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Abstract: Clean and renewable energy is developing to realize the sustainable utilization of energy
and the harmonious development of the economy and society. Microgrids are a key technique
for applying clean and renewable energy. The operation optimization of microgrids has become
an important research field. This paper reviews the developments in the operation optimization
of microgrids. We first summarize the system structure and provide a typical system structure,
which includes an energy generation system, an energy distribution system, an energy storage
system and energy end users. Then, we summarize the optimization framework for microgrid
operation, which contains the optimization objective, decision variables and constraints. Next,
we systematically review the optimization algorithms for microgrid operations, of which genetic
algorithms and simulated annealing algorithms are the most commonly used. Lastly, a literature
bibliometric analysis is provided; the results show that the operation optimization of microgrids has
received increasing attention in recent years, and developing countries have shown more interest
in this field than developed countries have. Finally, we highlight future research challenges for the
optimization of the operation of microgrids.

Keywords: microgrid operation; optimization; system structure; algorithm; literature bibliometric

1. Introduction

Energy is an important material basis for the survival and development of human
society that is related to national economies and people’s livelihoods, national strategic
competitiveness [1,2]. In recent years, with the sharp increase in the global demand for
energy, the traditional non-renewable energy resources represented by oil, coal and natural
gas have been consumed in large quantities [3]. This results in increasingly prominent
global energy and environmental problems, which impede economic development and
have a huge impact on humans’ living environments [4,5]. Specifically, it has been con-
firmed that global warming and other climate changes are largely caused by carbon dioxide
and other greenhouse gases emitted due to the use of fossil fuels such as coal and oil.

In this case, with the aging of the traditional power system structure and the increas-
ing demand of users for power quality, the development and utilization of renewable
energy (clean energy including wind energy, solar energy, water energy, biomass energy,
geothermal energy and other non-fossil energy) has gradually become the only way to
ensure social sustainable development in terms of energy problems [6–8]. In order to realize
the sustainable utilization of energy, many countries are taking measures to improve the
efficiency of energy utilization and vigorously develop renewable energy.

The use of renewable energy usually needs the help of distributed generation tech-
nology [9–11]. Different from the traditional fossil energy-based, centralized, large-scale
power generation system, distributed generation technology is developed and utilized
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according to the geographical distribution characteristics of renewable energy exploitation.
Specifically, compared with the traditional centralized power supply mode, distributed
generation usually refers to making full use of all kinds of scattered and easily available
energy, including renewable energy (wind energy, solar energy, biomass energy, tidal sand
energy, etc.) and non-renewable energy (mainly natural gas). Their energies are arranged
near the users, based on advanced information control technology of a small, modular,
decentralized form of power generation and energy supply. With these characteristics,
distributed generation has become an environmentally friendly, efficient and flexible power
generation mode. It creates favorable conditions for the development and utilization of
renewable energy such as solar energy, wind energy, biomass energy and wave energy. In
this case, it plays an increasingly important role in the process of replacing fossil energy.
Therefore, it is an inevitable trend and choice that the existing large power grids adopt
large-scale cluster renewable energy through distributed generation technology.

The early distributed generation technology directly connected to the grid operation,
which changed the one-way flow characteristics of each branch power flow in the grid
and brought difficulties for the operation and protection control of the power grid [12,13].
A small amount of access of distributed generation will not have a great impact on the
distribution network. With the increase in permeability in the grid, the negative effects of
the access of distributed generation on the active power network loss, power flow, harmonic,
voltage flicker, short circuit current, thermal stability, dynamic stability and transient
stability are prominent [14]. The blind introduction of distributed generation technology
may lead to the deterioration of the stability, reliability and power quality of a system. On
the other hand, due to the influence of natural conditions, the distributed power generation
system, which takes renewable energy as the primary energy, has an intermittent and
fluctuating output. This also makes it difficult to dispatch to a power system. According
to IEEE standard 1547.1, when a power system fails, distributed generation must cease
operation immediately, which greatly limits the benefits of distributed generation.

In order to integrate the advantages of various distributed energy sources, and reduce
the adverse impact of distributed generation on a large power grid, the Consortium for
Electric Reliability Technology Solutions (CERTS) proposed the concept of a microgrid [15].
As a new energy transmission mode and management technology to increase the pen-
etration of distributed energy in an energy supply system, microgrids can facilitate the
access of renewable energy systems, improve energy efficiency and realize demand-side
management [16]. Although the definition of a microgrid is different throughout the world,
it is generally considered that a microgrid is a hybrid energy supply system. This system
integrates a variety of distributed generation, energy storage unit, load, monitoring and
protection devices. Microgrids can flexibly operate in grid or island mode; effectively
improve the flexibility, economy and cleanliness of power system operations; and meet
the requirements of power supply reliability, safety and power quality through combined
cooling, heating and power (CCHP).

Microgrids have injected new vitality into distributed generation technology. For large
power grid systems, a microgrid can operate as a controllable unit under the normal state
and has flexible operation modes and a schedulable performance. When the large power
grid fails or the power quality does not meet the requirements, it can operate independently
as an autonomous system. This can transform the random and uncertain issue of grid
connection into a controllable issue of microgrid grid connection. Thus, the contradiction
between distributed generation and large power grids can be effectively coordinated. For
end users, the microgrid can meet their requirements on power quality and reliability, and
the diversity of CCHP, through integrated scheduling. In summary, microgrids solve the
problem of large-scale access, give full play to their advantages and realize an efficient,
safe, clean and reliable energy supply. As smart grids have gradually become an important
direction of power system development, in the future, microgrids, as an important part of
smart grids, will have a broader development prospect [17].
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With the continuous development of micro energy grid technology and the strong
support of governments, there will be a wider range of applications in the future; therefore,
research on the optimization of micro energy grid operation has a certain theoretical value
and significance [18]. Through operation optimization calculation, a reasonable operation
scheme can be formulated to improve the economy of microgrid operation [19]. Thus, there
have been many studies about microgrid operation optimization [20,21].

Consequently, some reviews related to microgrid operation have been published in re-
cent years. For example, in their review, Cagnano et al. introduced the main design features
of existing microgrids, partially in light of the experience gained during the realization of
the Prince Lab microgrid in Italy [22]. Shuai et al. presented a comprehensive review on
microgrid stability in order to identify and advance the field considering the microgrid
operation mode, types of disturbance and timeframe [23]. Hosseini Imani et al. published
a review for the demand response modeling in microgrid operation, with its application
for incentive-based and time-based programs [24]. Akinyele et al. reviewed the fuel cell
technologies and applications of sustainable microgrid systems [25]. Rebollal et al. an-
alyzed the state of the art of 23 distributed generation and microgrid standards in their
review, focusing on the grid connection and operation technical requirements [26]. Vil-
lalón et al. presented a comprehensive literature review to analyze the latest trends in re-
search and development regarding the applications of predictive control in microgrids [27].
Carpintero-Rentería et al. provided a literature review on microgrids in terms of their main
layers, such as business, standard, climate, infrastructure or control and operation [28].
Saleh Al-Ismail published a review that documented the developments in the planning,
operation and control of direct current microgrids [29].

However, there is still no comprehensive review that summarizes the optimization meth-
ods and techniques of microgrid operation. Therefore, to help designers and researchers
address the challenges and draw potential recommendations for microgrid operation in practi-
cal implementations, this paper investigates previous studies on the operation optimization of
microgrids in three aspects: (1) system structure; (2) optimization framework; (3) optimization
algorithm. In addition, this paper also provides a literature bibliometric analysis of the previous
studies on the optimization of microgrid operation. There are several contributions of this
work. First, this is a comprehensive review focusing on the optimization of microgrid opera-
tion, while previous reviews only involved with this issue partially. Second, the optimization
method is discussed in three aspects including the system structure, optimization framework
and optimization algorithm, while previous reviews usually concentrated on the algorithm.
Last, this work also provides a literature bibliometric analysis as a supplementary reference to
demonstrate the development of this issue.

The remainder of this paper is arranged as follows. Section 2 summarizes the system
structure of a microgrid. Section 3 investigates the optimization framework of microgrid
operation in terms of optimization objectives, decision variables and constraints. Section 4
investigates several main algorithms used. Section 5 provides the literature bibliomet-
ric analysis for previous studies on the optimization of microgrid operation. Section 6
concludes the paper.

2. System Structure of Microgrid

A microgrid is an autonomous system composed of load, distributed generation and
an energy storage system [30,31]. Mao et al. summarized the research contents of microgrid
systems and presented the main Energy Interconnection System (EIS) projects and their
classification in recent years [32]. The integrated energy system is located near the user side,
involving cold/heat/electricity/gas multi-energy carriers, including micro source, load,
energy storage and corresponding control, monitoring and protection devices and energy
management systems. It is a single, controllable micro energy system that can realize the
optimization of endogenous/network/load/storage in a region.

Modern systems have become increasingly complex [33–38], especially power supply
systems [39]. At the basic physical structure and equipment level, all types of EIS are
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basically the same, generally covering integrated power supply, heating, cooling, gas
supply, hydrogen supply and other energy systems as well as related communication and
information infrastructure. A typical microgrid structure is shown in Figure 1.
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Figure 1. Typical system structure of a microgrid.

As shown in Figure 1, the electric energy is coupled with the heat distribution and
cooling network through the electric refrigerator and heating pump equipment; the heat
distribution network transmits energy to the cooling network through the absorption
refrigerator; simultaneously, the gas distribution network provides energy for other energy
production equipment. The system contains a variety of energy equipment, which can
be divided into coupling components and uncoupling components. Among them, the
coupling elements include equipment that can realize the transformation of the energy
form, which can realize the coupling between different subsystems, including CCHP,
absorption refrigeration units, electric refrigeration units, etc.; the uncoupling elements
include the production, use and storage of energy in a single system, including new energy
power generation equipment, energy storage equipment and various types of loads. Each
structure of the microgrid is introduced as follows:

(1) Energy generation system: Without any energy conversion, it can realize the direct
transmission of energy, such as through cables, overhead lines, pipelines, etc.

(2) Energy distribution system: It can realize the transformation of the energy form or
a change in energy grade. New energy power generation equipment such as wind
turbines and photovoltaic (PV) equipment converts wind energy and solar energy,
respectively, into electric energy; electric hydrogen generation equipment converts
electric energy into hydrogen; fuel cells convert gas into electric energy; and special
equipment such as heat pumps can absorb heat from a low-temperature heat source
and release it to a high-temperature heat source through electric energy so as to realize
a change in energy grade.

(3) Energy storage system: Energy storage devices, including power storage, heat storage
and cold storage equipment, can cut peaks and fill valleys and alleviate the problem
of mismatch between gas turbine and cooling/heating loads.

(4) Energy end users: The end users of energy, including industrial, residential, com-
mercial and other users, who receive energy for power, refrigeration, heating and
other purposes.
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2.1. Energy Generation System

Power generation systems include PV power generation, wind power generation,
diesel generators and batteries. In the dispatch period, the incentive demand response
direct control method is used to transfer the load and compensate.

2.1.1. PV Power Generation

PV output is mainly different for two conditions: clear sky and non-clear sky. Under
clear sky conditions, the output of PV power generators shows strong regularity, while
under non-clear sky conditions, the output characteristics of PV power generators are
relatively complex. The output power of a PV power generation system is related to the
external temperature Tamb and illumination R, and the relationship is as follows [40]:

PPV = PPV,STC ×
R

RSTC
× (1− λ× (Ta − Tr)) (1)

Ta = Tamb +
R

RSTC
× (TNOC − 20) (2)

In Equations (1) and (2), PPV,STC is the maximum power under standard test condi-
tions; RSTC is the illumination value under standard test conditions; λ is a coefficient; Tr,
Ta and TNOC are the reference temperature of the PV unit, the actual temperature of the PV
unit and the temperature of the PV unit under normal operation conditions, respectively.

2.1.2. Wind Power Generation

Wind energy is a widely distributed renewable energy, and the continuous progress of
technology has continuously reduced the cost of wind energy [41–43]. For wind turbines,
the equation for wind energy conversion to fan power output is as follows:

PW =
1
2

ρπR2V3Cp (3)

In this formula, ρ is the air density; R is the radius of the fan blade; V is the wind
speed from the blade tip; Cp is the wind energy conversion efficiency, which is a function
of the blade tip speed ratio λ and the blade pitch angle θ, as

Cp = f (θ, λ) (4)

In this formula, the blade tip speed ratio λ is defined as

λ =
WW R

V
(5)

where Ww is the mechanical angular velocity of the fan (rad/s).

2.1.3. Diesel Generator

The fuel consumption of a diesel generator is a linear function of its output power,
which is

F = F0 ×Ygen + F1 × Pgen (6)

In this formula, F is the fuel consumption rate; F0 is the intercept coefficient; F1 is the
slope; Ygen is the rated power of diesel generator; Pgen is the actual output power.

The operating power constraints of a diesel generator are

Lmin ≤
Pgen

Ygen
≤ 1 (7)

where Lmin is the minimum load rate of the diesel engine.
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Moreover, the carbon emission CO2(Pd) produced by a diesel generator can be ex-
pressed as follows [44]:

CO2(Pd) = a + b× Pd + c× P2
d (8)

where a, b and c are carbon emission coefficients of diesel, and their values are 28.1444,
1.728 and 0.0017 (evaluated from practice), respectively [40].

2.1.4. Battery

For a single lead–acid battery with a capacity of Cb and a rated voltage of Ub, assuming
that the maximum allowable discharge depth is D and the discharge efficiency is µb, the
electric energy that the battery can provide for each charge and discharge is

Eb = CbUbDµb × 10−3 (9)

Generally, the working voltage of the battery is stable and the working current is
controlled at approximately 0.1 CA, so the output power of the battery is

Pb = CbUb × 10−4 (10)

2.2. Energy Distribution System

An energy distribution system is used to distribute energy. It includes a bus bar and
at least one branch for supplying a consumer load, in which the bus bar is designed as a
flat/ribbon cable with a number of cores arranged next to one another for power and data
transmission. The branch is integrated as a communication-enabling consumer branch
into housing, which contains consumer-specific functionalities and has a contact device
operating according to the principal of penetration technology.

A typical energy distribution system is the combined CCHP system, which can meet
the needs of power, cooling and heating; improve energy efficiency; and reduce carbon
emissions, which is an important way to solve the energy and environmental crisis [45].
At the same time, as a multi-generation total energy system, the CCHP system has a large
number of components, and its operating conditions are complex and changeable, which
makes it difficult to optimize.

The CCHP system involves a wide range of technologies and components and is
usually composed of a power generator unit (PGU), a heat recovery unit, an absorption
chiller (AC) and an auxiliary boiler. In this study, a solar PV array and electric water chiller
are added to the traditional CCHP system structure. The structure of a CCHP system is
shown in Figure 2.

The research on CCHP system optimization focuses on operation strategy optimiza-
tion. The aim is to calculate the optimal operation mode and obtain the optimal integration
performance of a CCHP system. Mago and Chamra proposed a hybrid optimization strat-
egy based on “FEL” and “FTL” [46]. Zhao et al. proposed a multi-objective optimization
model considering the energy, economy and environment of a CCHP system and solved the
Pareto optimal solution set using a niche particle swarm optimization (PSO) algorithm [47].

2.3. Energy Storage System

Due to the intermittence and randomness of renewable energy and the continuous
change in load, the configuration of energy storage equipment with a certain capacity in
a microgrid can play an important role in stabilizing load fluctuations, improving power
quality and maintaining system reliability by flexibly and rapidly adjusting the throughput
of active/reactive power. The existing energy storage media can be divided into energy-
type media and power-type media. The former include lead–acid batteries, lithium batteries
and sodium sulphur batteries, with high energy density, low power density, few cycles and
slow response speed; the latter include supercapacitors, superconducting magnetic energy
storage and flywheel energy storage, with high power density, low energy density, many
cycles and fast response speed. A single energy storage medium cannot meet the needs
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of all applications; therefore, the current research is focused on a hybrid energy storage
system (HESS) composed of multiple energy storage media.

Energies 2021, 14, x FOR PEER REVIEW 7 of 40 
 

 

 
Figure 2. Structure of a CCHP system. 

2.3. Energy Storage System 
Due to the intermittence and randomness of renewable energy and the continuous 

change in load, the configuration of energy storage equipment with a certain capacity in 
a microgrid can play an important role in stabilizing load fluctuations, improving power 
quality and maintaining system reliability by flexibly and rapidly adjusting the through-
put of active/reactive power. The existing energy storage media can be divided into en-
ergy-type media and power-type media. The former include lead–acid batteries, lithium 
batteries and sodium sulphur batteries, with high energy density, low power density, few 
cycles and slow response speed; the latter include supercapacitors, superconducting mag-
netic energy storage and flywheel energy storage, with high power density, low energy 
density, many cycles and fast response speed. A single energy storage medium cannot 
meet the needs of all applications; therefore, the current research is focused on a hybrid 
energy storage system (HESS) composed of multiple energy storage media. 

Tian et al. proposed a modeling and operation time scheduling method for MEMS 
with energy storage [48]. A steady-state multi-carrier energy flow is adopted, including 
the dynamics of heat transfer and thermoelasticity. The results show that the effects of 
heat transfer and thermal inertia are similar to those of energy storage and are defined as 
being comparable to the storage of energy. The model was built using a weighted directed 
cyclic graph and energy storage state transfer function. The system model was applied to 
the optimal scheduling problem as a problem based on PWL approximation and convex 
relaxation. The results showed that the model and method are reasonable for a meaningful 
MEMS system and provide an effective method for analyzing energy consumption. 

Lv et al. put forward the method of using heat storage to improve the regulation 
capacity of cogeneration units in a large power grid [49]. Xu et al. used the heat storage 
capacity of cogeneration units to realize the absorption of excess energy from wind power 
generators [50]. The above solutions are no longer limited to the power system as they are 
based on the perspective of the Energy Internet, which considers the new energy con-
sumption of microgrids from the direction of the comprehensive utilization of electricity, 
heat and other energy forms. 

Figure 2. Structure of a CCHP system.

Tian et al. proposed a modeling and operation time scheduling method for MEMS
with energy storage [48]. A steady-state multi-carrier energy flow is adopted, including
the dynamics of heat transfer and thermoelasticity. The results show that the effects of
heat transfer and thermal inertia are similar to those of energy storage and are defined as
being comparable to the storage of energy. The model was built using a weighted directed
cyclic graph and energy storage state transfer function. The system model was applied to
the optimal scheduling problem as a problem based on PWL approximation and convex
relaxation. The results showed that the model and method are reasonable for a meaningful
MEMS system and provide an effective method for analyzing energy consumption.

Lv et al. put forward the method of using heat storage to improve the regulation
capacity of cogeneration units in a large power grid [49]. Xu et al. used the heat storage
capacity of cogeneration units to realize the absorption of excess energy from wind power
generators [50]. The above solutions are no longer limited to the power system as they
are based on the perspective of the Energy Internet, which considers the new energy
consumption of microgrids from the direction of the comprehensive utilization of electricity,
heat and other energy forms.

Energy storage materials are also a key factor in energy storage. As a new energy
storage medium, phase change materials (PCMs) have received extensive attention in the
field of building and materials [51]. This kind of material is cheap and easy to prepare and
maintain on a large scale, so the service life is comparatively longer. PCMs can be used to
provide energy density and chemical energy storage in the same order of magnitude, with
economic advantages. Through the composition of a variety of materials, the phase change
point is designed close to the comfortable temperature of the human body, which can
achieve air conditioning-level cold storage and heat storage functions; it is integrated with
the building on the energy consumption side, without a loss in the transmission process.
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In the microgrid integrated energy system, energy storage equipment is used as a
time conversion device to improve the efficiency and economy of the integrated energy
system. Energy storage can be divided into electricity storage, heat storage, cold storage
and gas storage. The characteristics of energy storage and release are characterized by three
metrics: storage capacity, self-loss rate and energy storage efficiency. The change in the
energy storage state of energy storage equipment is determined by the following formula:

Si
t = Si

t−1

(
1− σi

)
+

(
ηi

chaPi
cha,t Ii

cha,i −
Pi

dis,t Ii
dis,t

ηi
dis

)
∆t (11)

where S is the state-of-charge (SOC) of energy storage equipment; P is the power of energy
storage and discharge; I is the state of energy storage and discharge; ∆t is the length of
a unit of time; subscript t is the time period; the superscript t is the type of equipment,
in which c, h, e and g are used for cold, hot, electric and gas, respectively, or only the
equipment number is employed; the energy storage status is marked with cha and dis in
subscript; ηcha and ηdis are the energy storage efficiency of the energy storage equipment; σ
is the energy storage loss rate.

2.4. Energy End Users

In the field of user-side microgrids, most studies have focused on operation planning,
energy management, control protection and other related microgrid technologies. Power
grid operation control is the key to ensuring the stability of users’ power supply and solving
other microgrid problems [52]. In user-side microgrids, most of the distributed generation
needs to be connected through the power electronic component interface, and the stable
operation of the microgrid depends on the corresponding control strategy. Therefore,
reasonable selection of the overall control strategy and optimization of the operation of the
user-side microgrid are the basis of improving the distributed generation efficiency, the
system stability and the users’ power supply reliability. At present, the common operation
control methods for user-side microgrids mainly include master–slave control, peer-to-peer
control and hierarchical control [53].

When a user-side microgrid with master–slave control operates in island mode, it
usually has one or more distributed generators with constant voltage and frequency control
as the main control power to provide a voltage and frequency reference for other distributed
generators in the microgrid. The other distributed generator, as a subordinate controller,
uses constant power control to regulate its own operation. During grid-connected operation,
the system voltage is supported by the large power grid, and all distributed generators,
including the main control unit, adopt constant power control.

Peer-to-peer control means that all the distributed generators in a microgrid have
equal status without principal and subordinate control. In a microgrid with peer-to-peer
control, the access to or removal of one distributed generator does not affect the control
strategy of other distributed generators, and it is easy to implement plug-and-play of
distributed generation.

Hierarchical control is a control strategy that sends control instructions to each part of
the microgrid through a central controller, and each part runs autonomously according to
the dispatch instructions. Hierarchical control can adopt a two-layer control structure or a
three-layer control structure.

3. Optimization Framework

In general, there are some optimization objectives: energy performance, economic
performance, environmental protection and other objectives. Their contributions and
relative studies are summarized as Table 1.
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Table 1. The contributions and related studies of the optimization framework.

Objectives Contributions Related Studies

Energy performance

a. Optimal energy combination of a CCHP
system

b. Optimization for short-term scheduling
scheme

Kong et al. [54]; Sharkh et al. [55]

Economic performance

a. Economic optimization model of CCHP
b. Integer programming method for micro

power supply and energy storage
c. Economic scheduling of cogeneration
d. Monitoring design for microgrid

Wang et al. [56]; Wu et al. [57];
Sashirekha et al. [58]; Su et al. [59]; Zhou et al. [60];
Sechilarium et al. [61]; Sadeghian et al. [62]

Environmental
protection

a. Energy management modes of microgrid
b. PSO algorithm
c. Optimal scheduling method
d. P2P energy trading method
e. Dynamic pricing scheme

Li and Yuan. [63]; Yuan et al. [64]; Shahab et al. [65];
Chen et al. [66]; Cheng et al. [67]; Li et al. [68];
Hou et al. [69]; Jiang et al. [70]; Wang et al. [71]

Other objectives

a. The calculation is complicated, and the
determination of index weight vector is
subjective

b. Evaluation methods and indicators for
CCHP microgrid

c. Robust environmental economic scheduling
model

d. Design and operation of a flexible microgrid
e. Multi-energy demand response model
f. Demand response (DR) framework

Amin et al. [72]; Jin et al. [73]; González et al. [74];
Ma et al. [75]; Zhao et al. [76];
Gu et al. [77];Kumar et al. [78]; Pang et al. [79];
Khalid et al. [80]

3.1. Optimization Objective
3.1.1. Single Objective

At present, the research on microgrid optimization mainly simplifies multiple objec-
tives such as operation cost reduction, energy management and environmental protection
into a single objective for optimization, but there are often conflicts between multiple objec-
tives, thus making it difficult to achieve the optimization at the same time. The following
are the basic single objectives.

(1) Energy performance

The research on single-objective optimization of microgrids mainly focuses on energy
management optimization. For example, Kong et al. proposed a basic linear program-
ming model to determine the optimal energy combination of a CCHP system with a gas
turbine [54]. Sharkh et al. proposed a cost-based optimization problem referring to a
short-term scheduling scheme for multiple parallel grid-connected fuel cell power plants
(FCPPs) [55].

(2) Economic performance

In the aspect of economic optimization, Wang et al. established an economic optimiza-
tion model of a CCHP micro network by using opportunity constrained programming
theory so as to optimize the operation scheme of the system [56]. Wu et al. proposed a
mixed integer programming method for micro power supply and energy storage to solve
the economic scheduling problem of a CCHP microgrid [57]. Sashirekha et al. presented a
flexible algorithm to solve the problem of economic scheduling of cogeneration [58]. Aim-
ing at the energy management of a microgrid under grid connected mode, Su et al. studied
a power calculation model of energy management based on the charged state of electrical
vehicle (EV) batteries [59]. They provided an energy management strategy considering
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PV output, electric vehicle charge and discharge power rate, power period division and
energy storage state. Zhou et al. thought that the user side of a microgrid provides great
potential for improving energy efficiency [60]. From the perspective of power supply chain
management, an optimization model using time pricing for the user-side microgrid is
proposed. The purpose of this model is to minimize the total cost of the power supply
chain and optimize the charging and discharging behavior of the end users. Sechilar-
ium et al. proposed a monitoring design for the optimization and prediction of power
capacity in a DC microgrid based on the PV power supply, energy storage, grid connection
and DC load in the microgrid [61].

From the perspective of optimal economic dispatch, an objective function can be
established with the lowest operation cost of a microgrid. It is assumed that the gener-
ation power of a distributed generation unit in one unit of time, the load demand, the
exchange power between the microgrid and main grid and the interactive electricity price
are constant [62]. The cost is mainly composed of the maintenance cost for operating the
renewable power generation unit, the cost of electricity price transaction with a large power
grid and the replacement cost of the storage battery, as follows:

min F1 =
24

∑
i = 1

[
KOM × Ppv−i + KOM × PWT−i

]
+

24

∑
i = 1

(Fbuy − Fsell) + Fbat (12)

Fbuy = f Pbuy−i (13)

Fsell = hPsell−i (14)

Fbat = S
q
n

(15)

where min F1 is the lowest cost of system operation; KOM is the operation and maintenance
coefficient of a renewable power generation unit; Ppv−i is the active power output of a
PV cell in the first hour; PWT−i is the active power output of a wind turbine in the first
hour; Fbuy is the electricity price paid by the large grid in the first hour; Fsell is the selling
price of the i-hour power grid; f is the coefficient of the purchase price; h is the power
selling coefficient; Pbuy−i is the power purchased from the large grid in the ith hour; Psell−i
is the power sold by the micro network to the large grid in the first hour; Fbat is the cost of
resetting the battery; S is the purchase cost of the battery; q is the full charge and discharge
time in a day; n is the number of full charging and discharging cycles in the battery life.

According to the analysis of the microgrid operation cost function, the operation
and maintenance cost of a renewable power generation unit (PV and wind turbine), as a
non-schedulable unit, is fixed. Therefore, in order to calculate the minimal operation cost of
the objective function microgrid, it is necessary to reasonably allocate the generation power
of the dispatching energy storage unit (i.e., battery) and the exchange power between the
microgrid and the large power grid so as to maximize the economic benefits.

(3) Environmental protection

In the research on environmental protection, as an organic part of a smart grid, a
microgrid has the characteristics of compatibility, flexibility, economy and autonomy. It can
flexibly and efficiently use distributed generation and energy storage equipment, maximize
the advantages of distributed generation, give full play to its environmental benefits and
achieve the goals of energy conservation and emission reduction [63]. Yuan et al. proposed
two energy management modes of a microgrid and analyzed the unit investment cost of
energy conservation and emission reduction under the different management modes by
taking an actual microgrid system as an example [64].

In terms of reducing carbon emissions, an objective function was established with the
most cost-effective investment of energy saving and emission reduction for the microgrid
operator, as follows [65]:

F =
CI + CO − PM

EO − EM
(16)
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where CI is the total construction cost of the microgrid; CO is the total operation and
maintenance cost of the microgrid; PM is the total income of the microgrid; EO is the CO2
emission generated by the power generation side when thermal power is used to meet the
load demand of the grid; EM is the CO2 emission generated by the power generation side
after the microgrid is added. The total CO2 emissions can be calculated as follows:

ECO2 = EFCO2EE (17)

where ECO2 is the total CO2 emissions; EE is the total power generation; EFCO2 is the carbon
emission factor and the unit is kg/kW/H.

By analyzing the objective function of microgrid emission reduction, the optimal
capacity ratio of distributed generation in the microgrid is calculated to reduce the wasting
of resources and realize the energy saving and emission reduction benefits of the microgrid.

3.1.2. Multi-Objective

Generally, a multi-objective model can more accurately reflect the actual operation
state of a microgrid than a single-objective model can, and it can achieve better environmen-
tal benefits with as little operation cost as possible [66]. Multi-objective optimization often
takes into account the environment, economic benefits, system balance and other aspects.

(1) The weighting factor method

Cheng et al. [67] proposed a CCHP-MG multi-timescale optimal scheduling model
with ice storage air conditioning, which can not only meet the needs of users for cold, hot
and electric energy but also effectively suppresses the random fluctuations of the supply
and demand sides during the day so as to realize the economic and stable operation of
the CCHP-MG. Li et al. proposed a distribution network energy storage configuration
optimization method based on an improved multi-objective PSO algorithm and used the
TOPSIS method to screen the optimal access scheme [68]. The feasibility and superiority
of this method were verified by simulation. Hou et al. proposed an optimal scheduling
method for electro thermal hydrogen multi-element energy storage (MES), established
a multi-objective optimal scheduling model for energy storage and achieved the unified
effect of economy, efficiency and stability [69]. Jiang et al. established a multi-objective
optimization model of microgrid-controllable load based on the working characteristics of
an air conditioner and water heater [70]. On this basis, a multi-objective controllable load
optimization strategy was proposed, and its effect in an actual microgrid was simulated
and analyzed by using a multi-objective, non-dominated sorting genetic algorithm.

For the optimization of an energy consumption subsystem, Wang et al. proposed a new
distributed P2P energy trading method based on a double auction market, which can not
only improve economic efficiency, energy self-sufficiency and renewable energy consump-
tion, but also does not sacrifice privacy protection and robustness [71]. Amin et al. proposed
a multi-energy demand response model, which provides more choices for multi-energy
end users in an energy management strategy [72]. Jin et al. designed a dynamic pricing
scheme to optimize the cost design and resource management of a microgrid system so as
to reduce carbon dioxide emissions while maintaining profits [73]. González et al. proposed
a demand response (DR) framework to optimize the microgrid of a distributed genera-
tion business park, aiming at improving system balance, integrating renewable energy,
improving system operation efficiency and reducing carbon dioxide emissions [74].

(2) Pareto multi-objective optimization

Multi-objective optimization has some concepts used to judge the final effect of
optimization methods. The two most commonly used concepts are the necessary condition
and sufficient condition of multi-objective optimization. If a multi-objective optimization
form provides a necessary condition, for a Pareto optimization point, it must be the solution
of the multi-objective optimization form. If a multi-objective optimization form provides a
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sufficient condition, its solution is Pareto optimization, but a certain Pareto optimization
point may not be obtained.

Ma et al. established a robust environmental economic scheduling model based on
robust optimization, aiming at the multi-microgrid scheduling problem while considering
its economy and environment, the power interaction between multiple microgrids and the
uncertainty of renewable energy and load forecasting [75]. The Latin hypercube sampling
method and the average effective objective function were used to transform the model, and
a multi-objective bacterial colony chemotaxis algorithm was used to obtain Pareto optimal
solutions of four scenarios.

3.2. Decision Variable

In the research of microgrid optimization, the optimization decision variables indicate
the scheme and measures to optimize the objectives, which are made by decision makers.

Zhao et al. established a new multi-criteria decision-making model; constructed an
evaluation index system including 18 sub-criteria from the perspectives of economy, power
supply reliability and environmental protection; and calculated the sub-criteria weights
combined with the subjective weights of best worst method (BWM) judgment and the
target weights calculated using the entropy weighting method [76].

Gu et al. proposed several widely accepted evaluation methods and indicators for
CCHP microgrid planning, including energy utilization factor (EUF), artificial thermal effi-
ciency (ATE), fuel saving ratio (FESR) and exergy efficiency (exeff) [77]. A CCHP microgrid
has great economic benefits, environmental benefits and energy efficiency. Reasonable
planning should include the following: adapting to the daily and seasonal load charac-
teristics of multiple loads, smoothing the fluctuations of renewable energy output power,
multi-energy balancing and improving the overall system efficiency.

Based on the synergy of a decision analysis and optimization model, Kumar et al. pro-
posed a comprehensive general method framework for designing reliable, robust and
economic microgrid systems based on the local available resources of rural communi-
ties in developing countries, considering the different characteristics of society, economy,
technology and the environment [78]. A decision analysis considering various standards
(technology, society, economy and environment) was carried out to select appropriate
alternative energy sources to design a microgrid considering multiple scenarios.

3.3. Constraints

In the research on microgrid optimization, the constraints are different for differ-
ent optimization decisions. In order to improve the reliability of a distribution system,
Pang et al. proposed a novel concept of designing and operating a flexible microgrid [79].
Compared with the current method, the proposed flexible microgrid boundary can be
expanded or narrowed according to the level of power generation and demand, techni-
cal constraints and customer comfort. Khalid et al. proposed an optimization model for
microgrid scheduling and operation that can achieve a large number of constraints, such
as power exchange with generation units, power balance with the main grid, etc. [80]. In
order to improve the robustness of optimal scheduling of a Concentrating Solar Power and
Combined Heat and Power Microgrid (CSP-CHPMG) with light in uncertain environments,
Peng et al. constructed a robust economic multi-objective optimal scheduling model for the
CSP-CHPMG based on the constraints on the balance between electric power and thermal
power as well as the output of the CSP power station [81].

From the perspective of economy or environmental protection, microgrid optimization
research is often inseparable from the optimization of operation cost. Considering the
minimum cost operation of a microgrid, the constraints mainly include power balance
constraints, generation capacity constraints, transmission capacity constraints between a
microgrid and a large grid, location constraints of the microgrid energy storage system, etc.



Energies 2021, 14, 2842 13 of 39

3.3.1. Power Balance Constraints

Considering the minimum operation cost of a microgrid, it is necessary to calculate
the power balance [82]. The power balance constraints can be expressed as follows:

N

∑
i = 1

Pgen,j + Pbuy(t)− Psell(t) = Pload (18)

where Pgen,j is the generating power of generating units (PV, fan and energy storage) in any
period of time; Pload is the required power of load.

3.3.2. Generation Capacity Constraints

In order to operate stably and reliably, each distributed generation unit in a microgrid
must meet its own generation output constraints. Generation output constraints can be
expressed as follows:

Pmin
DGi ≤ PDGi ≤ Pmax

DGi , (i = 1, 2, . . . , N) (19)

where Pmin
DGi and Pmax

DGi are the minimum and maximum generating output of the ith gener-
ating unit, respectively.

3.3.3. Transmission Capacity Constraints between Microgrid and Large Grid

With the increasing construction of microgrids, the importance of cooperation be-
tween microgrids and large grids is increasingly prominent. The microgrid can operate
in conjunction with large grids or operate independently when needed. Transmission
capacity constraints can be expressed as follows:

Pmin
Line ≤ PLine ≤ Pmax

Line (20)

where Pmin
Line and Pmax

Line are the minimum and maximum transmission capacities, respectively.

3.3.4. Location Constraints of Microgrid Energy Storage System

When selecting and optimizing the location and capacity of an energy storage sys-
tem, the allowable range of voltage deviation and power balance of the system should
be considered.

(1) Allowable range of voltage deviation

Vmin ≤ Vik ≤ Vmax (21)

where Vmin and Vmax are the lower limit and upper limit of node voltage, respectively; Vik
is the voltage value of node i at the kth moment.

(2) Energy storage unit power constraint

Pstore_min ≤ Pstore ≤ Pstore_max (22)

where Pstore_min is the minimum power of the energy storage unit; Pstore_max is the maximum
power of the energy storage unit.

(3) Energy balance constraints of energy storage unit

∫ T

0
Pstore(i) · dt = 0 (23)

(4) Power constraint of system

P =
Nbus

∑
i = 1

Pload,i −
NDG

∑
j = 1

PDG,j −
Nstore

∑
k = 1

Pstore, k (24)
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where P is the injected power of the grid; Pload,j is the load power of the first node; PDG,j is
the output of the jth distributed generator; NDG is the number of connected DGs; Pstore,k is
the output of the kth energy storage unit, and it is positive when the kth energy storage
unit is selected to provide power.

4. Optimization Algorithms

Microgrid optimization is one of the most important and challenging goals in the
research field. In order to reduce energy consumption and improve economy and reliability,
many studies have been conducted to determine the optimal configuration of microgrids.
Several studies in the literature show that the optimization of a microgrid can be solved
by various algorithms. The most frequently used algorithm type is a genetic algorithm
(GA) [83–95]. For example, aiming at selecting the optimal size of microgrid components,
Li et al. developed a GA to find the minimum microgrid cost [86]. Considering the mi-
crogrid life-cycle cost, Bin et al. [83] established an optimization configuration model of a
hybrid AC/DC microgrid and applied the elitist non-dominated sorting genetic algorithm
(NSGA-II) to solve the model. Furthermore, many researchers also used simulated anneal-
ing (SA) to solve the problem [87–94]. Aiswariya et al. used an SA optimization tool to solve
the optimization problem of battery scheduling for a residential microgrid [87]. The PSO al-
gorithm is also a widely used algorithm [85–100]. Zhang et al. developed an efficient search
algorithm combining the PSO algorithm and the SA algorithm to solve a novel operation
optimization model for a stand-alone microgrid [95]. Moreover, due to the fuzzy environ-
ment, many decisions need to be made using fuzzy decision optimization [76,101–104]. For
example, Zhao et al. proposed an integrated fuzzy-MCDM (multi-criteria decision making)
model to assess a battery energy storage system (BESS) [76]. Considering the robustness of
the microgrid, researchers have also used robust methods to improve the flexibility and
adaptability of microgrids [105–107]. For instance, Ebrahimi presented a decision-driven,
stochastic, adaptive–robust microgrid operation optimization model [105]. In addition,
there are some other methods to solve the problem, such as grey wolf optimization (GWO),
moth flame optimization, the ant colony optimization algorithm and the grey cumulative
prospect theory [108–111], etc. For example, Sharmistha et al. used GWO, a recently de-
veloped optimization technique, to minimize the energy cost of a microgrid and better
utilize renewable energy sources [108]. Wang et al. built an operation optimization model
and optimized it using the moth flame optimization algorithm to obtain the minimum
operation cost [109]. In order to select the optimum planning program, Zhao et al. proposed
a novel MCDM model combining the best worst method, which is applicable and feasible
in the process of evaluation and selection [110].

In general, there are some specific methods to solve optimization problems: GA and
improved algorithm, SA, PSO, fuzzy algorithm, robust methods and other algorithms
(GWO, moth flame optimization, etc.). Their features and relative studies are summarized
as Table 2.

The applications of these algorithms in the operation optimization of microgrids are
presented below.

As a kind of non-deterministic quasi-natural algorithm, GA provide an effective way
to optimize complex systems. According to previous investigations, many researchers have
used a GA to solve the optimization problem in the field of microgrids.

Considering the interests of multiple stakeholders, Zhao et al. proposed a dynamic
economic dispatch model of a microgrid and used a variant of NSGA-II to deal with the
model [85]. The model in their study considers the overall economic optimization of
multi-objective and multi-interest groups within the microgrid and, finally, can help to
improve the power marketing economy and intelligent service.
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Table 2. The features and related studies of the most used algorithms.

Algorithms Features Related Studies

GA and improved GA
(including SPGA,
NSGA-II, etc.)

a. Performs fast and random search
b. Inspired by evaluation function and the

search process is simple
c. Can be extended and is easy to combine

with other algorithms
d. The programming process is complex and

the speed is slow

Li, X.; Li, Z. [82], Asarzadeh, A. [84], Zhao, F.;
Yuan, J.; Wang, N. [85], Li, B.; Roche, R.; Miraoui,
A. [86]

SA

a. The calculation process is simple
b. Has strong commonality
c. Can be used to solve complex nonlinear

optimization problems
d. Slow convergence; long running time;

parameter sensitivity

Aiswariya, L.; Ahamed, T.P.; Sheik, M.S. [87],
Abdelsamad, A.; Lubkeman, D. [88], Younesi, A.;
Shayeghi, H.; Safari, A.; Siano, P. [89], Nikmehr,
N.; Ravadanegh, S. N. [91]

PSO (including
improved PSO)

a. Fast search
b. The algorithm is memorized and has

fewer parameters to adjust
c. Low convergence accuracy and hard to

converge
d. Cannot effectively solve the discrete and

combinatorial optimization problems

Zhang, G.; Wang, W.; Du, J.; Liu, H. [95], Cheng,
S.; Su, G.C.; Zhao, L.L.; Huang, T.L. [96],
Radosavljević, J.; Jevtić, M.; Klimenta, D. [97],
Pisei, S.; Choi, J.Y.; Lee, W.P.; Won, D.J. [98]

Fuzzy algorithms

a. Can make a more scientific, reasonable
evaluation close to the actual quantitative
evaluation

b. The calculation is complicated, and the
determination of index weight vector is
subjective

Cao, B.; Dong, W.; Lv, Z.; Gu, Y.; Singh, S.;
Kumar, P. [101], Fossati, J.P.; Galarza, A.;
Martín-Villate, A.; Echeverría, J.M.; Fontán,
L. [102], Chen, J.; Zhang, W.; Li, J.; Zhang, W.;
Liu, Y.; Zhao, B.; Zhang, Y. [103].

Robust method

a. The uncertainty of the model is
considered in advance

b. When the parameters change in a given
set of uncertainties, the established
optimization model can adapt to the
influence of small changes in parameters

Ebrahimi, M.R.; Amjady, N. [105], Xiang, Y.; Liu,
J.; Liu, Y. [106], Yu, N.; Kang, J.S.; Chang, C.C.;
Lee, T.Y.; Lee, D.Y. [107]

Other algorithms (GWO, moth flame optimization, etc.)

Sharma, S.; Battacharjee, S.; Bhattacharya,
A. [108], Wang, Y.; Li, F.; Yu, H.; Wang, Y.; Qi, C.;
Yang, J.; Song, F. [109], Zhao, H.; Guo, S.; Zhao,
H. [110], Green, C.; Garimella, S. [111]

4.1. Genetic Algorithms
4.1.1. Dynamic Optimization Strategy of Microgrids

The microgrid system consisted of two renewable energy sources: PV power and
wind power. The PV power generation Ps(t) and the output power of the wind turbine Pw
can be shown as Equations (25) and (26).

Ps(t) = φ(Vm(β), Im(β)) (25)

Pw =


0

av + b
Prate

v ≤ vinorv ≥ vout
vin < v ≤ vrate
vrate < v < vout

(26)
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The variable β in Equation (25) is the tilt angle. In Equation (26), the variable v is the
wind speed; vin, vout and vrate are cut-in, cut-out and rated wind speeds, respectively; Prate
represents the rated power of the wind turbine; a and b are constants.

The battery used is of great significance in improving the quality of a microgrid’s
power supply. The SOC of the battery St is determined by Equation (27):

St = S0 +

T
∑

t = 1
Pcha,tXt∆t−

T
∑

t = 1
Pdis,tYt∆t

Eb
(27)

where Pcha,t and Pdis,t imply the charging and discharging power of the battery in t periods;
Xt and Yt are the charging and discharging power of the battery, respectively; T and Eb
mean the total and the capacity of the battery, respectively.

In the study, Cw and Cv are the prices of wind power and PV power, respectively, after
being sold. Cwn and Cvn represent the cost of wind power and PV power, and CS and Cb are
the selling price and purchasing price of a microgrid. Then, the unit price of load power
supply can be shown as follows:

Cw = Cwn − Cs + Cb = Cwn + (Cb − Cs) (28)

Cv = Cvn − Cs + Cb = Cvn + (Cb − Cs) (29)

4.1.2. Microgrid Economic Optimization Model and Objective Functions

The study considers users, power grids, renewable energy and batteries, and the
objective of the study was to ensure that the interest of each subject could be guaranteed and
to optimize the comprehensive interests. Thus, there were three total objective functions:
(1) maximize the benefits of the grid; (2) minimize the cost of generating electricity from
renewable sources; (3) minimize the average unit price of electricity purchased by users.
The functions can be described as follows:

C1 = max
T

∑
t = 1

Ct
b ·max(Pt

G, 0) (30)

C2 = min
T

∑
t = 1

Cw × Pt
w + Cv × Pt

v (31)

C3 = min
1

T
∑

t = 1
Pt

L

T

∑
t = 1

Ct (32)

In Equation (30), Ct
b represents the cost of purchasing electricity in the period t, and

the transmission quantity between the power grid and microgrid is represented as Pt
G.Ct

r in
Equation (31) is the generation cost of renewable energy in the period t, and the outputs of
the wind turbine and PV in period t are shown as Pt

w and Pt
v, respectively. In Formula (32),

the power supply cost in period t is Ct = Ct
r + Ct

bu + Ct
se + Ct

ec.

4.1.3. Constraints

The constraints consist of power balance constraints, renewable energy power con-
straints and battery charge and discharge constraints, which can be shown as follows:

Pt
G = Pt

L − Pt
W − Pt

V − Pt
E (33)

where PE indicates the output power of the battery.{
Pw ≤ Pwt
Pv ≤ Pvt

(34)
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St
min ≤ St ≤ St

max (35)

where St
min and St

max represent the upper and lower limits of the SOC in period t.
In addition, some constraints of the battery should be considered, such as the power

of charge/discharge and the number of charges and discharges, etc.

4.1.4. Model Solving

The study presented an improved multi-objective optimization algorithm based on
NSGA-II. Different from traditional GAs, the algorithm adds the concepts of ordinal value,
non-dominated sorting and crowding distance; carries out population evolution and,
finally, obtains the optimal solution. Based on the three optimization objectives presented
earlier, the study flow chart is shown in Figure 3.
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offspring-generation population, respectively.
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4.2. Simulated Annealing

An SA algorithm is a random optimization algorithm based on a Monte Carlo it-
erative solution strategy. It is based on the similarity between the annealing process of
solid matter in physics and the general combinatorial optimization problem. Due to the
characteristics of the algorithm, a GA may not be able to obtain the optimal solution,
but rather can only obtain an approximate optimal solution, while an SA algorithm can
mitigate the shortcomings of the GA and obtain the best solution. Many researchers have
used SA algorithms to find optimized solutions in the field of microgrids. For instance,
in order to reduce energy consumption and further reduce the energy costs for power
users, Aiswariya et al. used an SA optimization tool to optimize the battery scheduling for
residential microgrid application [87].

4.2.1. Microgrid Battery Scheduling and Objective Functions

Unlike the study in Section 4.1, a BESS was also included in the microgrid system
besides a PV system and a wind power system in this study. Two typical houses were
considered as loads. It was assumed that the PV system capacity was 5 kWp and the
maximum capacity of the wind power system was 15 kWp. In addition, it was considered
to be connected with a battery system with a maximum energy capacity of 100 kWh and an
inverter with a maximum power of 10 kW.

The goal of the study was to reduce the energy cost related to the microgrid by finding
the optimized amount of energy to buy/sell from/to the grid. Assuming that the total
time considered is 24 h, with 1 h intervals, the authors used an SA algorithm to solve the
problem. To minimize the total cost, the objective function is formulated in Equation (36) as

min( f1) =
24

∑
i = 1

((H1(i) + H2(i)− PW(i)− PS(i) + X(i))∆t)C(i) (36)

with the constraint of
−Pbmax ≤ x(i) ≤ −Pbmax

Ebmin ≤ Eb(i) ≤ Ebmax
H1(i) + H2(i) + x(i) = Pw(i) + Ps(i) + G(i)

(37)

In the equation, H1(i) and H2(i) represent the power demanded by the two homes,
A and B, during interval “i”; PS(i), PW(i) and X(i) represent the power being delivered
by the PV system, wind power system and the battery during interval “i”, respectively;
∆t is the time slot; C(i) represents the electricity tariff based on a flat rate and time-of-use
pricing (ToUP) in the area of Australia’s capital.

4.2.2. Microgrid System Modeling

The power output of a PV panel PS is related to the size and efficiency of the panel. It
can be shown as Equation (38).

PS = ηS × A× 0.9× SI × (1 + γ(t0 − 25) (38)

where ηS is the overall efficiency of the PV panel; t0 and γ represent the outdoor air
temperature and temperature coefficient of the maximum power output, respectively. The
wind power output Pw is similar in Equation (26), depending on the rated power of the
turbine and wind speed.

When the renewable power generation cannot meet the load demand, the battery
energy storage is used to provide power; otherwise, the battery charges when there is
excess power remaining.

Regarding the pricing scheme, the authors used a flat tariff structure and ToUP. In the
pricing scheme, the total hours are divided into different periods with different prices, and
these periods are usually divided into peak hours, off-peak hours and trough hours.
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4.2.3. SA Algorithm for Battery Scheduling

The flow chart for the simulated algorithm in this study is shown in Figure 4.

Energies 2021, 14, x FOR PEER REVIEW 20 of 40 
 

 

4.2.3. SA Algorithm for Battery Scheduling 
The flow chart for the simulated algorithm in this study is shown in Figure 4. 

Start

Initialize  the temperature 
T(A high value)

Set the iteration counter k and kmax

Input Ebmax, Ebmin, i ,Δt, PS, PW, 
H1, H2 and C

f(xnew )< f(x)

P = exp([f(x)-f(xnew)]/T)

Generate a random number R(0~1)

x = xnew, f(x) = f(xnew)

xbest = xnew, fbest = f(xnew)

no

yes

k = k+1

Randomly generate a feasible initial battery 
charging/discharging pattern x

Evaluate the cost function f(x) 
according equation(9)

fbest = f(x), xbest = x

Generate randomly, a feasible 
neighbor of x: xnew

Calculate f(xnew) using 
equation(9)

R<P

f(xnew)<fbest

Decrease T

yes

no

yesno

Print optimum solutions fbest xbest

End
 

Figure 4. The flow chart for battery scheduling based on an SA algorithm. Figure 4. The flow chart for battery scheduling based on an SA algorithm.



Energies 2021, 14, 2842 20 of 39

In the chart, Ebmax and Ebmin denote the maximum energy of the battery and the
minimum energy of the battery during interval “i”, respectively.

4.3. Particle Swarm Optimization

The PSO algorithm is a random searching algorithm based on group cooperation
developed by simulating bird flock foraging. Similar to GAs, it is also an iterative optimiza-
tion algorithm. PSO employs only a single simple velocity updating process and does not
need to adjust many parameters. It is more easily executed compared to a GA. Thus, many
studies have used PSO to solve the problem of microgrid optimization.

Karthikeyan et al. (2016) [100] proposed the concept of thermochemical storage (TCS)
and an ice storage air conditioner to meet users’ heating and cooling demands under severe
weather conditions. In smart TCS, the heat and fuel cell will be effectively stored. The
objective of the study was to minimize the cost with the constraint of pollutant emissions.

4.3.1. Optimization Model

The microgrid consisted of a main grid that is connected through an inverter and
converter to a DC microgrid. The loads were divided into three kinds: heating load, cooling
load and other electrical loads. The power system consisted of a PV system, a wind turbine,
a fuel cell, a microturbine, a diesel generator, TCS, an ice storage air conditioner and a
battery storage. Of these, the PV cell and wind turbine are powered by nature, and the
fuel cell, microturbine and diesel generator need fuel input. The fuel of the TCS comes
from a collector and fuel cell. The ice storage air conditioner consumes only during valley
periods of the main grid. The conditions of battery charging/discharging are the same as
the situation described in Section 4.2. Instead of electric power, the TCS and ice storage air
conditioner outputs are in the form of heat and cooling, respectively.

4.3.2. Objective Function

Considering the microgrid economic dispatch, the objective of the study was to meet
the total demand with less emissions, reduce operation costs and satisfy the constraint
related to the problem at the same time. Thus, there were three objectives in total: (1)
minimize the total operation cost; (2) minimize the total emissions of pollutants; (3) ensure
that the demand is met according to constraints.

(1) Operation cost

If the demand of local consumers is not satisfied, then the main grid will supply the
extra power. Therefore, a certain cost has to be paid to purchase the power. In addition, if
the power generation in the microgrid is adequate, the power will be sold to the main grid.
Then, the cost function can be shown as follows:

CF(P) =
N

∑
i = 1

(CiFi(Pi) + OMi(Pi) + DCPEi − IPSEi) (39)

where CF(P) indicates the operating costs, Ci is the fuel cost of generator i, OMi represents
the operating and maintenance cost of the ith generating unit, DCPEi indicates the pur-
chased electricity cost of the ith unit and IPSEi indicates the income of the microgrid from
selling the extra power of the ith unit.

(2) Emission level

To avoid ozone depletion, one objective is to minimize pollutant emissions. The total
emission of pollutants is given by the following:

E(P) =
N

∑
i = 1

10−2(αi + βiPi + γiPi
2) + ζi exp(λiPi) (40)
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In the Equation (40), αi, βi, γi, ζi and λi are non-negative coefficients of the ith genera-
tor’s emission characteristic.

(3) Thermochemical heat storage

In TCS, the heat energy is obtained from solar collectors. The TCS is based on thermally
reversible reactions, the power delivered from which can be shown as follows:

p = cp Av(TL − T0) = CPρAv(TR − T0)
[
1− exp

(
−hSL/cpρAv

)]
(41)

In Equation (41), h represents the heat transfer coefficient; L, S and A indicate the
length, circumference and cross-section of the heat exchange tube, respectively; V is the
flow speed of the heat transfer fluid; cp is the specific heat; TR indicates the uniform reactor
temperature.

(4) Ice storage air conditioner

The ice air conditioner has three different modes: (1) air conditioning mode; (2) ice
making mode; (3) ice melting mode. Ice melting mode usually does not operate in valley
periods. The performance models of the air conditioning mode and ice making mode can
be shown as Formulas (42) and (43).

Pc(T) =
Pg(T)

0.001226Pg(T) + 1.91
(42)

Pctm(T) =
Pm(T)

0.001226Pim(T) + 1.91
(43)

In Equation (42), Pc(T) and Pg(T) denote the power consumption of the ice chiller
and the cooling power generated from the ice chiller at time T, respectively.

In Equation (43), Pctm(T) represents the power consumption of the ice chiller at time
T in the mode of ice making and Ptm(T) is the cooling power at time T.

(5) Battery storage

The SOC of a battery plays a vital role in the life cycle of the battery. To increase the
life cycle of a battery, the constraint function can be formulated as follows:

SOC(T + 1) = SOC(T)−
(

ηbc Ibc(T) + 1
ηbd

Ibd(T)
)

Pb(T)∆t/Cb

Ibc(T)Pcmin + Ibd(T)Pdmin ≤ Pb(T) ≤ Ibc(T)Pcmax + Ibd(T)Pdmax
Ibc(T) + Ibd(T) ∈ (0, 1)

SOCmin ≤ SOC(T + 1) ≤ SOCmax

(44)

In Equation (44), ηbc and ηbd represent the charging and discharging efficiency of the
battery, respectively; Ibc and Ibd indicate the charging and discharging current of the battery,
respectively.

4.3.3. Modeling of PV and Wind Power Systems

A PV system can be influenced by various conditions, such as weather conditions and
the temperature of the module. It is assumed that Sstc = 1000 W/m2 and Tstc = 25 ◦C .
Generally, the current I from the PV array under the reference can be given as follows:

I = Isc

[
1− C1

(
e

V
C2VOC − 1

)]
C1 =

(
1− Im

ISC

)
e−

Vm
C2VOC

C2 =
(

Vm
VOC
− 1
)

/In
(

1− Im
ISC

) (45)

In (45), Isc is the short-circuit current; V and Vm are the voltage at a given time and the
voltage at Pmax, respectively; Im is the current at Pmax.
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The wind power output Pw is similar to those in Sections 4.1 and 4.2, depending on
the rated power of the turbine and wind speed. Additionally, the speed is determined by
two parameters and its probability density function is shown as follows:

f (v) =
k
c

(v
c

)k−1
e(−

v
c ) (46)

where k and c are the shape parameter and the scale parameter, respectively; and v is the
wind speed.

4.3.4. Particle Swarm Optimization

There are three steps required to execute PSO:
Step 1: Initiate the particles. Set the total number of particles in the process. The initial

velocity of the particles is zero. The value of the initial particles is set as Pbesti and the best
value with minimum fitness is stored as Gbest.

Step 2: Modification of velocity and position. For the next iteration t+1, the particles
move randomly within the search range and append a new velocity to each of the new
positions. Then, compute the fitness value f tt+1i of each particle.

Step 3: Revision of Pbest and Gbest values. Compare the value of f tt+1i and f tti, then
repeat and iterate or obtain the optimal value according to the compared results.

The flow chart of the algorithm is given in Figure 5.
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4.4. Fuzzy Decision

Fuzzy decision making is a mathematical theory used under fuzzy environments. It
can be used in a wide range of applications. Thus, many researchers also use the method of
fuzzy decision making to optimize the configuration problem in microgrids. For example,
Cao et al. proposed an improved, two-archive, many-objective, evolutionary algorithm
(TA-MaEA) based on fuzzy decision making to solve the optimization problem for a hybrid
microgrid system (HMS) [101]. The objective of the study was to reduce the cost, lower the
probability of the loss of power supply and reduce pollutant emissions.
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4.4.1. Objective Functions

Similar to the former study, the HMS consisted of wind turbines, a PV system and a
diesel generator and the main grid. Here, the extra power will be stored in a battery when
electricity is produced by the wind turbines and photovoltaics. If the power generated by
the wind turbines and photovoltaics cannot meet the demand, the stored power will be
utilized.

There were four objectives for optimization:

(1) Costs

The operating costs include the costs of generating power from wind turbines and PV
panels, the costs of battery charging/discharging, the costs of the diesel generator and the
costs of the power exchange between the microgrid and the main grid. The total cost C can
be given as follows:

C =
T

∑
t = 1

(Cg(t) + Cb(t) + Pg(t)× cg + Pf (t)× c f ) (47)

where cg and c f are the costs of the electricity purchased from the main grid and the
electricity generation costs of the wind turbines and PV panels.

Particularly,
Cg = Aw × Pw(t)× cw + Apv × Ppv(t)× cpv (48)

Cb = Pb_dc(t)× cdc − Pb_ch(t)× cch (49)

Pg(t) = λ× (Pload(t)− Pall(t)− Pb(t)) (50)

Pf (t) = 0.246× Pdg(t) + 0.08415× Pf _r (51)

In Equation (48), Pw(t) and Pv(t) represent the electricity output by wind turbines and
PV panels per unit of time, respectively; cw and cpv indicate the electricity generation costs
of wind turbines and PV panels. In Equation (49), Pb_dc(t) and Pb_ch(t) are the electricity
discharged and charged by the battery per unit of time; cdc and cch are the electricity
generation cost of the diesel generator and the profit from providing additional power to
the energy storage system. In Equation (50), Pload(t) indicates the electricity amount from
load demand and Pb(t) is the current electricity amount in the battery. In Equation (51),
Pf _r represents the diesel generator’s rated power.

(2) Reliability

The situation LPSP can be defined as a situation in which the amount of electricity
produced and purchased cannot satisfy the demand, which can be shown as follows:

LPSP =

T
∑

t = 1
(Pload(t)− Pall(t) + Pb_min + Pdg(t)

T
∑

t = 1
Pload(t)

(52)

In the above equation, Pb_min represents the minimum permitted electricity remaining
in the battery.

(3) Pollutant emissions

The pollutant emissions, PE, can be simulated by linking the emissions to the amount
of electricity generated by the generator set. The function can be given as follows:

PE = α + β×
T

∑
t = 1

Pdg(t) + γ×
(

T

∑
t = 1

Pdg(t)

)2

(53)

where α, β and γ represent the emission characteristics of the microgrid.
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(4) Power balance

When the microgrid is connected to the main grid, improving the self-production and
self-sale capacity of the HMS in each is conducive to the effective operation of the system.
The related function is given as follows:

PB =
1
T

T

∑
t = 1

Pall(t)− Pload(t))
2

(54)

4.4.2. Constraints

According to the actual situation, the power supply should have a certain initial range.
The output power of the wind turbines can be expressed as follows:

Pw(t) =


0,

φ×V3(t)− ϕ× Pw_r,
Pw_r

V(t) > Vcut_out
Vcut_in < V(t) < Vrated
Vrated < V(t) < Vcut_out

(55)

where V(t) indicates the wind speed in the current time interval and Pw_r is the standard
wind power; Vrated is the rated wind speed; Vcut_in and Vcut_out are the start speed and stop
speed of the wind turbines, respectively.

The output power of the PV panels can be expressed as follows:

Ppv(t) = Ppv_r ×
G(t)
Gref

[
1 + Kt(T(t) + (0.0256× G(t)))− Tre f

]
(56)

where Ppv_r represents the rated PV power and G(t) is the horizontal irradiance. T(t)
indicates the ambient temperature. In addition, Gref = 1 kW/m2 and Kt = 3.7× 10−3.

The battery status can be given as follows:

Pb_ch(t) = Pall(t)− Pload(t) (57)

Pb_dc(t) = (Pload(t)− Pall(t)) ∨ (Pb(t)− Pb_min) (58)

Additionally, the function of battery exchange can be formulated as follows:

Pb(t + 1) = (Pb(t) + Pb_ch(t)) ∨ (Pb(t)− Pb_dc(t)) (59)

Finally, the loading area of the wind power system and PV panels and the storage
capacity of the battery should be within a certain range, which can be shown as follows:

Aw_min < Aw < Aw_max (60)

Apv_min < Apv < Apv_max (61)

pb_min < Pb(t) < Pb_cap < Pb_max (62)

4.4.3. Fuzzy Decision-Making Method

Considering the choice of solutions, the authors proposed an adaptive fuzzy decision-
making method. The Pareto solution can be given as follows:

Xij =


X11 X12 · · · X1M
X21 X22 · · · X2M

...
...

. . .
...

XN1 XN2 · · · XNM

 (63)
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Step 1: Normalize Xij before performing the operation by using the principle of
minimum fuzzy membership. Then, the degree of membership of the ith decision variable
to the jth objective rij can be obtained, which can be shown as follows:

rij =


1 Xij ≤ minXi

maxXi−Xij
maxXi−minXi

minXi ≤ Xij ≤ maxXi

0 Xij > maxXi

(64)

Step 2: Define the superior decision variables gi and inferior decision variables bi.
Step 3: Normalize the mean of each objective value to obtain the weight vector. The

weight vector for each objective is given as follows:

Wi =

N
∑

j = 1
fi(xj)

N
(65)

wi =
Wi

M
∑

i = 1
Wi

(66)

Step 4: The superior/inferior decision-making distance, which is the distance between
a decision-making result rj and a superior/inferior decision-making result, can be obtained
as follows:

djc =

√√√√ M

∑
i = 1

(
wi(gi − rij)

2
)

(67)

djb =

√√√√ M

∑
i = 1

(
wi(rij − bi)

2
)

(68)

Step 5: Obtain the distance weights between a decision variable and each supe-
rior/inferior decision variable as follows:

Djc = µjdjc (69)

Djb = (1− µj)djb (70)

Step 6: Obtain the degree of membership of each solution. The function is given as
follows:

minF(µj) = min
{

D2
jc + D2

jb

}
(71)

Step 7: The electric solution for the decision maker can be obtained as follows:

µj =
d2

jb

d2
jb + d2

jc
(72)

4.5. Robust Method

Optimizing the robustness of microgrids can increase the flexibility and independence
of power generation and reduce the occurrence of natural disasters. Hence, robust opti-
mization of microgrid planning plays a very important role in the field of microgrids and
some studies have been conducted on this topic.

To reduce the variability among scenario costs caused by uncertainties, Yu et al. devel-
oped a multi-objective optimization model for robust microgrid planning, which is based
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on an economic robustness measure [107]. The objective of the study was to reduce the cost
and lower the pollutant emissions.

4.5.1. Robust Economic Optimization Model for Microgrid Planning

The proposed model in Nans’ study consists of an internal combustion engine (ICE),
fuel cell, a gas turbine and a gas engine. These technologies are distributed energy resources
(DERs), which can provide power and heat locally with fuel resources. Most of the DERs
are renewable energy resources with distributed energy storages (DESs). Additionally,
wind turbines and PV panels are also included in the study.

The multi-objective function based on robust optimization is given as follows:

f = uE × L + uWC × (1− L) 0 ≤ L ≤ 1 (73)

where uE = ∑
s

ps · cs, and uWC ≥ cs.

4.5.2. Constraints

(1) Economic balance

The overall annual cost of different scenarios is the sum of the annual investment
cost, operation and maintenance cost, fuel cost, carbon tax and power cost from the utility
grid, subtracting the revenue from selling power. The overall cost cs can be formulated
as follows:

cs = cinvs + coms + c f uels + cctaxs + cbuyns − rsals (74)

where cinvs, coms, cfuels, cbuyns, rsals and cctaxs represent the capital cost, the maintenance
cost, the fuel cost, the cost when purchasing power from the utility grid, the revenue when
the microgrid sells excess power to the utility grid and the tax caused by the excess carbon
emission, respectively.

The parts of the polynomial (74) can be given as Equations (75)–(80):

cinvs = ∑
i

capi · FCi ·
(

Ir/
(

1−
(

1/(1 + Ir)LTi
)))

+

∑
q

capq · FCSq ·
(

Ir/
(

1−
(

1/(1 + Ir)QTq
))) (75)

coms = ∑
i

capi ·OMFi + ∑
i,m

alloti,m,s ·OMVi (76)

c f uels = ∑
i,m, f

(
f deri, f ,m,s + f boi f ,m,s

)
· FPf ,s (77)

cbuyns = ∑
m

ebuynm,s · EPm,s (78)

rsals = ∑
i,m

esali,m,s · SPs (79)

cctaxs =

{
(dms − CLIM) · CTAXs dms ≥ CLIM
0 dms ≤ CLIM

(80)

(2) Load balance

The overall power load should be subjected to DERs, batteries and the utility grid,
which can be formulated as follows:

ELm,s · T ≤∑
i

ederi,m,s + discbatt,m,s −∑
i

savei,batt,m,s + ebuynm,s −∑
i

esali,m,s (81)

ELm,s · T · ϕs ≤∑
i

ederi,m,s + discbatt,m,s −∑
i

savei,batt,m,s (82)
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HLm,s · T ≤∑
i

hderi,m,s + discthermo,m,s −∑
i

savei,thermo,m,s + hboim,s (83)

HLm,s · T · ϕs ≤∑
i

hderi,m,s + discthermo,m,s −∑
i

savei,thermo,m,s (84)

Equation (82) indicates that the power generation of the microgrid should meet at
least a fraction, ϕs. Equations (83) and (84) indicate the demand and supply balance of
heat, respectively.

(3) Energy allocation for DER

The overall power allocated by the DER consists of three parts: (1) the power utilized
for satisfying the load; (2) the excess power stored in the batteries and (3) the excess power
sold to the utility grid. Then, the function can be given as follows:

alloti,m,s = ederi,m,s + savei,batt,m,s + easli,m,s (85)

Then, the constraint is shown as follows:

η · ELm,s · T · yi,m,s ≤ alloti,m,s ≤ yi,m,s · A (86)

The constraint of wind turbines and PV panels is similar to that in the former stud-
ies, mainly being subjected to the speed of the wind and the area of the solar panels,
irradiation, etc.

Due to the budget and other regulations, the installation capacity of each DER can be
subjected to the following equation:

alloti,m,s/T ≤ capi ≤ MAXEi (87)

(4) Energy storage constraints

The discharged energy can be formulated as Equation (88) when a DES is selected to
store the power or heat.

discq,m,s = εq · loseq,m,s (88)

The DES inventory balance is represented on a monthly basis, and it can be calculated
by the following:

storeq,m,s =

{
1/2 · capsq · T

ζ · storeq,m−1,s + ∑
i

savei,q,m−1,s −∑
i

discq,m−1,s
m ∈ {Jan}
m /∈ {Jan} (89)

It is assumed that January is the starting time point with half of the storage capacity.
The objective is to estimate the rough design specification. Hence, the capacity of the DES
is represented on a monthly basis.

The constraint of the total discharged energy can be shown as follows:

loseq,m,s ≤ storeq,m,s ≤ capsq · T ≤ MAXSq (90)

where storeq,m,s is the DES inventory and capsq is the monthly capacity of the DES. MAXSq
represents the designed upper bound.

ysavesq,m,s + ydiscq,m,s ≤ 1 (91)

ysaveq,m,s ·MINSq ≤∑
i

savei,q,m,s ≤ ysveq,m,s ·MAXSq (92)

ydiscq,m,s ·MINSq ≤ disci,q,m,s ≤ ydiscq,m,s ·MAXSq (93)

The bounds of stored and discharged energy are given as Equations (92) and (93), re-
spectively.
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4.6. Other Algorithms

In addition to the algorithms mentioned before, other algorithms for resource opti-
mization of microgrids have also been used in some studies, such as GWO, moth flame
algorithm, ant colony algorithm, etc. These algorithms also have their own advantages in
the resource optimization problem.

For example, GWO is a meta-heuristic algorithm proposed by Mirjaili [112,113]. Com-
pared with other algorithms, GWO has the advantages of solution accuracy, small compu-
tation and aversion of premature convergence. GWO can also be used to optimize energy
management in microgrids. Kutaiba et al. mentioned that BESSs have become an integral
feature of the microgrid owing to their intermittency and wide range of dynamics [102].
Thus, to ensure the optimal use of the renewable sources and to reduce conventional fuel
utilization in intelligent energy management, the authors proposed an approach to meet
the requirements in microgrids using the GWO technique.

4.6.1. Objective Function

The objective of the study was to reduce the total cost while satisfying all the con-
straints. Therefore, the total cost function of the generation sources can be determined
as follows:

MinF(X) =
T

∑
t = 1

ft + OMDG + TCPDBESb (94)

where

f t =
T

∑
t = 1

Costgrid,t + CostDG,t + CostBES,t + SUCMT,t + SUCFC,t + SDCMT,t + SDCFC,t

(95)
Additionally, each part of the polynomial can be given as follows:

Costgrid,t =


Bgrid,tPgrid,t

(1− tax)Bgrid,tPgrid,t
0

Pgrid,t > 0
Pgrid,t < 0

Pgrid,t = 0

 (96)

CostDG,t = BMT,tPMT,tµMT,t + BFC,tPFC,tµFC,t (97)

CostBES,t = BBES,tPBES,tµBES,t (98)

SUCMT,t = SUMT ×max(0, µMT,t − µMT,t−1) (99)

SUCFC,t = SUFC ×max(0, µFC,t − µFC,t−1) (100)

SDCMT,t = SDMT ×max(0, µMT,t−1 − µMT,t) (101)

SDCFC,t = SDFC ×max(0, µFC,t−1 − µFC,t) (102)

OMDG = (OMMT + OMFC + OMPV + OMWT)× T (103)

The total operation dispatch cost of the microgrid consists of the dispatch cost from
the utility grid, the costs of fuel cell distributed generators (DGs), the cost of the battery
energy storage (BES) operation, the operation and maintenance costs of the DGs, the costs
of start-up and shut-down of micro-turbines and fuel cells and the total cost of BES each
day. Then, the storage cost can be calculated as follows:

CostBES = (FCBES + MCBES)× CBES,max (104)
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4.6.2. Constraints

The operational cost is subject to the balance of the electrical load demand, the bound-
aries of DG constraints, the grid constraints, the operation reserve constraints and the BES
constraints. The constraints are listed as the following equations:

PD,t = P_MT,tu_MT,t + P_FC,tu_FC,t + P_PV,t + P_WT,t + P_BES,tu_BES,t + P_grid,t (105)
P_MT,min ≤ P_MT,t ≤ P_MT,max
P_FC,min ≤ P_FC,t ≤ P_FC,max
P_PV,min ≤ P_PV,t ≤ P_PV,max

P_WT,min ≤ P_WT,t ≤ P_WT,max

t = 1, · · · , T (106)

Pgrid, min ≤ Pgrid, t ≤ Pgrid, max t = 1, . . . , T (107)

P_MT,tu_MT,t + P_FC,tu_FC,t + P_PV,t + P_WT,t + P_BES,tu_BES,t + P_grid,t ≥ PD,t + ORt (108)

The battery constraints can be classified into charging and discharging modes. The
boundary limits of the BES power in discharging/charging modes are shown as follows:

PBES,min ≤ PBES,t ≤ PBES,max t = 1, . . . , T (109)

Additionally, the maximum power and minimum power of a BESS are shown as follows:

PBES,tmax = max
{

PBES,max,
(CBES,t − CBES,min)∆d

∆t

}
t = 1, . . . , T (110)

PBES,tmin = min
{

PBES,max,
(CBES,t − CBES,min)∆d

∆t

}
t = 1, . . . , T (111)

4.6.3. GWO Implementation for Microgrid Management Optimization

In the study, to minimize the operational cost of generation sources and fulfill the
constraints mentioned above, the authors used GWO to solve the problem by finding the
optimal values of the parameters. The flow chart of GWO can be seen in Figure 6.
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5. Literature Bibliometric

Research on microgrid optimization has always been a hot topic. Using CiteSpace,
this paper summarizes the literature published in journals indexed in the SCI related
to microgrid optimization from 1 January 2014 to 28 March 2021. The keywords used
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for searching the papers were “operation optimization” and “microgrid”. We used the
institution and country of the first author of a paper as the representative institution and
country of that paper. The publication statistics are shown below.

5.1. Methods and Data
5.1.1. Methods

For analysis, the Java program CiteSpace, developed in 2006, which is a powerful
tool for literature analysis and visualization in bibliometrics [114], was used. The software
integrates many programs to achieve text mining, network pruning, clustering and naming
and burstiness detection. The advantage of this software is that it can reflect the knowledge
structure of the literature intuitively and clearly.

5.1.2. Data

Bibliographic data on microgrid optimization were collected from the Web of Sci-
ence (WOS) covering a period of 7 years (2014−2021). There are 1394 records in WOS
(excluding reviews).

5.2. Results

The number of articles and the total citations of microgrid optimization each year are
shown in Figure 7.
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A total of 1394 papers related to microgrid optimization have been published since
2014. The number of articles shows a large increase from 2014 to 2020, from 89 to 278. It
can be seen from the number of citations that the influence of the journals has significantly
increased, and scholars are paying more and more attention to the research of microgrid
optimization, and the fastest growth was in 2017, with the growth rate of journal publica-
tions reaching 30.64%. Among them, the most cited article is “A Model Predictive Control
Approach to Microgrid Operation Optimization”, with a total of 345 citations.

5.2.1. Country and Publisher

As shown in Figure 8, the countries with the largest number of publications related to
microgrid optimization are as follows: 455 in China, 265 in the United States, 248 in Iran,
86 in India, 80 in Australia, 76 in Canada, 70 in South Korea, 70 in Italy, 67 in Denmark and
67 in England. Among them, China has the largest number of publications, which is 71.7%
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higher than that of the United States, indicating that China pays the most attention to the
field of microgrid optimization.
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As shown in Figure 9, the institutions with the largest numbers of publications related
to microgrid optimization are Islamic Azad University (71), North China Electric Power
University (60), Aalborg University (52), Nanyang Technological University and Shanghai
Jiao Tong University (34 each), Tsinghua University (29), University of Tabriz (27), Incheon
National University and Shahid Beheshti University (26 each) and Huazhong University
of Science and Technology (25). Among these institutions, four are from China, three are
from Iran, one is from Denmark, one is from Singapore and one is from the Republic of
Korea. It can be seen that developing countries have more interest in research on microgrid
optimization than developed countries do.
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5.2.2. Author

As shown in Figure 10, the number of co-occurrence nodes is 437, the number of
connections is 1940 and the network density is 0.0204. Olivares, D.E. is cited 91 times,
followed by Su, W.C., who is cited 75 times; furthermore, Parisio, A. is cited 53 times, and
Shi, W.B. is cited 48 times.
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Among them, Olivares, D.E. has the highest influence in the research field of microgrid
optimization, who mainly studies microgrid control strategy and optimization; the second
is Su, W.C., who focuses on the game theory framework of microgrid optimization; Parisio,
A.’s most influential work is on energy management for networked microgrids, and the
same is true for Shi, W.B. The research of these authors represents the mainstream trend of
microgrid optimization research.

5.2.3. Thematic Trends

Thematic trends were assessed by keyword burstiness (measured by the frequency
change of the keywords) as shown in Table 3. “Strength”, based on a statistical formula,
was used to measure the burstiness of keywords.

Table 3. These eight lines show the thematic trends in eight years repsectively. Specifically, the red
line indicates that the keywords appeared more frequently in that year, while the bule line means the
opposite situation.

Keywords Strength Beginning End 2014–2021

smart grid 7.7 2014 2016
unit commitment 4.21 2014 2017

stability 4.15 2014 2016
distributed generation 3.79 2014 2016
operation management 2.35 2014 2015

inverter 2.34 2014 2015
multiagent system 2.84 2015 2017

PSO 2.82 2015 2016
penetration 2.36 2015 2017
power flow 2.95 2016 2017

hybrid system 2.82 2017 2018
forecast 2.41 2017 2018

demand response 2.23 2017 2018
optimization 2.47 2019 2021

From 2014 to 2016, operation management, inverter, smart grid, unit commitment,
stability and distributed generation were hot keywords. This reflects the early trends
of microgrid optimization research. The research in this period was mainly related to
static scheduling. From 2015 to 2017, multiagent system, PSO and penetration were hot
keywords. In order to meet the demand of microgrids for fast economic dispatch, the
stability issues of microgrids with highly penetrated distributed generations became a
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very important research object. From 2016 to 2018, power flow, hybrid system, forecast
and demand response become hot keywords. With the wide use of renewable energy,
the flexibility of power systems has become a key factor in the transformation of power
systems. The most obvious hotspot in recent years has been optimization. This reflects the
research on microgrid operation optimization becoming mature gradually.

6. Conclusions

In this paper, we have attempted to review and summarize the developments in the
operation optimization of microgrids. We first summarized the system structure according
to the existing review papers and introduced a typical system structure, which includes
an energy generation system, an energy distribution system, an energy storage system
and energy end users. Then, we summarized the optimization framework for microgrid
operation, which contains an optimization objective, decision variables and constraints.
Next, we reviewed the algorithms used for microgrid operation optimization, where we
found that GAs and SA algorithms are the most commonly used optimization algorithms.
Finally, a literature bibliometric analysis was provided, and the results show that operation
optimization of microgrids has received increasing attention in recent years, and developing
countries show more interest in this field than developed countries do.

There are two future trends in the optimization of microgrid operation. First, it has
been noticed that some models and methods are simply theoretical formulations without
a real application focus. Therefore, much more work is needed to accelerate the progress
of engineering-oriented studies. Second, since the microgrid systems and their operating
environment are becoming increasingly complex, the optimization of microgrid operation
will be much more difficult in the future. In this case, machine learning and artificial
intelligence techniques may need to be applied to this area to deal with this problem. As
such, we can state that although the pace of development of operation optimization of
microgrids has been very quick in recent years, there is still a long way to go.
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Acronyms and Abbreviations

EIS Energy interconnection system
CCHP Combined cooling, heating and power
PGU Power generation unit
AC Absorption chiller
PV Photovoltaic
HESS Hybrid energy storage system
MEMS Microelectromechanical system
PWL Piece-wise linear
PCM Phase change material
FCPP Fuel cell power plant
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EV Electric vehicle
DC Direct current
DG Distributed generators
MES Multi-element energy storage
BWM Best worst method
EUF Energy utilization factor
ATE Artificial thermal efficiency
FESR Fuel saving ratio
CSP Concentrating solar power
GA Genetic algorithm
NSGA-II Non-dominated sorting genetic algorithm
SA Simulated annealing
PSO Particle swarm optimization
GWO Grey wolf optimization
MCDM Multi-criteria decision making
SOC State-of-charge
BESS Battery energy storage system
ToUP Time-of-use pricing
TCS Thermochemical storage
TA-MaEA Two-archive many-objective evolutionary algorithm
HMS Hybrid microgrid system
PE Pollutant emissions
ICE Internal combustion engine
DER Distributed energy resource
DES Distribute energy storage
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