. Data collection and aggregation suffer a 
lot after 50% of nodes die. The higher the value of remaining energy after a certain round 
of algorithm execution, the more useful is the protocol for the real-time scenario. Tables 1 
and 2 define fuzzy rules for cluster head selection. Each rule considers energy as one pa-
rameter. The rule-based fuzzy system controls the energy expenditure of sensor nodes; as 
a result, the average energy spent per round is the lowest for the proposed protocol. The 
FFMCP protocol shows a better scalability feature, as it shows significant performance 
gain in a large-scale scenario. 

FFMCP runs a pre-defined number of rounds to draw a box plot. Figures 16–18 show 
the box plot of the proposed protocol for three different scenarios (S#1, S#2, S#3). The box 
plots represent the energy distribution of 100 sensor nodes. 

 
Figure 16. Box plot of node’s energy distribution in S#1. 

 
Figure 17. Box plot of node’s energy distribution in S#2. 
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Figure 18. Box plot of node’s energy distribution in S#3. 

6. Conclusions and Future Works 
Network information of the previous round helps in predicting the better CH for the 

next round. The proposal (FFMCP algorithm) is a feed-forward multi-clustering protocol. 
FFMCP uses a fuzzy inference system to overcome the uncertainties in the value of input 
parameters. The proposed protocol calculates chance value by using two different sets of 
input parameters. FFMCP performance is better than the other protocols, as it considers 
the information of the previous round to calculate the chance value. Residual energy, ten-
tative CH count, and minimum distance to CH facilitate to calculate output parameters. 
FFMCP shows enhanced performance than LEACH, EAUCF, FLECH, DUCF, and EEFUC 
in each case. 

In the future, an analysis of the performance assuming some extraordinary energy 
harvesting nodes is probable research scope. Node deployment is in a square area; another 
deployment pattern is also possible. Simulations run for the stable sink, so controlled or 
pre-determined mobility can also be a future work. More discussions can take place on 
the number of mobile sensor nodes and their positions. 
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