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Abstract: A new hybrid meta-heuristic approach Jaya–PPS, which is the combination of the Jaya
algorithm and Powell’s Pattern Search method, is proposed in this paper to solve the optimal
power flow (OPF) problem for minimization of fuel cost, emission and real power losses and total
voltage deviation simultaneously. The recently developed Jaya algorithm has been applied for the
exploration of search space, while the excellent local search capability of the PPS (Powell’s Pattern
Search) method has been used for exploitation purposes. Integration of the local search procedure
into the classical Jaya algorithm was carried out in three different ways, which resulted in three
versions, namely, J-PPS1, J-PPS2 and J-PPS3. These three versions of the proposed hybrid Jaya–PPS
approach were developed and implemented to solve the OPF problem in the standard IEEE 30-bus
and IEEE 57-bus systems integrated with distributed generating units optimizing four objective
functions simultaneously and IEEE 118-bus system for fuel cost minimization. The obtained results of
the three versions are compared to the Dragonfly Algorithm, Grey Wolf Optimization Algorithm, Jaya
Algorithm and already published results using other methods. A comparison of the results clearly
demonstrates the superiority of the proposed J–PPS3 algorithm over different algorithms/versions
and the reported methods.

Keywords: distributed generation; hybrid Jaya–PPS algorithm; meta-heuristic; OPF; PPS

1. Introduction

With the increasing trend of penetration of renewable distributed generating (DG)
units in the present day inter-connected restructured power system, the importance of
solving optimal power flow problems has increased many folds. Optimal power flow
results are crucial for planning, economic operation and control of an existing electrical
power system, as well as for its future expansion planning. At the beginning of the 1960s,
Carpentier addressed the OPF problem as an extension of economic load dispatch for the
first time in history [1]. Since then, researchers have contributed significantly to this crucial
issue. In a given electrical network, the OPF solution is required to regulate the control
or decision variables set in the feasible region that optimizes some pre-defined objective
functions. For the OPF problem, the control variables used are: Vg (generator bus voltages),
Pg (generators’ active power outputs excluding slack bus), phase shifters, Tr (tap-settings
of regulating transformer) and Qc (injected reactive power using capacitor banks, FACTS
devices etc.). Some of these variables are discrete, e.g., Tr, injected reactive power source
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output Qc, phase shifters, while others are continuous (e.g., Pg and Vg). The discrete nature
of the control variable poses a challenge for the optimization technique and makes OPF a
non-convex problem [2,3].

Integration of DGs seems to be quite appealing, but it is important to analyze their
impact in a power network [4]. Optimal location and size of the DG unit have a significant
effect on the reliability of power supply, operational cost, voltage profile, power loss and
environmental pollution and voltage stability in a power system. Therefore, it has become
a crucial task for researchers and industry personnel to determine the optimal location for
DG and the size of the DG [5]. With the increase of the power injection from DGs into a
power network, it is equally important to find out the optimum power generation and
optimal setting of other control parameters to minimize fuel cost, emission cost and real
power loss with an improved voltage profile [6].

OPF is a complex optimization problem, which associates several constraints and
decision or control variables. The common objectives of the OPF problem are fuel cost
minimization, emission minimization, real power loss minimization, voltage profile im-
provement and/or a combination of two or more of these objectives. The conventional
algorithms depend on convexity to find the global best solution and are required to sim-
plify relationships to achieve convexity. However, since the OPF problem is non-convex
in general, several local minima can exist. If the valve point loading effects of thermal
generators are taken into account, the non-convexity increases even further. Furthermore,
traditional optimization approaches often use initial starting points (except for linear pro-
gramming and convex optimization) and often converge or diverge to locally optimal
solutions. These approaches are normally limited to particular cases of OPF and do not
have much flexibility in terms of different kinds of objective functions or constraints that
could be employed [7,8]. Except for linear programming and convex optimization, most
of the conventional optimization algorithms cannot be guaranteed to be globally optimal
because traditional algorithms are mainly local search. As a result, the final solution is
always often dependent on the initial starting points.

Nowadays, several meta-heuristic algorithms have been developed by researchers,
which are found to be powerful tools for handling difficult optimization problems. These
random search, population-based algorithms are highly flexible, which means that they are
appropriate to solve various types of optimization problems, including linear problems,
non-linear problems and complex constrained optimization problems. Some of these meth-
ods are League Championship Algorithm (LCA) [3], Firefly Algorithm (FFA), Krill Herd
Method (KH), Hybrid Firefly and Krill Herd Method (HFA) [9], Neighborhood Knowledge-
based Evolutionary Algorithm (NKHA), Bare-Bones Multi-Objective Particle Swarm Opti-
mization (BB-MOPSO), Multi-Objective Imperialist Competitive Algorithm (MOICA), Mod-
ified Non-dominated Sorting Genetic Algorithm (MNSGA-II), Multi-Objective Modified
Imperialist Competitive Algorithm (MOMICA) [10], Moth Swarm Algorithm (MSA) [11],
Multi-objective Evolutionary Algorithm based on decomposition-superiority of feasible
(MOEA/D-SF) [12] and many others.

Recently, various hybrid algorithms have been investigated for effectively solving
various optimization problems. Alsumait et al. [13] presented a hybrid GA–PS–SQP-based
optimization algorithm to solve the economic dispatch (ELD) problem. Attaviriyanupap
et al. [14] suggested a hybrid optimization technique based on Evolutionary Program-
ming and SQP algorithms for dynamic ELD problems. An integrated predator–prey (PP)
optimization and a Powell search method were both proposed for the multi-objective
hydrothermal scheduling problem [15]. Mahdad et al. [16] applied a hybrid DE-APSO-PS
strategy to solve multi-objective power system planning. A hybrid modified imperialist
competitive algorithm and SQP were employed to handle the constrained OPF problem [17].
Recently, considerable attention has been given to the Deep Neural Network approaches to
the Energy Management problem [18,19].

It is observed that all Evolutionary Computing (EC)-based algorithms have some
advantages and some disadvantages. Two main parts of any EC-based algorithm are
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exploration and exploitation. Some algorithms have good exploration capability but poor
exploitation and vice versa. The recently developed Jaya algorithm is capable of exploration,
while Powell’s Pattern Search (PPS) method has good search space exploitation capability.
Hence, to boost the operational proficiency of the Jaya algorithm, Powell’s Pattern Search
method has been incorporated into it. Proper inclusion of the advantages of the Jaya and
PPS algorithm would lead to better results for real-world complex, constrained and high-
dimensional optimization problems. In the proposed hybrid Jaya–PPS algorithm, the Jaya
algorithm was applied to explore a search space that is likely to provide the near-global
solution and subsequently, the PPS algorithm was applied to attain a better solution.

The paper’s contribution can be summed up as follows:

• The main contribution of this paper is to implement hybridization of two algorithms
(Jaya and Powell’s Pattern Search) in different manners and at different levels to find
the best option for hybridization.

• Powell’s Pattern Search method has been incorporated into the Jaya algorithm in three
different ways, resulting in three variants, namely, J-PPS1, J-PPS2 and J-PPS3.

• The proposed hybrid Jaya and Powell’s Pattern Search method utilizes the exploration
property of the Jaya algorithm and the exploitation quality of Powell’s Pattern Search
method.

• This paper handles the OPF problem considering DG with four objectives functions
simultaneously, namely, minimization of fuel cost, emission, real power losses and
voltage profile improvement by converting the multi-objective OPF into a single
objective OPF.

• In addition to Dragonfly Algorithm (DA), Grey Wolf Optimization (GWO) and Classi-
cal Jaya algorithms, three versions of hybrid Jaya and PPS, J-PPS1, J-PPS2 and J–PPS3
for the OPF problem are developed, wherein the excellent search capability of the PPS
method has been exploited for further improvement of the solution provided by Jaya
algorithm.

This paper is organized as follows: Section 2 presents the formulation of the OPF
problem; The proposed hybrid Jaya–PPS algorithm is discussed in Section 3; Section 4
includes the results, while statistical analysis is incorporated into Section 5; Conclusions
are presented in Section 6.

2. Problem Formulation

Mathematically, the objective function together and operating constraints of the OPF
problem considered in this work are as follows [20]:

Optimize M (W, X) (1)

Subject to the constraints given by Equation (2).{
g (W, X) = 0
h (W, X) ≤ 0

(2)

where M (W,X) is the objective function to be minimized, g (W,X) and h (W,X) are the
equality and inequality constraints, respectively.

The control variables (X) include: the generator active power output (Pg) except at
slack bus, generator bus voltage (Ug), tap-setting of transformer (TTR) and shunt VAR
compensation (Qc). The dependent variables (W) consists of slack bus active power output
Pg1, Load bus voltage (UL), generator reactive power output (Qg) and power flow in
transmission lines (Stl). The control variables and state variables vectors can be expressed
by Equation (3):[

W
X

]
=

[ Pg1 , U1 . . . UNLB, Qg1, . . . QgNGN , S1, . . . SNtl ,
Pg2 . . . PgNGN , Ug1 . . . UgNGN , QC1 . . . QCNC , T1 . . . TNTR

]
(3)
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A control or decision variable can have any value within its minimum and maximum
limits. In actual practice, transformer tap settings are not continuous variables. However,
in this paper, to compare the results with the reported results, all the decision variables are
considered to be continuous.

2.1. OPF Objective Functions

This paper handles the OPF problem considering DG with four objectives functions
simultaneously, namely, minimization of fuel cost, emission, real power losses and improve-
ment of voltage profile by converting the multi-objective OPF into a single objective OPF.

2.1.1. Fuel Cost Minimization

The prime motive of this objective function is to minimize the total cost of genera-
tion/fuel. It can therefore be expressed by Equation (4):

ZFCM =
NGN

∑
i=1

f
(

Pgi

)
($/h) =

NGN

∑
i=1

Ai + BiPgi + CiP2
gi
($/h) (4)

where Ai, Bi, and Ci are the quadratic fuel cost coefficients of the ith generating unit and
Pgi is the active power output of ith generating unit.

2.1.2. Emission Cost Minimization

The total emission pollutants such as SOx (sulfur oxides) and NOx (nitrogen oxides),
which is an approximate combination of a quadratic and an exponential function can be
expressed by Equation (5)

ZECM =
NGN

∑
i=1

αi + βiPGi + γiP2
Gi
+ ξiexp

(
λiPGi

)
(5)

where αi, βi, γi, ξi, λi are the emission coefficients of ith generating unit.

2.1.3. Real Power Losses Minimization

The aim of the present case is to minimize real power losses. The total real power
losses can be computed using Equation (6):

ZRPLM =
NB

∑
i=1

Pgi −
NB

∑
i=1

Pdi (6)

where NB is the no. of buses, Pgi is the active power generation at ith generating unit and
Pdi is the real power load at ith load bus.

2.1.4. Voltage Profile Improvement

Voltage profile improvement means the voltage magnitude at load buses must not
deviate much from 1.0 pu. Thus, the main motive, in this case, is to minimize voltage
variation from 1.0 pu at all the load buses. In the present case, the objective function can be
represented by Equation (7):

ZTVDM = ∑
iεNLB

|Ui − 1| (7)

where Ui is the voltage magnitude at ith load bus.
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2.2. Constraints

The equality constraints are a combination of active and reactive non-linear power
flow equations. In Equation (2), g (W,X) is a set of equality constraints and is described by
Equation (8):

g(W, X) =

{
∑NB

i=1(Pgi + PDGi)−∑NB
i=1 Pdi − PLoss = 0

∑NB
i=1(Qgi + QDGi)−∑NB

i=1 Qdi −QLoss = 0
(8)

where NB is the no. of buses, Pgi , Qgi are the active and reactive power outputs of generating
unit, PDGi, QDGi are the active and reactive power outputs of DG unit, Pdi, Qdi are active
and reactive power load demand and PLoss, QLoss are the total active and reactive power
losses occurring in the lines, respectively.

The inequality constraints h (W,X) represents operating limits of various equipment
in a power system, which are described by Equation (9):

h(W, X) =



Pmin
gk
≤ Pgk ≤ Pmax

gk
k = 2 . . . NGN

Umin
gk
≤ Ugk ≤ Umax

gk
k = 1 . . . NGN

Qmin
gk
≤ Qgk ≤ Qmax

gk
k = 1 . . . NGN

Tmin
k ≤ Tk ≤ Tmax

k k = 1 . . . NTR
Qmin

Ck
≤ QCk ≤ Qmax

Ck
k = 1 . . . NC

Umin
Lk
≤ ULk ≤ Umax

Lk
k = 1 . . . NLB

Slk ≤ Smax
lk

k = 1 . . . ntl

(9)

where active power output Pg, bus voltage Ug, and reactive power output Qg, should
be regulated by their lower and upper limits for all the generators, including slack bus
generator and controllable VAR sources (QCk ), Transformer taps-setting (Tk) voltage of
load buses

(
ULk

)
and power flow in transmission lines (Slk ) should vary between their

minimum and maximum limits.

2.3. Combined Objective Function (COF)

The multi-objective function, which consists of four contradictory objective functions,
i.e., minimization of fuel cost, emission cost, real power loss and total voltage deviation, is
transformed into a single-objective function by using weighing factors to combine the four
objective functions as given below.

COF(U, X) = ZFCM + wECM × ZECM + wRPLM × ZRPLM + wTVDM × ZTVDM (10)

where wECM, wRPLM and wTVDM are weighing factors [9].

2.4. Incorporation of Constraints

The constraints are included in the combined objective function in the form of inequal-
ities to find a feasible solution, and thus, the extended objective function can be defined by
Equation (11):

Maug = COF(U, X) + C1 ∑NGN
k=1 h

(
PGSlack − Plim

GSlack

)
+C2 ∑NGN

k=1 h
(

Qgk −Qlim
gk

)
+ C3 ∑NLB

k=1 h
(

ULk −Ulim
Lk

)
+C4 ∑NGN

k=1 h
(

QDGk −Qlim
DGgk

) (11)

3. Jaya Algorithm

The Jaya algorithm is a comparatively new meta-heuristic optimization algorithm
developed by Rao [21]. The working principle of the Jaya algorithm is that the numerical
solution that has been obtained should go towards the better solution and should avoid
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the inferior solutions for a particular optimization problem. The main advantage of the
Jaya algorithm is that no algorithm-specific parameters are required, and thus, it is simple
to implement this algorithm for solving various kinds of optimization problems.

Maximized (or minimized) value of objective function M(z)
Within the lower and upper bounds of the control variables, the initial solution p is

randomly selected. After that, all the variables will be eventually updated according to
Equation (12). On the basis of the fitness value of the objective function, the best and worst
solutions are determined [21].

Let ‘m’ be the number of design variables (i.e., j = 1, 2, 3, . . . , m) and the ‘n’ is the
number of candidate solutions (i.e., population size, k = 1, . . . , n). If zi, j, k represents the
value of jth variable for the kth candidate in ith iteration; that value is updated according
to Equation (12).

zi+1,j,k = zi,j,k + αi,j,1

(
zi,j,B − abs(zi,j,k

)
)− αi,j,2

(
zi,j,W − abs(zi,j,k

)
) (12)

In (12), zi,j,B and zi,j,W are the best candidate and worst candidate value of variable j,
respectively. The updated value of zi,j,k is zi+1,j,k and throughout the ith iteration, αi,j,1 and
αi,j,2 are two random numbers for the jth variable within [0, 1].

3.1. Powell’s Pattern Search (PPS)

In 1962, Powell proposed the Powell search method, which was the expansion of
the basic Pattern Search method. It is based on the conjugate direction method. Powell’s
Pattern Search (PPS) method is a derivative-free optimization technique that is ideal for
solving a number of optimization problems beyond the scope of conventional optimization
procedures. In general, the advantage of PPS is that the structure of the algorithm is
remarkably simple, easy to implement and computationally efficient as well. PPS with meta-
heuristic algorithm offers a flexible, balanced operator to enhance local search capability
in contrast to another meta-heuristic algorithm. The following is the summary of the PPS
algorithm underlying mechanisms [15,22]:

The search direction for lth coordinate for gth dimension of the n dimension search
space can be defined as:

Sl
g =

{
1; g = l
0; g 6= l (g = 1, 2, . . . n; l = 1, 2, . . . n) (13)

The step length λ∗g for gth decision variable can be determined as:

λ∗g = λmin
g + rand×

(
λmax

g − λmin
g

)
(g = 1, 2, . . . n) (14)

where, λmin
g , λmax

g is the minimum and maximum step length for gth decision variable,
respectively.

The vector of the decision variable Xg is updated once in the direction of the coordinate
(l) as:

Xg = Xg + λ∗g × Sl
g (g = 1, 2, . . . n) (15)

The vector of control variables is modified on the basis of the minimum objective
function value. For all ‘n’ coordinates, this process continues. The pattern search direction
is obtained for the next optimization cycle:

Sl
g = Xg − Zg (g = 1, 2, . . . n; l = n + 1) (16)

where Zg is the initial value of the decision variable Xg.
Additionally, one of the coordinate’s direction was discarded in the direction of pattern

‘m’ as:
Sm

g = Sl
g (g = 1, 2, . . . n; l = n + 1) (17)
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The process goes on until the entire direction of the coordinate is discarded and the
entire operations restart in one of the coordinate directions again. Finally, until the Powell
method has reached maximum iterations, the process of updating continues.

3.2. Proposed Hybrid Jaya–PPS Algorithm

Jaya algorithm has a strong capacity to exploit search space globally, but sometimes
it suffers from premature convergence and can be stuck simply in local optima [6]. In
order to overcome this problem and to make this algorithm more efficient, a hybrid Jaya
algorithm, which combines the Jaya algorithm and PPS algorithm, is proposed in this
paper. The PPS algorithm is a class of direct search methods. In general, it has immunity to
strong local extremist trapping when used for local optimization. The proposed hybrid
approach is primarily concerned with balancing the exploration and exploitation steps of
the optimization procedure. PPS technique has good search space exploitation capability,
while Jaya is able to explore the search space very well. The goal of incorporating PPS with
Jaya is to combine the benefits of both algorithms.

Similar to other local search algorithms, the PPS algorithm is also sensitive to the
initial or starting point. In selecting the initial point arbitrarily, it requires a large number of
function evolutions, computation burden and slow convergence rate. In this research paper,
to overcome these demerits of the PPS algorithm, the integration of local search procedure
(Powell’s Pattern Search) into the classical Jaya algorithm has been carried out in three
different ways and the variants of hybrid Jaya–PPS thus developed are termed as J-PPS1,
J-PPS2 and J-PPS3. To evaluate the performances of these variants, the common controlling
parameters and the total number of function evaluations (NFE) used in J-PPS1, J-PPS2 and
J-PPS3 algorithms are set the same as the classical Jaya algorithm. As stated, all the hybrid
algorithms have the same number of function evaluations; thus, the additional criterion
introduced in the proposed hybrid algorithms is to maintain (balance) the total number
of function evaluations. The NFE has been used as a reference to the check efficiency of
various algorithms in this paper.

In the first strategy (J-PPS1), the PPS algorithm was applied considering its initial
point as the solution offered by the Jaya algorithm after applying it for 25% iterations. In
this case, the optimization process is a two-step process. In step 1 (first 25% of Itermax),
the Jaya algorithm was applied. However, in step 2 (remaining 75% of iterations), the PPS
algorithms were applied using the optimal setting of control variables offered by the Jaya
algorithm as initial point setting.

In the second strategy (J-PPS2), the Jaya algorithm and PPS algorithm were applied
for an equal number of iterations to maintain the balance between the exploration and
exploitation capability of the proposed J-PPS2 algorithm. In other words, the optimization
process was completed in two steps. In step 1 (50% of Itermax), the Jaya algorithm was
applied, while in step 2 (for the remaining 50% iterations), the PPS algorithms were applied
sequentially as in the case of J-PPS1.

In the third strategy (J-PPS3), the PPS algorithm was applied after exploiting the 75%
problem-solving capability of the Jaya algorithm, i.e., on the solution achieved by applying
the Jaya algorithm for 75% iterations. In other words, the optimization process was divided
into two steps. In step 1 (75% of Itermax), only the Jaya algorithm was applied, while
in step 2 (for the remaining 25% iterations), only the PPS algorithms were applied. A
flowchart of the proposed Jaya–PPS algorithm is shown in Figure 1.
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Figure 1. Flowchart of proposed hybrid Jaya–PPS algorithm.

The computational steps of the hybrid Jaya–PPS algorithm are summarized as follows:

i. Initialize the population with control variables and set maximum iteration count
IterJmax and the number of iterations IterJmax for the PPS method.

ii. Set iteration Iter = 0.
iii. Identify the worst and best solutions in the population on the basis of the extended

objective function value Equation (11).
iv. Modify the solutions using the best and the worst solutions Equation (12).
v. If the modified solution is found to be better than the previous one, move to step vi,

otherwise jump to step vii.
vi. Replace the previous solution with the modified one and jump to step viii.
vii. Retain previous solution.
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viii. Increase iteration number by 1, i.e., Iter = Iter + 1.
ix. If Iter < IterJmax, then move to step iii, else move to step x.
x. Select the best solution found by the Jaya algorithm as the initial point for the PPS

method and apply the PPS method for IterPmax iterations to attain a better solution.
xi. Stop. Optimal solution achieved.

4. OPF Results and Discussion

In order to demonstrate the effectiveness of the proposed hybrid Jaya–PPS algorithm,
DA, GWO, Jaya, J-PPS1, J-PPS2 and J-PPS3 algorithms were applied to the IEEE 30-bus
system [6,23], IEEE 57-bus system [24] and IEEE 118-bus system for solving OPF problems
with and without considering DG. The lower and upper limits of the 24 control variables,
line data, bus data along with their initial settings for the IEEE 30-bus system, are taken
from [23], while the emission and fuel cost coefficients are taken from [25]. In a combined
single-objective function, the weight of an objective is proportional to the preference factor
or weightage assigned to that objective function. This procedure is called a preference-
based multi-objective optimization. For comparison, the combined objective function,
COF, is obtained by considering the weighting factors WECM, WRPLM and WTVDM as 19,
22 and 21, respectively, as reported in [9]. The same procedure can be used for different
systems also.

The IEEE 30-bus system is modified by including renewable energy source-based DG
units. The optimal location for the DG unit is selected using the sensitivity of real power
loss and the generation cost to each real and reactive power [6]; in this case, it was bus no.
30. At this bus, the capacity selected for the type 1 DG unit is 5 MW.

The IEEE 57-bus test system has 7 generators and 80 branches. The lower and upper
voltage magnitude limits for all the generator and load buses of the system are considered
to be 0.94 pu and 1.06 pu, respectively. The limits for the regulating transformers’ tap
settings are taken as 0.9 pu and 1.1 pu. The generator coefficients, lower and upper limits
of all the 33 control variables and system data (bus data, line data) along with their initial
settings are taken from [24]. At 100 MVA base, the real power demand and reactive power
demand of this test system are 12.508 pu and 3.364 pu, respectively. In the case of the
IEEE 57-bus system, the combined objective function, COF, is obtained by considering the
weighting factors WECM, WRPLM and WTVDM as 300, 30 and 600, respectively. IEEE 57-bus
system is modified by inserting DG units [26]. The optimal locations of the type 1 DG units
are bus nos. 35 and 36 with the capacities of 47.9067 MW and 47.2636 MW, respectively.

To evaluate the scalability of proposed algorithms and prove their efficacy to solve
large-scale problems, all three variants of Jaya–PPS algorithms, the GWO and DA algorithm
were applied to solve the OPF problem IEEE 118-bus system. The system data, generator
coefficients, lower and upper limits of all the 130 control variables, along with their initial
settings, are taken from [27]. The active and reactive power demands of this test system
are 42.42 and 14.38 pu, respectively, at the 100 MVA base.

To demonstrate the effectiveness of the proposed algorithm, five cases considered are
as follows:

Case 1: OPF no DG in IEEE 30-bus test system.
Case 2: OPF with DG in IEEE 30-bus test system.
Case 3: OPF no DG in IEEE 57-bus test system.
Case 4: OPF with DG in IEEE 57-bus test system.
Case 5: OPF no DG in IEEE 118-bus system.

Various trials were carried out with different population sizes and no. of iterations.
The best results thus achieved and reported in this paper are for population pop = 30 and
no. of iterations Itermax = 200 for IEEE 30-bus test system and pop = 40 and Itermax = 300
for IEEE 57-bus test system. The OPF results with and without the inclusion of DG obtained
using various EC and hybrid Jaya algorithms are included in this section. These algorithms
were developed using MATLAB 13a version in a 3.6 GHz Intel Processor, 8 GB RAM Core
i7 and 64-bit operating personal computer.
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To compare the performance of various algorithms, all the algorithms were run for
the same number of function evaluations (NFE), which is equal to 6000 in the case of the
IEEE 30-bus test system and 12,000 in the case of the IEEE 57-bus test system. Details of the
implementation of various algorithms and inclusion of PPS in the three variants of hybrid
Jaya–PPS algorithms are given in Table 1.

Table 1. Details of the DA, GWO, Jaya, J-PPS1, J-PPS2 and J-PPS3 algorithms.

IEEE-30 Bus System

Algorithm Population Iterations Total NFE = 6000

Dragonfly Algorithm 30 200 30 × 200

GWO Algorithm 30 200 30 × 200

Jaya Algorithm 30 200 30 × 200

J-PPS1 30 200 30JFE × 50 + 30PSFE × 150

J-PPS2 30 200 30JFE × 100 + 30PSFE × 100

J-PPS3 30 200 30JFE × 150 + 30 PSFE × 50

IEEE-57 bus system and IEEE 118 Bus System

Algorithm Population Iterations Total NFE = 12,000

Dragonfly Algorithm 40 300 40 × 300

GWO Algorithm 40 300 40 × 300

Jaya Algorithm 40 300 40 × 300

J-PPS1 40 300 40JFE × 75 + 40PSFE × 225

J-PPS2 40 300 40JFE × 150 + 40PSFE × 150

J-PPS3 40 300 40JFE × 225 + 40PSFE × 75
NFE = Number of function evaluations; JFE = Number of Jaya Function Evaluations; PSFE = Number of PPS.
Function evaluation.

4.1. Case 1: OPF No DG in IEEE 30-Bus Test System

In this case, the proposed hybrid Jaya–PPS algorithms, Dragonfly algorithm [28], GWO
algorithm [29] and Jaya algorithm [21] were applied to solve the OPF problem considering
the combined objective function without DG. Table 2 shows the results of these methods
along with optimal control variable settings. The result clearly shows the superiority of
the proposed J-PPS3 over other methods. Its combined objective function (965.0228) is less
than those attained using other methods with no violation of the pre-specified constraints.
The results of hybrid Jaya–PPS algorithms are compared with DA, GWO, Jaya algorithm
and also with the reported results available in recent literature in Table 3.

Table 2. OPF results with optimum values of control variables for IEEE 30-bus system.

S. No. Control Variable DA GWO Jaya J-PPS1 J-PPS2 J-PPS3

Generator real power output

1 Pg2 0.52656 0.52553 0.5167 0.5259 0.5266 0.527

2 Pg5 0.31146 0.31068 0.32214 0.3156 0.3165 0.3155

3 Pg8 0.35 0.35 0.3497 0.3496 0.3496 0.35

4 Pg11 0.25774 0.26257 0.27264 0.2699 0.2692 0.2652

5 Pg13 0.21671 0.21185 0.20712 0.2115 0.2091 0.2099

Generator voltage setting

6 Vg1 1.07429 1.07452 1.0728 1.0724 1.0735 1.0731
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Table 2. Cont.

S. No. Control Variable DA GWO Jaya J-PPS1 J-PPS2 J-PPS3

7 Vg2 1.05972 1.06035 1.05906 1.0584 1.0597 1.0593

8 Vg5 1.03127 1.03473 1.03371 1.0308 1.0332 1.0318

9 Vg8 1.04147 1.0423 1.04155 1.0406 1.0409 1.0402

10 Vg11 1.05456 1.05344 1.05018 1.0555 1.0431 1.0402

11 Vg13 1.01607 1.01938 1.02735 1.0179 1.0206 1.0186

Transformer tap setting

12 T6-9 1.06778 1.08906 1.1 1.0991 1.0895 1.1

13 T6-10 1.01404 0.9811 0.94836 0.9499 0.9586 0.9435

14 T4-12 1.02163 1.01232 1.02587 1.0347 1.0304 1.0345

15 T28-27 1.00183 1.00725 1.00342 1.0095 1.0024 1.0023

Shunt VAR source setting

16 Qc10 0.04965 0.0486 0 0.0104 0.0273 0.0225

17 Qc12 0.00025 0.0009 0.00054 0.0498 0.0031 0.0477

18 Qc15 0.03634 0.01863 0.04966 0.0344 0.0321 0.0474

19 Qc17 0.04876 0.03188 0.05 0.0343 0.0441 0.05

20 Qc20 0.0499 0.04829 0.04985 0.0478 0.0479 0.0481

21 Qc21 0.05 0.05 0.04997 0.05 0.0499 0.0497

22 Qc23 0.04898 0.04621 0.01739 0.0486 0.05 0.04

23 Qc24 0.04978 0.05 0.04986 0.0497 0.0484 0.0482

24 Qc29 0.02535 0.03226 0.03039 0.0344 0.0271 0.0274

COF 965.3516 965.3025 965.2868 965.2159 965.1201 965.0228

Fuel Cost 829.3587 829.2395 831.5493 830.9938 830.8672 830.3088

Emission 0.2370 0.2373 0.2358 0.2355 0.2357 0.2363

Real Power Loss (RPL) 5.6859 5.6843 5.5780 5.6120 5.6175 5.6377

Total Voltage Deviation (TVD) 0.3046 0.3094 0.3114 0.2990 0.2948 0.2949

L-Index 0.1387 0.1389 0.1396 0.1392 0.1393 0.1388

Pg1 122.8389 123.0213 122.1479 121.7620 121.9175 122.2777

Table 3. Results of the proposed method and other methods for case 1.

Algorithm Comb. Obj Fun (COF) Fuel Cost ($/h) Emission (ton/h) RPL (MW) TVD (pu)

Base Case 1336.64501 902.00457 0.22232 5.84233 1.16014

DA 965.35164 829.35878 0.23705 5.68593 0.30469

GWO 965.30257 829.23953 0.23731 5.68435 0.30945

Jaya 965.28681 831.54930 0.23582 5.57800 0.31147

J-PPS1 965.2159 830.9938 0.2355 5.6120 0.2990

J-PPS2 965.1201 830.8672 0.2357 5.6175 0.2948

J-PPS3 965.0228 830.3088 0.2363 5.6377 0.2949

MSA [11] 965.2905 830.639 0.25258 5.6219 0.29385

MPSO [11] 986.0063 833.6807 0.25251 6.5245 0.18991

MDE [11] 973.6116 829.0942 0.2575 6.0569 0.30347
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Table 3. Cont.

Algorithm Comb. Obj Fun (COF) Fuel Cost ($/h) Emission (ton/h) RPL (MW) TVD (pu)

MFO [11] 965.8077 830.9135 0.25231 5.5971 0.33164

FPA [11] 971.9076 835.3699 0.24781 5.5153 0.49969

MSA [6] * 838.9233 0.2116 5.6149 0.1535

ABC [6] * 835.5230 0.2076 5.3948 0.1380

CSA [6] * 834.5125 0.2099 5.4250 0.1373

GWO [6] * 851.0491 0.2057 4.8925 0.2015

BSOA [6] * 830.7115 0.2251 5.7446 0.1836

MJAYA [6] * 833.3410 0.2064 5.1779 0.1196

MOEA/D-SF [12] - 883.322 0.21867 4.4527 0.1322

MOMICA [10] - 830.1884 0.2523 5.5851 0.2978

MOICA [10] - 831.2251 0.267 6.0223 0.4046

MNSGA-II [10] - 834.5616 0.2527 5.6606 0.4308

BB-MOPSO [10] - 833.0345 0.2479 5.6504 0.3945

NKEA [10] - 834.6433 0.2491 5.8935 0.4448

FKH [9] - 828.3271 0.2549 5.3828 0.4925

KH [9] - 827.7054 0.2526 5.4977 0.4930

FA [9] - 829.5778 0.2527 5.5104 0.5661

* Different weighting factors.

From Table 3, it can be noted that the proposed J-PPS3 algorithm provides the min-
imum value of the combined objective function. This demonstrates the effectiveness of
the proposed J-PPS3 algorithm as compared to DA, GWO, Jaya, J-PPS1 and J-PPS2 algo-
rithms and other competitors [6,9–11]. Convergence characteristics of DA, GWO, Jaya,
J-PPS1, J-PPS2 and J-PPS3 algorithms are shown in Figure 2, while Figure 3 displays the
voltage profile provided by the proposed J-PPS3 algorithm. This figure shows that voltages
magnitudes at all the buses are within the given upper and lower limits.

Energies 2021, 14, x FOR PEER REVIEW 12 of 24 
 

MOMICA [10] - 830.1884 0.2523 5.5851 0.2978 
MOICA [10] - 831.2251 0.267 6.0223 0.4046 

MNSGA-II [10] - 834.5616 0.2527 5.6606 0.4308 
BB-MOPSO [10] - 833.0345 0.2479 5.6504 0.3945 

NKEA [10] - 834.6433 0.2491 5.8935 0.4448 
FKH [9] - 828.3271 0.2549 5.3828 0.4925 
KH [9] - 827.7054 0.2526 5.4977 0.4930 
FA [9] - 829.5778 0.2527 5.5104 0.5661 

* Different weighting factors. 

From Table 3, it can be noted that the proposed J-PPS3 algorithm provides the 
minimum value of the combined objective function. This demonstrates the effectiveness 
of the proposed J-PPS3 algorithm as compared to DA, GWO, Jaya, J-PPS1 and J-PPS2 
algorithms and other competitors [6,9–11]. Convergence characteristics of DA, GWO, 
Jaya, J-PPS1, J-PPS2 and J-PPS3 algorithms are shown in Figure 2, while Figure 3 displays 
the voltage profile provided by the proposed J-PPS3 algorithm. This figure shows that 
voltages magnitudes at all the buses are within the given upper and lower limits.  

 
Figure 2. Convergence characteristics for various algorithms for Case 1. Figure 2. Convergence characteristics for various algorithms for Case 1.



Energies 2021, 14, 2831 13 of 24Energies 2021, 14, x FOR PEER REVIEW 13 of 24 
 

 
Figure 3. Voltage profile provided by J-PPS3 for Case 1. 

4.2. Case 2: OPF with DG in IEEE 30-Bus Test System 
In this case, the DA, GWO, Jaya, J-PPS1, J-PPS2 and J-PPS3 algorithms were applied 

to solve the optimal power flow problem incorporating DG considering the minimization 
of fuel cost, real power loss, emission and total voltage deviation. Afterward, their results 
were compared to find the best algorithm. The results of this case for all the algorithms 
along with optimal control variable settings are shown in Table 4. The numerical out-
comes in Table 4 demonstrate that the proposed J-PPS3 algorithm is more effective as 
compared to other approaches for solving the OPF problem with DG. The combined ob-
jective function value obtained using the J-PPS3 algorithm is 937.3486, which is less than 
those of the DA, GWO, Jaya, J-PPS1 and J-PPS2 methods without any violation of the 
limits.  

Table 4. OPF results with optimum values of control variables for the IEEE 30-bus system. 

S. No. Control Variable DA GWO Jaya J-PPS1 J-PPS2 J-PPS3 
Generator Real power output 

1 Pg2 0.51902 0.51557 0.51579 0.516 0.5161 0.5162 
2 Pg5 0.31184 0.31164 0.31143 0.3119 0.3116 0.311 
3 Pg8 0.3500 0.34999 0.3500 0.35 0.35 0.35 
4 Pg11 0.25881 0.2574 0.26254 0.2596 0.2619 0.261 
5 Pg13 0.20565 0.2019 0.20564 0.2063 0.2039 0.2056 

Generator voltage setting 
6 Vg1 1.07105 1.07422 1.06371 1.0709 1.0732 1.0724 
7 Vg2 1.05748 1.06016 1.04926 1.0579 1.0594 1.0595 
8 Vg5 1.03158 1.03316 1.02234 1.0297 1.0329 1.0325 
9 Vg8 1.04001 1.04209 1.03217 1.0381 1.0434 1.0423 

10 Vg11 1.09934 1.04159 1.04782 1.0459 1.0379 1.0416 
11 Vg13 1.02435 1.01592 1.02994 1.023 1.0143 1.0164 

Transformer tap setting 
12 T6-9 1.01015 1.09902 1.09958 1.0981 1.0997 1.0998 
13 T6-10 1.1 0.92446 0.92521 0.958 0.9565 0.9585 
14 T4-12 1.0343 1.02314 1.03347 1.0398 1.0182 1.0241 

Figure 3. Voltage profile provided by J-PPS3 for Case 1.

4.2. Case 2: OPF with DG in IEEE 30-Bus Test System

In this case, the DA, GWO, Jaya, J-PPS1, J-PPS2 and J-PPS3 algorithms were applied
to solve the optimal power flow problem incorporating DG considering the minimization
of fuel cost, real power loss, emission and total voltage deviation. Afterward, their results
were compared to find the best algorithm. The results of this case for all the algorithms
along with optimal control variable settings are shown in Table 4. The numerical outcomes
in Table 4 demonstrate that the proposed J-PPS3 algorithm is more effective as compared to
other approaches for solving the OPF problem with DG. The combined objective function
value obtained using the J-PPS3 algorithm is 937.3486, which is less than those of the DA,
GWO, Jaya, J-PPS1 and J-PPS2 methods without any violation of the limits.

Table 4. OPF results with optimum values of control variables for the IEEE 30-bus system.

S. No. Control Variable DA GWO Jaya J-PPS1 J-PPS2 J-PPS3

Generator Real power output

1 Pg2 0.51902 0.51557 0.51579 0.516 0.5161 0.5162

2 Pg5 0.31184 0.31164 0.31143 0.3119 0.3116 0.311

3 Pg8 0.3500 0.34999 0.3500 0.35 0.35 0.35

4 Pg11 0.25881 0.2574 0.26254 0.2596 0.2619 0.261

5 Pg13 0.20565 0.2019 0.20564 0.2063 0.2039 0.2056

Generator voltage setting

6 Vg1 1.07105 1.07422 1.06371 1.0709 1.0732 1.0724

7 Vg2 1.05748 1.06016 1.04926 1.0579 1.0594 1.0595

8 Vg5 1.03158 1.03316 1.02234 1.0297 1.0329 1.0325

9 Vg8 1.04001 1.04209 1.03217 1.0381 1.0434 1.0423

10 Vg11 1.09934 1.04159 1.04782 1.0459 1.0379 1.0416

11 Vg13 1.02435 1.01592 1.02994 1.023 1.0143 1.0164

Transformer tap setting

12 T6-9 1.01015 1.09902 1.09958 1.0981 1.0997 1.0998

13 T6-10 1.1 0.92446 0.92521 0.958 0.9565 0.9585
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Table 4. Cont.

S. No. Control Variable DA GWO Jaya J-PPS1 J-PPS2 J-PPS3

14 T4-12 1.0343 1.02314 1.03347 1.0398 1.0182 1.0241

15 T28-27 1.0054 1.02139 1.00165 1.0028 1.013 1.0089

Shunt VAR source setting

16 Qc10 0.00001 0.00136 0.00394 0.0436 0.0498 0.0494

17 Qc12 0.01415 0.04996 0.00005 0.0422 0.0344 0.0251

18 Qc15 0.04982 0.03682 0.04071 0.0457 0.0385 0.0454

19 Qc17 0.03936 0.05 0.04992 0.0484 0.05 0.0457

20 Qc20 0.02121 0.00011 0.04959 0.0481 0.05 0.0484

21 Qc21 0.04912 0.05 0.04867 0.0492 0.05 0.05

22 Qc23 0.03649 0.05 0.03892 0.0386 0.04 0.0397

23 Qc24 0.05 0.05 0.04854 0.0482 0.05 0.05

24 Qc29 0.01492 0.05 0.02444 0.012 0.0235 0.0211

COF 938.5816 938.4980 938.3787 937.6646 937.3837 937.3486

Fuel Cost 811.9476 811.2105 812.3347 811.9609 811.8993 811.8635

Emission Cost 0.2328 0.2340 0.2327 0.2329 0.2330 0.2329

Real Power Loss 5.2318 5.2836 5.2871 5.2381 5.2171 5.2214

Total Voltage Deviation 0.3385 0.3142 0.2525 0.2875 0.2990 0.2946

Pg1 119.0998 120.0336 119.1471 119.2581 119.2671 119.2414

L-Index (LI) 0.1046 0.1017 0.1036 0.1027 0.1017 0.1019

It should be noted that the combined objective function of the proposed J-PPS3
decreased from 965.0228 (Case 1) to 937.3486 by 2.86% after placing the DG as anticipated.
Type 1 DG has been modeled as a negative load, and hence the total load demand is
reduced. This further decreases the fuel cost and hence the combined objective function.

After integrating the DG, the convergence characteristics of DA, GWO, Jaya, J-PPS1,
J-PPS2 and J-PPS3 algorithms are depicted in Figure 4. As can be observed from Figure 4, J-
PPS3 provides fast and smooth convergence characteristics compared to the other methods.
The voltage magnitudes at all the buses provided by the proposed J-PPS3 algorithm are
shown in Figure 5, which are within the specified limits.
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4.3. Case 3: OPF No DG in IEEE 57-Bus Test System

In this case, to evaluate the scalability of the J-PPS3 algorithm and to prove its efficacy
to solve large scale problems, all six DA, GWO, Jaya, J-PPS1, J-PPS2 and J-PPS3 algorithms
were applied to solve the OPF problem in the IEEE 57-bus test system with no DG placed in
it. In this case, the combined objective function for OPF comprises fuel cost, emission, real
power loss and total voltage deviation. The OPF results and the optimal control variable
settings of the J-PPS3 algorithm are compared with DA, GWO, Jaya, J-PPS1 and J-PPS2 in
Table 5. Table 6 displays the comparison of numerical outcomes of DA, GWO, Jaya, J-PPS1,
J-PPS2 and J-PPS3 algorithms and the reported results [10,12] for the IEEE 57-bus system.
Figure 6 displays the convergence characteristics of DA, GWO, Jaya, J-PPS1, J-PPS2 and
J-PPS3 algorithms.

Table 5. Optimum values of control variables for IEEE 57-bus system without DG.

S. No Control Variable DA GWO Jaya J-PPS1 J-PPS2 J-PPS3

Generator active power output

1 Pg2 0.9998 1 1 0.9997 0.9994 0.998

2 Pg3 0.52822 0.63533 0.57092 0.6064 0.6052 0.6058

3 Pg6 0.9934 0.92366 0.87967 1 0.9631 0.9196

4 Pg8 3.15449 3.13702 3.21403 3.1116 3.1263 3.1868

5 Pg9 0.99979 1 0.99992 0.9998 0.9994 0.9964

6 Pg12 4.09988 4.0985 4.09921 4.0848 4.1 4.1

Generator voltage setting

7 Vg1 1.03896 1.04785 1.0333 1.0248 1.0321 1.0292

8 Vg2 0.95129 1.09823 1.09987 1.1 1.0873 1.0761

9 Vg3 1.0799 0.97546 1.08977 0.95 1.1 1.0919

10 Vg6 0.95 1.02 0.97047 1.0289 1.0209 1.0343

11 Vg8 0.99115 0.99545 1.00747 1.011 1.0133 1.0118

12 Vg9 0.95157 1.03031 0.97345 1.0273 1.0485 1.0125

13 Vg12 1.00525 1.01681 1.01609 1.0214 1.0109 1.0211
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Table 5. Cont.

S. No Control Variable DA GWO Jaya J-PPS1 J-PPS2 J-PPS3

Transformer tap setting

14 T4-18 1.06804 1.09919 0.98026 0.9344 0.9205 1.0968

15 T4-18 0.90157 0.9 0.91699 1.0891 1.0094 0.9272

16 T21-20 1.00286 0.97166 1.09774 0.9698 0.9791 0.9821

17 T24-25 0.95085 1.03327 1.09303 0.9958 1.0922 1.0199

18 T24-25 1.0109 1.06638 0.90024 1.0045 0.9006 0.975

19 T24-26 1.04559 1.03573 1.0347 1.0213 1.0562 1.0157

20 T7-29 0.92573 0.95287 0.94193 0.9534 0.9446 0.9336

21 T34-32 0.92662 0.93717 0.93982 0.9444 0.916 0.9304

22 T11-41 0.90366 0.9 0.90013 0.9073 0.9 0.9116

23 T15-45 0.9482 0.96314 0.94642 0.9546 0.9364 0.9581

24 T14-46 0.94622 0.96437 0.97134 0.9641 0.976 0.977

25 T10-51 0.98181 1.02617 0.99404 0.9977 0.9789 0.9893

26 T13-49 0.92296 0.9 0.93097 0.9086 0.912 0.9

27 T11-43 0.91315 0.9141 0.92554 0.9278 0.9504 0.95

28 T40-56 1.09814 1.03063 1.06585 1.0017 0.9851 0.9818

29 T39-57 0.90081 0.95428 0.91838 0.9324 0.9307 0.9135

30 T9-55 0.97945 0.94635 0.99248 0.9699 0.9735 1.0015

Shunt VAR source setting

31 Qc18 0.05841 0.0326 0.00118 0.1531 0 0.0857

32 Qc25 0.08446 0.19243 0.12834 0.1706 0.0792 0.1308

33 Qc53 0.14752 0.10041 0.14808 0.1577 0.0795 0.1171

COF 43,887.4176 43,864.8418 43,833.6421 43,825.8807 43,793.8820 43,788.6319

Fuel Cost 42,584.4552 42,587.9655 42,547.0948 42,575.9726 42,580.0946 42,564.4608

Emission Cost 1.3577 1.3447 1.3708 1.3336 1.3433 1.3566

Real Power Loss 13.6065 13.2727 12.772 12.5408 12.5242 12.5079

Voltage Deviation 0.8124 0.7921 0.8202 0.7893 0.7251 0.7365

Pg1 186.8485 184.6217 187.1970 183.1103 183.9874 182.6473

L-Index 0.2638 0.2429 0.2512 0.2418 0.2669 0.2501

Table 6. OPF results of IEEE 57-bus system without DG.

Algorithm COF FCost ($/h) Emission (ton/h) PLoss (MW) TVD (pu)

Base Case 53,828.14303 51,395.57064 2.76165 28.36589 1.25517

DA 43,887.43700 42,584.46959 1.35770 13.60665 0.81243

GWO 43,864.84184 42,587.97294 1.34478 13.27275 0.79209

Jaya 43,833.62963 42,547.09273 1.37089 12.77199 0.82018

J-PPS1 43,825.8807 42,575.9726 1.33366 12.54089 0.78931

J-PPS2 43,793.88205 42,580.09468 1.34333 12.52422 0.72511

J-PPS3 43,788.63196 42,564.46087 1.35666 12.50792 0.73656

MOMICA [10] - 41,983.0585 1.496 13.6969 0.797
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Table 6. Cont.

Algorithm COF FCost ($/h) Emission (ton/h) PLoss (MW) TVD (pu)

MOICA [10] - 41,998.5661 1.7605 13.3353 0.8748

MNSGA-II [10] - 42,070.82476 1.4965 14.4557 0.8896

BB-MOPSO [10] - 41,994.019127 1.5336 12.609 1.0742

NKEA [10] - 42,065.9964 1.5174 13.9764 1.042

MOEA/D-SF [12] - 42,648.69 1.3437 11.8862 0.6713
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The results in Table 6 prove the dominance of the hybrid J-PPS3 algorithm over other
EC-based and hybrid Jaya–PPS algorithms in solving the OPF problem for a large-size
power system. The proposed J-PPS3 algorithm provided the combined objective function
value as 43,788.631, which is better than the combined objective functions offered by other
algorithms with no constraint violation. The bus voltages profile obtained using the J-PPS3
algorithm is within specified limits, as shown in Figure 7.
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4.4. Case 4: OPF with DG in IEEE 57-Bus Test System

In this case, to establish the effectiveness of the J-PPS3 algorithm for solving the OPF
problem, the IEEE 57-bus test system with two DGs [26] is considered. The obtained results
and the optimal control variable settings of the J-PPS3 algorithm are compared with those
of DA, GWO, Jaya, J-PPS1 and J-PPS2 algorithms in Table 7.

Table 7. OPF results for IEEE 57-bus system with two DGs.

S. No Control Variable DA GWO Jaya J-PPS1 J-PPS2 J-PPS3

Generator active power output

1 Pg2 0.90988 0.9991 0.89863 0.9371 0.9368 0.9836

2 Pg3 0.47575 0.49202 0.47457 0.4728 0.4807 0.468

3 Pg6 0.59547 0.36955 0.46213 0.4847 0.3041 0.4147

4 Pg8 3.33676 3.49929 3.47521 3.3894 3.5637 3.4798

5 Pg9 0.99353 0.99999 0.99976 0.9991 0.9981 0.9999

6 Pg12 3.94011 3.86025 3.94345 3.975 3.9554 3.8995

Generator voltage setting

7 Vg1 1.01833 1.0183 1.01557 1.01 1.0157 1.0166

8 Vg2 1.1 1.09571 1.09894 1.0944 1.1 1.0623

9 Vg3 1.06087 1.05416 1.06987 1.0323 1.0681 1.0749

10 Vg6 0.95 1.08551 1.0955 1.0069 1.0442 1.0497

11 Vg8 1.01291 1.01015 1.00346 0.9835 0.995 1.0026

12 Vg9 1.01131 0.95038 0.98631 1.0073 1.0118 1.0272

13 Vg12 1.01181 1.02021 1.00427 0.9893 1.0088 1.0031

Transformer tap setting

14 T4-18 0.90037 1.09424 0.9 0.9 1.1 1.0552

15 T4-18 1.09998 0.9 1.0984 1.1 0.9078 0.9054

16 T21-20 1.04432 0.98565 0.98642 0.9794 0.9887 0.9924

17 T24-25 0.90006 1.1 1.034 1.0489 1.0928 1.0455

18 T24-25 1.07936 0.9 0.97881 1.0794 1.0714 1.1

19 T24-26 1.03695 1.00296 1.00993 0.9978 1.0712 1.0429

20 T7-29 0.97201 0.97227 0.95166 0.9815 0.9461 0.9496

21 T34-32 0.94356 1.00622 0.99596 0.986 0.989 0.9887

22 T11-41 0.9784 0.96604 0.95685 0.9594 0.967 0.9653

23 T15-45 0.97868 0.97901 0.98099 0.9703 0.9716 0.9806

24 T14-46 0.97857 0.97699 0.96899 0.9481 0.9764 0.9876

25 T10-51 0.98858 0.99304 0.98007 0.9786 0.9806 0.9783

26 T13-49 0.92431 0.93811 0.93098 0.9007 0.9317 0.9271

27 T11-43 0.99037 1.00372 0.98421 0.9637 0.9821 0.9837

28 T40-56 0.91921 0.90084 0.93647 0.9182 0.9 0.9265

29 T39-57 0.98075 0.99828 0.98771 0.9938 1.0123 0.979

30 T9-55 0.95101 0.98913 0.98154 0.9159 0.9474 0.9383

Shunt VAR source setting

31 Qc18 0.18621 0.00004 0.12891 0.1062 0.0216 0.0212

32 Qc25 0.06171 0.14674 0.11436 0.1869 0.169 0.1737
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Table 7. Cont.

S. No Control Variable DA GWO Jaya J-PPS1 J-PPS2 J-PPS3

33 Qc53 0.1296 0.19995 0.16624 0.1797 0.0752 0.065

COF 39,200.1782 39,173.0979 39,162.8890 39,167.5961 39,165.9645 39,136.3249

Fuel Cost 38,120.8335 38,114.7354 38,105.9569 38,059.9136 38,048.2507 38,033.8329

Emission Cost 1.2751 1.3099 1.3218 1.3035 1.3612 1.3115

Real Power Loss 12.3189 13.1703 12.5706 12.8818 13.3724 12.9742

Total Voltage Deviation 0.5454 0.4504 0.4721 0.5469 0.5136 0.5329

Pg1 142.7987 146.7800 142.8253 142.7015 145.1223 144.0540

L-Index 0.1393 0.1241 0.1290 0.12921 0.1252 0.1250

The results in Table 7 prove the dominance of the proposed hybrid J-PPS3 algorithm
over other EC-based and hybrid Jaya–PPS algorithms in successfully handling the OPF
problem in large-scale systems penetrated with two DG units. The proposed J-PPS3
algorithm provided the combined objective function value as 39,136.324, which is better
than the combined objective functions offered by other algorithms without violating the
constraints. The combined objective function of J-PPS3 decreased from 43,778.631 (Case 3)
to 39,136.324 (by 10.60%) after implanting two DGs as expected.

In this case, the proposed J-PPS3 algorithm also provided fast and smooth convergence
characteristics compared to other algorithms, as shown in Figure 8. The bus voltages profile
obtained by the J-PPS3 algorithm is within limits, as shown in Figure 9.
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4.5. Case 5: OPF No DG in IEEE 118-Bus System

In Case 5, fuel cost is selected as the main objective. The minimum fuel cost obtained
by the J-PPS3 algorithm is 129,507.6123 $/h, while the minimum fuel cost obtained by
J-PPS2 and J-PPS1 algorithms is 129,821.4309 $/h and 129,961.8924 $/h, respectively. The
minimum fuel cost obtained using hybrid Jaya–PPS algorithms and other meta-heuristic
algorithms are depicted in Table 8. From Table 8, it is clear that the fuel cost obtained from
J-PPS3 algorithm is the least compared to other methods, demonstrating the effectiveness
of the proposed J-PPS3 algorithm compared to the J-PPS2, J-PPS1, DA, GWO algorithms
and other competitors in handling the OPF problem in a large-sized power system. The
fuel cost characteristics for Case 5 are shown in Figure 10.

Table 8. Case 5 (Fuel cost minimization) results in IEEE 118-bus system.

Algorithm Fuel Cost ($/h) TVD (pu) PG69 (Slack Bus)
Power Loss

MW MVAr

Base Case 131,220.0208 1.4389 513.8101 132.8101 782.6073

J-PPS1 129,961.8924 1.4402 489.0344 113.4784 745.3196

J-PPS2 129,821.4309 1.5238 430.2158 118.5608 762.0786

J-PPS3 129,507.6123 1.3486 440.1366 109.6528 668.4798

Jaya 130,165.8424 1.4991 482.2581 112.9269 740.0970

DA 130,016.5235 1.4596 450.9608 119.1369 751.3072

GWO 130,053.1453 1.4015 461.0356 108.2561 698.1435

IMFO [20] 131,820.0000 1.5944 407.192 77.6522 −910.020

Interior point [30] 129,720.70 N. A N. A N. A N. A

CC-ACOPF [31] 129,662.0 N. A N. A N. A N. A

NLP [32] 129,700 N. A N. A N. A N. A

QP [32] 129,600 N. A N. A N. A N. A

MIQP [32] 129,600 N. A N. A N. A N. A

ALC-PSO [33] 129,546.0847 N. A N. A N. A N. A
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Table 8. Cont.

Algorithm Fuel Cost ($/h) TVD (pu) PG69 (Slack Bus)
Power Loss

MW MVAr

PSOGSA [34] 129,733.58 N. A N. A 73.21 N. A

GPU-PSO [35] 129,627.03 N. A N. A 76.984 N. A

IMFO = improved moth-flame optimization; ALC-PSO = particle swarm optimization with an aging leader and challengers; PSOGSA
= Hybrid Particle Swarm Optimization and Gravitational Search Algorithm; GPU-PSO = Partial swarm optimization-based graphics
processing units; CC-ACOPF = Chance Constrained Optimal Power Flow; QP = quadratic programming; MIQP = Mixed Integer quadratic
programming.

Energies 2021, 14, x FOR PEER REVIEW 20 of 24 
 

minimum fuel cost obtained using hybrid Jaya–PPS algorithms and other meta-heuristic 
algorithms are depicted in Table 8. From Table 8, it is clear that the fuel cost obtained 
from J-PPS3 algorithm is the least compared to other methods, demonstrating the effec-
tiveness of the proposed J-PPS3 algorithm compared to the J-PPS2, J-PPS1, DA, GWO 
algorithms and other competitors in handling the OPF problem in a large-sized power 
system. The fuel cost characteristics for Case 5 are shown in Figure 10.  

Table 8. Case 5 (Fuel cost minimization) results in IEEE 118-bus system. 

Algorithm Fuel Cost ($/h) TVD (pu) PG69 
(Slack Bus) 

Power Loss 
MW MVAr 

Base Case 131,220.0208 1.4389 513.8101 132.8101 782.6073 
J-PPS1 129,961.8924 1.4402 489.0344 113.4784 745.3196 
J-PPS2 129,821.4309 1.5238 430.2158 118.5608 762.0786 
J-PPS3 129,507.6123 1.3486 440.1366 109.6528 668.4798 

Jaya 130,165.8424 1.4991 482.2581 112.9269 740.0970 
DA 130,016.5235 1.4596 450.9608 119.1369 751.3072 

GWO 130,053.1453 1.4015 461.0356 108.2561 698.1435 
IMFO [20] 131,820.0000 1.5944 407.192 77.6522 −910.020 

Interior point [30] 129,720.70 N. A N. A N. A N. A 
CC-ACOPF [31] 129,662.0 N. A N. A N. A N. A 

NLP [32] 129,700 N. A N. A N. A N. A 
QP [32] 129,600 N. A N. A N. A N. A 

MIQP [32] 129,600 N. A N. A N. A N. A 
ALC-PSO [33] 129,546.0847 N. A N. A N. A N. A 
PSOGSA [34] 129,733.58 N. A N. A 73.21 N. A 
GPU-PSO [35] 129,627.03 N. A N. A 76.984 N. A 

IMFO = improved moth-flame optimization; ALC-PSO = particle swarm optimization with an aging leader and chal-
lengers; PSOGSA = Hybrid Particle Swarm Optimization and Gravitational Search Algorithm; GPU-PSO = Partial swarm 
optimization-based graphics processing units; CC-ACOPF = Chance Constrained Optimal Power Flow; QP = quadratic 
programming; MIQP = Mixed Integer quadratic programming. 

 
Figure 10. Convergence characteristics for various algorithms for Case 5. 

  

Figure 10. Convergence characteristics for various algorithms for Case 5.

5. Statistical Analysis

Statistical analysis was carried out to evaluate the robustness of DA, GWO, Jaya,
J-PPS1, J-PPS2 and J-PPS3 algorithms to solve the OPF problem with and without DG. A
total of 50 independent trials were carried out with the same population size and same no.
of function evaluations for each case. As previously mentioned, the population sizes and
the maximum NFE were 30 and 6000 for the IEEE 30-bus test system, respectively, and as 40
and 12,000 for the IEEE 57-bus system, respectively, which provided the best results. These
trials were utilized to find out the best value, worst value, average (mean) value of OPF
results and standard deviation (SD) required for statistical analysis of various algorithms
implemented in this paper and are shown in Tables 9 and 10, respectively. These tables
show that, for all the considered cases of IEEE 30-bus and IEEE 57-bus test systems, the
best, worst and mean values are nearest to each other; therefore, the standard deviation
values are low. The smallest SD values offered by the proposed J-PPS3 algorithm in all
the cases clearly indicate that statistically meaningful results are obtained by the proposed
J-PPS3 method. This affirms the robustness of the proposed algorithm.
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Table 9. Performance measures of various algorithms for IEEE 30-bus system.

Algorithm
Without DG Incorporating DG

Best Worst Mean Std.
Deviation Best Worst Mean Std.

Deviation

DA 965.3516 966.4352 965.8734 0.02526 938.5816 939.1761 938.7554 0.02615

GWO 965.3025 966.7339 965.7564 0.02151 938.4980 939.2469 938.8678 0.02387

Jaya 965.2868 966.8154 965.8975 0.01983 938.3787 939.2543 938.9781 0.01955

Jaya–PPS1 965.2159 965.6587 965.4260 0.01851 937.6646 937.8942 937.7815 0.01829

Jaya–PPS2 965.1201 965.4089 965.2481 0.01809 937.3837 937.6582 937.4982 0.01785

Jaya–PPS3 965.0228 965.3261 965.2094 0.01132 937.3486 937.5803 937.4623 0.01105

Table 10. Performance measures of various algorithms for IEEE 57-bus system.

Algorithm
Without DG Incorporating DG

Best Worst Mean Std.
Deviation Best Worst Mean Std.

Deviation

DA 43,887.437 43,973.873 43,893.893 0.02988 39,200.178 39,218.879 39,207.656 0.02887

GWO 43,864.841 43,896.887 43,871.698 0.02917 39,173.097 39,181.365 39,178.432 0.02828

Jaya 43,833.629 43,845.953 43,839.894 0.02820 39,162.889 39,175.542 39,168.764 0.02812

Jaya–PPS1 43,825.880 43,839.720 43,833.542 0.02588 39,167.596 39,176.742 39,172.427 0.02609

Jaya–PPS2 43,793.882 43,804.659 43,800.752 0.02602 39,165.964 39,174.694 39,169.524 0.02531

Jaya–PPS3 43788.631 43797.462 43793.298 0.01299 39136.324 39140.437 39138.542 0.01297

6. Conclusions

This paper proposes a hybrid Jaya–PPS algorithm using Jaya and Powel’s Pattern
Search method to solve the multi-objective optimal power flow problem incorporating DG
to minimize generation fuel cost, emission, real power loss and voltage profile improvement
simultaneously. The multi-objective optimization problem has been solved by transforming
it into a single-objective optimization problem using weighting factors. Three versions
of hybrid Jaya–PPS techniques J-PPS1, J-PPS2 and J-PPS3, were developed by integrating
the PPS method in different ways. In order to evaluate the performance of the proposed
hybrid Jaya–PPS algorithms, these algorithms were employed to solve the OPF problem in
standard IEEE 30-bus and IEEE 57-bus systems with/without DG and IEEE 118-bus systems
for fuel cost minimization. The results achieved by the hybrid Jaya–PPS algorithms were
compared to the Dragonfly algorithm, Grey Wolf Optimization and Jaya algorithms, and
the reported results published in recent literature. The numerical outcomes demonstrate
that the proposed J-PPS3 algorithm dominates other approaches when solving the OPF
problem. For example, the combined objective function found by Jaya–PPS1 for the 30-bus
system is 937.3486, with a reduction of 2.86% of the original system, with a 0.01105 standard
deviation. This benefit increases further with the size of the system. Statistical analysis has
shown that the hybrid J-PPS3 algorithm is a reliable and robust optimization algorithm.
As the hybrid J-PPS3 algorithm has good exploration and exploitation properties, it can
reliably solve the OPF problem in practical power systems.
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Nomenclature

W dependent variable
X control variable
M (W, X) objective function
g (W, X) & h (W, X) equality and inequality constraints
NB number of buses
NLB number of load buses
Ntl number of transmission lines
NGN numbers of generators
NC number of VAR compensation units
NTR number of regulating transformers
Pdi and Qdi active and reactive load
Pgi and Qgi Active & reactive power generations
PLoss and QLoss real and reactive power loss
Umin

gk
and Umax

gk
minimum & maximum voltage limits of kth generator bus

Qmin
gk

and Qmax
gk

minimum and maximum limits of reactive power output of kth generator
Pmin

gk
and Pmax

gk
minimum and maximum active power limits of kth generating unit

Tmax
k and Tmin

k maximum and minimum tap setting of kth transformer
Umax

Lk
and Umin

Lk
maximum and minimum voltage limit of kth load bus

Smax
lk

maximum MVA flow in kth transmission line
C1, C2, C3 and C4 penalty factors corresponding to limit violations
Ai, Bi, and Ci fuel cost coefficients of the ith generating unit
Pg1 slack bus generator’s active power output
αi, βi, γi, ξi, λi emission coefficients of ith generating unit
pop Population size
Itermax Maximum No. of iterations
IterJmax Maximum No. of Jaya iterations
IterPmax Maximum No. of PPS iterations
NFE Number of function evaluations
JFE Number of Jaya Function Evaluations
PSFE Number of PPS Function Evaluation
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