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Abstract: Photovoltaics are methods used to generate electricity by using solar cells, which convert
natural energy from the sun. This generation makes use of unlimited natural energy. However, this
generation is irregular because they depend on weather occurrences. For this reason, there is a need to
improve their economic efficiency through accurate predictions and reducing their uncertainty. Most
researches were conducted to predict photovoltaic generation with various machine learning and
deep learning methods that have complicated structures and over-fitted performances. As improving
the performance, this paper explores the probabilistic approach to improve the prediction of the
photovoltaic rate of power output per hour. This research conducted a variable correlation analysis
with output values and a specific EM algorithm (expectation and maximization) made from 6054
observations. A comparison was made between the performance of the EM algorithm with five
different machine learning algorithms. The EM algorithm exhibited the best performance compared
to other algorithms with an average of 0.75 accuracies. Notably, there is the benefit of performance,
stability, the goodness of fit, lightness, and avoiding overfitting issues using the EM algorithm.
According to the results, the EM algorithm improves photovoltaic power output prediction with
simple weather forecasting services.

Keywords: photovoltaic power output prediction; expectation and maximization (EM) algorithm;
probabilistic method; correlation analysis

1. introduction

The adoption of the large-scale solar photovoltaic (PV) plants worldwide has been
driven by the need to curb environmental pollution and through reduction of fossil fuel
usage and the associated carbon emissions [1]. Although the development of PV systems
is essential, of equal importance is PV resource prediction, since its availability limits
the development of a PV system. To plan grid-connected PV systems efficiently with low
fluctuations in the power output [2], PV power should be accurately predicted for at least up
to 24 h. Having accurate forecasted PV output in an hour or more short-term time resolution
helps the grid operator to determine the necessary backup generation capacity through the
determination of the shortfall on the actual generation from the forecasted values to enhance
grid reliability. Moreover, forecasting the expected PV capacity benefits the customer by
lowering energy cost and reducing uncertainty [3]. A review of published literature reveals
the proposals based on various methods and tools for forecasting expected PV power. Some
of the approaches employ exogenous data from numerical weather prediction, data of
images, and nearest PV system and local measurements as input, whereas other approaches
model various previously acquired PV data from prospective sites [3]. Notably, the horizon
for carrying out the forecast can range from a few seconds to days or years. For spatial
forecasting, however, the range can either be a site or regional scale. The categories for
forecasting horizons include very short-term forecast with a range from 1 min to several
minutes, short-term forecast ranging from 1 h or several hours ahead to a day or a week
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ahead, medium-term ranging from 1 month to 1 year, and finally long-term forecast
which ranges from 1 to 10 years ahead [4]. To design an efficient energy management PV
integrated system, that encompasses unit commitment, power scheduling, and dispatch,
both short-term and very short-term forecast are very necessary to improve the overall
grid efficiency. Most researches conducted not only prediction accuracy with fixed input
parameters but also prediction models of machine learning and stochastic methodologies.

Regarding demonstrations of using probabilistic and machine learning methods with
nonlinear systems, there have been several studies that applied these methods to industrial
systems. Ponza et al. [5] established an algorithm combining rules and a database. In
addition, Ahmed et al. [6] suggested six different machine learning models for neural
network, support vector machine, decision tree, random forest, extra tree, and gradient
boosted trees using an inertial measurement unit and global positioning system to classify
different pedestrian events. Hedrea et al. [7] presented a tensor product-based model
for tower crane modeling, which has good system identification performance with a
nonlinear real system. Research indicates that the prediction accuracy of the model used
depends on the forecast horizon irrespective of the application of similar model parameters
for the forecast [3,4]. Pedro and Coimbra (2012) [8] studied five machine-learning and
deep-learning models for PV forecasting. Their research indicated that an artificial neural
network with a genetic algorithm gets the best performances compared to other models
when applied to PV power forecasting respectively. Filipe et al. [9] proposed an ensemble
model of the statistical method with application of the physical method. Dong et al. [10]
applied filtered stochastic models recursively estimating PV forecasting. This method
gets improvements in forecasting accuracy compared to other machine learning methods.
Auto-regressive and auto-regressive exogenous models (ARX) were reported by Bacher
et al. (2009) [11]. The outcome noted a 35% root mean squared errors by ARX model on
the reference forecasting model. Furthermore, using weather data and sora irradiance
Almonacid et al. (2014) [12] and Leva et al. (2017) [13] applied an ANN model to predict the
hourly power output for a PV system based in Spain and Italy, respectively. The outcome
showed that the proposed model could predict hourly PV power output for sunny, partially
cloudy, and cloudy days having partially outperformed other models. On the other hand,
De Giorgi et al. (2016) [14] proposed various machine learning models to predict PV power
generation. The study used ambient and module temperatures, and irradiance data as
the input for setting up and testing the models. Based on the outcome, the proposed
support vector machine model was superior to the other models. Moreover, a support
vector machine for regression (SVMR) model with a prediction ahead for forecasted PV
generation was studied by Wolff et al. (2016) [15]. The model was based on the application
of solar data attained from weather measurement for the prediction of PV generation. From
the PV measurements for the SVMR model, good results were obtained for short forecast
periods (1h ahead), while the NWP model predictions were superior for prediction ranges
above 3 h. Through irradiance forecasts, SVMR predictions for cloud data of motions were
suited for periods between 1 and 3 h.

Although various approaches of prediction with machine learning and stochastic
algorithms are suggested, conventional prediction methods have limitations of performance
over short-term PV power output with only consideration of forecasted weather data [16]
and misses a few important variables. For example, a variable that records whether the sun
has risen or not is a very important variable in predicting PV power output, but traditional
models do not take this into account.

The proposed model proposes a hierarchical probability model that interprets un-
observed (but important) variables as latent variables. We propose an algorithm that
iteratively predicts latent variable and PV power out from given data. Figure 1 is a diagram
devised to differentiate between the proposed method and the existing approaches.
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Figure 1. (top): Conventional prediction methods; (bottom): proposed method.

The paper’s organization is illustrated as follows. Section 2 introduces the system de-
scription and the framework’s prediction models. Section 3 will explore how the proposed
model of the EM algorithm is characterized. Section 4 will be a discussion of the prediction
performances of various machine learning models and proposed algorithms. Section 5 will
include the conclusion.

2. Backgrounds
2.1. PV Generation System

The office buildings with rooftop PV systems in South Korea are operated in micro en-
ergy grid (MEG) with other renewable energy resources and energy storage systems (ESS).
The geographical location of the buildings is latitude 37°31′ N and longitude 127°14′ E. The
nominal power output capacity of the PV system is 50 kW which consists of 20 parallel
strings of 10 series modules with a capacity of 250 W for each as shown in Figure 2. Each
PV panel is positioned east of south-facing with an angle of 20 degrees from the roofline.

The grid-connected PV systems measure not only PV-related data but historical
weather information with weather sensors. All measured parameters were stored in the
building energy management system (BEMS) every one hour. The used data period was 1st
of November 2016 to 31st of August 2017 (12 months) with hourly intervals. For instance,
almost 70% of collected data are used for training and the model predicts hourly PV power
output in a day-ahead (24 h) for the rest of the dataset.

Figure 2. Schematic diagram of grid-connected PV system.

2.2. Online Weather Forecasting Dataset

The online weather forecasting data are used to suggest a day-ahead real prediction
model obtained from Korea meteorological administration (KMA) and Korea astronomy
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and space science institute (KASI). The weather forecasting information is provided in 3-h
intervals by after tomorrow with online service in XML form and KASI offers solar altitude
by the hour. However, there is no way to use historical data for PV forecasting. Thus, this
paper gets the data by crawling and interpolates data in the one-hour interval.

The seven weather elements were used as predictors, which were pre-processed at
1-h intervals: wind speed (WSP), wind direction (WDR), outdoor air temperature (OAT),
relative humidity (ORH), sky condition (SCD), probability of precipitation (POP), solar
altitude (SAL). Table 1 describes the characteristics of the used weather forecasting datasets.

Table 1. Characteristics of online weather forecasting information.

Name Specifications

Wind speed (WSP) m/s

Wind direction (WDR) North (0), North east (1), East (2), South east (3),
South (4), South west (5), West (6), North west (7)

Outdoor air temperature (OAT) °C

Relative humidity (ORH) %

Sky condition (SCD) Clear (1), Little cloudy (2), Cloudy (3), Overcast (4)

Probability of precipitation (POP) %

Solar altitude (SAL) ◦

2.3. Prediction Model Description

In this study, the prediction performance of PV power output was compared com-
monly used prediction models such expectation-maximization (EM), artificial neural net-
work (ANN), support vector machine (SVM), random forest(RF), classification and regres-
sion tree (C&RT), Chi-squared automatic interaction detection (CHAID). Table 2 presents
key hyperparameters of PV power output prediction models.

The ANN is a network composed of artificial neurons or nodes which emulate the
biological neurons. This network is made up of input and output layers of processing
units identified as nodes that are interconnected via one or more ‘hidden’ layers which
are dictated by the numbers of independent and dependent variables sequentially. In this
study, a typical feed-forward neural network (FFNN) is used which trained only forward
direction with information.

The RF is an ensemble-learning algorithm that combines a large set of regression trees.
Each of the classification trees is built with a bootstrap sample of the data. Thus, RF uses
bootstrap aggregation, a successful approach for combining unstable learners, and random
variable selection for tree building.

The CART is an effective binary recursive partitioning algorithm that can automatically
search the optimal decision tree and feature selection with the classification effect of the
features at each node. CART built the tree by recursively splitting the variable space based
on the impurity of the variables to determine the split till the termination condition is met.

The CHAID is a single variable prediction one which is a dependent variable, the
other variables are referred to as the predictor variables. CHAID is an iterative technique
that determines the most effective method given the dataset. Child nodes are created by
splitting the subsets of the space repeatedly. This is done to the whole dataset to construct
CHAID. A merger is done between any allowable pairs of categories of the predictor
variable to ascertain the best split at each node.

The SVM is a classification model based on statistical learning theory and structural
risk minimization principle. The SVM, a classification model, was established on the
statistical learning theory and the structural risk immunization principle. SVM operates as
a non-linear mapping, renovating the new training data into a higher dimension. With the
new dimension, the SVM examines the linear optimal separating hyper-plane.
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Table 2. The hyperparameters of six PV power output prediction models.

Prediction Model Hyperparameter Value

ANN Activation function Sigmoid
Hidden neurons 10

RF Number of nodes 1000
Maximum tree depth 100

C&RT Impurity measure 0.0001
Minimum change in impurity Gini

CHAID Tree depth4
Minimum change in frequencies 0.001

SVM Kernel type RBF Gamma Radial Basis Function(RBF)+0.1

3. Proposed Method

Machine learning models involve a heavy computational burden, which is not ap-
propriate for the circumstances of Korean historical weather station data. In contrast
to previous studies using machine learning models, this research uses the expectation-
maximization (EM) algorithm [17]. There are numerous applications of the EM algorithm
with the identification of missing data in aggressive models and hidden variables of each
state [18]. Irregular performance with missing gathered data in industrial processes hap-
pens regularly. Kalyani et al. [19] suggested an EM algorithm setting for removal of outliers
in irregular data. The EM algorithm has been applied in various ways to incomplete data
with missing values. Also, Deng et al. [14] dealt with a Bayesian framework using the
EM algorithm to reduce uncertainty errors in soft lab data. However, there is no research
that applies the EM algorithm to the regression and prediction of specific values, and it is
applicable to other industrial systems to handle various latent variables. Also, modeling of
the EM algorithm has no hyper-parameters for tuning compared to other machine learning
methods and consumes a lot of time and domain knowledge randomness. With similar
circumstances as the previous research mentioned above, predicting the weather data
of Korean weather stations is incomplete. So, this research applies the EM algorithm to
conduct PV prediction. In figuring out the input features of data, the sky condition would
have the lowest correlation with power generation. Also, this research considers the sky
condition as a latent variable to estimate PV output. Although the sky condition is not
an important variable, it is difficult to estimate in weather forecasting data due to the
weather forecasting comprising four different levels of cloudiness. For this reason, there
is a disadvantage that the performance of the previous model varies greatly depending
on sky condition measurement accuracy. To avoid those drawbacks, the sky condition
is considered a latent variable among other features and the EM algorithm is applied to
jointly estimate the sky condition and PV output. In addition to correlation analysis of
input data, the input of probabilities of precipitation and sky conditions are very correlated
with the values shown as Table 3. The correlated values do not affect the prediction results.
Thus, this research uses the POP input variable instead using both of POP and SCD input
variables shown as Figure 3 .
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Figure 3. Visualization of Table 3.

Table 3. Correlation matrix.

WDR WSP OAT RH SCD POP

WDR 1 0.40 −0.17 −0.36 −0.32 −0.27
WSP 0.40 1 −0.05 −0.42 −0.07 0.01
OAT −0.17 −0.05 1 0.05 0.33 0.30
RH −0.36 −0.42 0.05 1 0.48 0.47

SCD −0.32 −0.07 0.33 0.48 1 0.84
POP −0.27 0.01 0.30 0.47 0.84 1

Our goal was to construct a model that can predict pvoutput. The pvoutput means the
amount of power generated from sunlight, which is affected by various weather conditions.
We observed an hourly rate of electricity production from 01:00 on 21st of November, 2016
to 23:00 on 26th of August, 2017, yielding 6504 observations. Let these values as z, so z
is a 6504× 1 vector. Further, define the weather conditions that affect z as X. The design
matrix X is composed of observations of the following five weather conditions, thus X is a
6504× 5 matrix.

The value of X was obtained from Korea Meteorological Administration (https://data.
kma.go.kr). Predicting z based on X seems very reasonable at first glance, but the result is
somewhat inaccurate. The reason for this is that the most important factor in predicting
z is whether the sun is on or off. If the sun does not rise, the amount of power produced
would only be zero, even though all of the values of X (wind speed, ... , solar altitude) would
meet the perfect conditions for power generation.

For this reason, our study introduces a latent variable w which indicates the presence
of the sun. Like z, w is a vector of length 6504 and wi = 0 means that there is no sun at
time i and wi = 1 means the sun exists at time i. Note that wi is not a simple variable to
distinguish day and night at the time i. That is, it is not true that the solar altitude> 0 at the
time i implies wi = 1. For example, during rainy daylight, the solar altitude is positive but
wi = 0.

To consider the effects of wi, consider the following model:

zi = Wiyi + (1−Wi)ỹi, i = 1, . . . , n

and assume that (1) Wi ∼ i.i.d. Bernoulli(pi) where pi =
exp(γ+∑

p
j=1 xij β j)

exp(γ+∑
p
j=1 xij β j)+1

, (2) yi =

∑
p
j=1 xijβ j + εi where ε ∼ i.i.d. N(0, σ2), and (3) ỹi = 0. In here n = 6504, p = 5, and xij is

the (i, j)th element of X. The parameter γ controls the average value of pi, which means
the probability that the sun exists at the ith time. Above the model, yi is the power output
when wi = 1, and we assume that it can be modeled by simple linear regression. The ỹi
is the power output when wi = 0, and we assume that it is always zero. For each i, we
observe zi rather than (wi, zi). Thus, z is the observed data and (w, z) is the complete data.
To handle this missing problem, we adapt the EM algorithm.

https://data.kma.go.kr
https://data.kma.go.kr


Energies 2021, 14, 2822 7 of 15

Let θ = (γ, β). The likelihood of complete data is as follows:

L(θ) =
n

∏
i=1

f (zi|wi) f (wi)

where

f (zi|wi) =

[
1

σ
√

2π
exp

(
−
(
zi − x′iβ

)2

2σ2

)]wi[
δ(zi)

]1−wi

and

f (wi) =

[
exp(γ + x′iβ)

exp(γ + x′iβ) + 1

]wi[
1−

exp(γ + x′iβ)
exp(γ + x′iβ) + 1

]1−wi

.

Here, δ(·) is the Dirac delta function and xi = (xi1, . . . , xip)
′.

[E-step]

In this step, we need to calculate the conditional expectation

Q(θ|θ(k)) = E
θ(k)
[

log L(θ|z, w)
∣∣z] = n

∑
i=1

(
E

θ(k)
[

log f (zi|wi)|zi
]
+ E

θ(k)
[

log f (wi)|zi
])

.

The most important part of the calculation of Q(θ|θ(k)) is the calculation of E
θ(k)

(Wi|zi)

which is a function of θ(k) where θ(k) is current estimate value of θ. By definition of
conditional expectation, E

θ(k)
(Wi|zi) can be expressed as

E
θ(k)

(Wi|zi) =
p(k)i

1
σ
√

2π
exp

(
− (zi−x′i β

(k))2

2σ2

)
p(k)i

1
σ
√

2π
exp

(
− (zi−x′i β

(k))2

2σ2

)
+ (1− p(k)i )δ(zi)

.

Note that E
θ(k)

(Wi|zi) is always 0 when z > 0, otherwise E
θ(k)

(Wi|zi) is always 1 due
to the characteristics of the delta function. Thus,

E
θ(k)

(Wi|zi) = I(zi > 0)

where I(·) is the indicator function. This means that Q(θ|θ(k)) is not a function of θ(k),
so θ can be obtained by repeating E-step and M-step only once. This ensures very fast
convergence.

[M-step]

Let us differentiate Q(θ|θ(k)) by γ.

∂

∂γ
Q(θ|θ(k)) =

n

∑
i=1

(
∂

∂γ
E
[

log f (zi|wi)|zi
]
+

∂

∂γ
E
[

log f (wi)|zi
])

.

Note that ∂
∂γ E

[
log f (zi|wi)|zi

]
= 0 since f (zi|wi) is constant of γ. The term ∂

∂γ E
[

log f (wi)|zi
]

can be expressed as follows:

∂

∂γ
E
[

log f (wi)|zi
]
= I(zi > 0)

1

eγ+x′i β + 1
+ I(zi = 0)

−eγ+x′i β

eγ+x′i β + 1
.
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From

pi =
exp(γ + ∑

p
j=1 xijβ j)

exp(γ + ∑
p
j=1 xijβ j) + 1

=
eγ+x′i β

eγ+x′i β + 1

and
1− pi =

1
exp(γ + ∑

p
j=1 xijβ j) + 1

=
1

eγ+x′i β + 1
,

we can easily check that ∂
∂γ Q(θ|θ(k)) = 0 is equivalent to

m =
n

∑
i=1

pi (1)

where m = ∑n
i=1 I(zi > 0). Note that Equation (1) is an interpretable and reasonable

condition. Here, m can be interpreted as the number of observations when the sun rises and
we define pi as the probability of the sun rising at each observation. Therefore, Equation (1)
means the sum of probabilities of sunrise equals to the number of observations that actually
sun was up.

Now let us differentiate Q(θ|θ(k)) by β.

∂

∂β
Q(θ|θ(k)) =

n

∑
i=1

(
∂

∂β
E
[

log f (zi|wi)|zi
]
+

∂

∂β
E
[

log f (wi)|zi
])

.

The left one can be calculated as

∂

∂β
E
[

log f (zi|wi)|zi
]
= I(zi > 0)

(zi − x′iβ)xi

2σ2 = I(zi > 0)
xizi − xix′iβ

2σ2 .

Since xi is a p× 1 vector, xix′i is a p× p matrix such that

xix′i =


x2

i1 xi1xi2 . . . xi1xip
xi2xi1 x2

i2 . . . xi2xip
. . . . . . . . . . . .

xipxi1 xipxi2 . . . x2
ip

,

thus, ∑n
i=1 xix′i can be expressed as follows:

n

∑
i=1

xix′i =


∑n

i=1 x2
i1 ∑n

i=1 xi1xi2 . . . ∑n
i=1 xi1xip

∑n
i=1 xi2xi1 ∑n

i=1 x2
i2 . . . ∑n

i=1 xi2xip
. . . . . . . . . . . .

∑n
i=1 xipxi1 ∑n

i=1 xipxi2 . . . ∑n
i=1 x2

ip

 = X′X.

Similarly, one can easily check that

n

∑
i=1

xizi = X′z.

Note that ∑n
i=1 xix′i and ∑n

i=1 xizi can be expressed as{
∑n

i=1 xix′i = ∑i∈{i:zi>0} xix′i + ∑i∈{i:zi=0} xix′i = X̃′X̃ +
(
X′X− X̃′X̃

)
∑n

i=1 xizi = ∑i∈{i:zi>0} xizi + ∑i∈{i:zi=0} xizi = X̃′z +
(
X′z− X̃′z

)
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where X̃′X̃ = ∑i∈{i:zi>0} xix′i and X̃′z = ∑i∈{i:zi>0} xizi. Here, X̃ can be considered as
another design matrix defined except for the observation where zi is zero. By introducing
the X̃, we can express ∑n

i=1

(
∂

∂β E
[

log f (zi|wi)|zi
])

as

n

∑
i=1

(
∂

∂β
E
[

log f (zi|wi)|zi
])

=
1

2σ2

(
X̃′z− X̃′X̃β

)
. (2)

Now, let us focus on the term ∂
∂β E

[
log f (wi)|zi

]
. This term can be calculated as

∂

∂β
E
[

log f (wi)|zi
]
=

1
2σ2

(
I(zi > 0)

x′i
eγ+x′i β + 1

+ I(zi = 0)
−eγ+x′i βxi

′

eγ+x′i β + 1

)
.

Using pi =
eγ+x′i β

eγ+x′i β
+1

and 1− pi =
1

eγ+x′i β
+1

, we get

∂

∂β
E
[

log f (wi)|zi
]
=

1
2σ2

(
I(zi > 0)x′i(1− pi)− I(zi = 0)x′i pi

)
=

1
2σ2

(
I(zi > 0)x′i − I(zi > 0)x′i pi − I(zi = 0)x′i pi

)
=

1
2σ2

(
I(zi > 0)x′i − x′i pi

)
.

Observe
n

∑
i=1

x′i =
( n

∑
i=1

xi1, . . . ,
n

∑
i=1

xip

)′
= X′1

where 1 is an n× 1 vector such that 1 = (1, 1, . . . , 1)′. Similarly, one can check that

n

∑
i=1

xi pi = X′p

where p is an n× 1 vector with p = (p1, . . . , pn)′. Thus,

n

∑
i=1

(
∂

∂β
E
[

log f (wi)|zi
])

= −X′p + X̃′1. (3)

Combining Equations (2) and (3), we obtain

∂

∂β
E
[

log L(θ)|z
]
= X̃′z− X̃′X̃β− X′p + X̃′1.

Therefore the last step is to solve the following equations.{
m−∑n

i=1 pi = 0
X̃′z− X̃′X̃β− X′p + X̃′1 = 0

(4)

To solve (4), we propose the following Algorithm 1.

Algorithm 1 Proposed algorithm for prediction of PV power output

1: Get m and X̃.
2: Initialize p and β as p(0) and β(0) and set ` = 0.
3: β(`+1) ←

(
X̃′X̃

)−1X̃′z +
(
X̃′X̃

)−1(X̃′1− X′p(`)
)

4: p(`+1) ← m
(

eXβ(`+1)

1+eXβ(`+1)

)(
1′ eXβ(`+1)

1+eXβ(`+1)

)−1

5: `← `+ 1
6: Repeat 3–5 until convergence.
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4. Results

This research conducts various machine learning models and probabilistic models
to predict PV generation included in Sections 2 and 3. The analysis was conducted from
largely the following three viewpoints.

4.1. Overall Performance Comparison

In this section, the overall performances of five machine learning models and the
proposed method are compared. Figure 4 shows the goodness-of-fit through R2 when each
of 5 months-8 months was set as a training set. The x-axis of each figure is the actual data,
and the y-axis is the estimated values. Therefore, it can be interpreted that the more the
points are concentrated near the straight line, the more excellent the models are. The degree
to which the points are concentrated near the straight line is indicated through R2, and the
higher the value of R2, the better the fit of the model.
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Figure 4. The R2 values of the six models and plots of actual values vs. predicted values when the
training sets were set to 5–8 months.

When 6 months and 7 months were set as training sets, respectively, the ANN model
showed the highest fits, and the R2 value at this time was 0.75. However, when trained
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on data for 5 months and 8 months, respectively, the ANN model did not show the same
high fits as with 6 and 7 months. In addition to the ANN method, the proposed method
EM algorithm showed high fits. EM showed evenly good performances for 5–8 months
and has the advantage of showing relatively uniform performances compared to the ANN
method. Other methods generally have poorer fits compared to EM and ANN.

In analyses thereafter, all training sets were set to 7 months. The reasons why the
training sets were set to 7 months are (1) that our target model, ANN, is the setting that
shows the best performance, and (2) that if the methods learn for 7 months, the methods
will learn until June and given that the rainy season in Korea is June-August, learning
June, which is one month in the rainy season, was thought to be appropriate. Figure 5 is a
box plot of errors when 7 months was set as the training set. The box plot is meaningful
for comparing the overall performances of the models, but it is not informative. When
evaluating the prediction performance of solar electric energy, the point that is worthy of
attention is the fit between 8:00 and 17:00 because this is the time zone in which electric
energy is mainly produced. The analysis in this section gives no information about the fit
for the time we are interested in.

Figure 5. The train and test errors of the six models when the training was set to 7 months.

4.2. Analysis of Model Performances by Time

To overcome the limitations of the analysis described in Section 4.1, the performances
of the model should be reanalyzed by time zone. Figure 6 shows the comparison of the fits
of individual models by time.

An overall feature is the outliers of the errors from 7:00 to 17:00. This coincides with
the time when the sun is up. The differences in errors between the time when the sun is up
and the time when the sun is not up are very intuitive because when the sun is not up, the
electric energy production can be set to zero. Except for the SVM model, it can be seen that
most of the models well-adjusted the electric energy production to 0 during the time when
the sun was up. All models generally have large errors during the time. In particular, such
errors are outstanding between 10:00 and 14:00. Since this is the time when the sunlight is
the strongest in a day, it is more difficult to predict accurate electric energy production.

A salient feature is the outliers of the errors between 7:00 and 17:00. The outliers are
expressed as points that deviated from the box plot. SVM has the least number of outliers
followed by the EM algorithm. The fact that a model has many outliers means that there
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are many points where the prediction by the model deviates greatly because the variance
of the model is large. Therefore, models with many outliers are suspected of overfitting.
Other models’ outliers are very large from 15:00 to 17:00.

In terms of performance stability, the EM algorithm and SVM are excellent. However,
SVM has a disadvantage in that the overall fitting is poor. In addition, the fitting of SVM is
much poorer compared to other models when electric energy production is zero. ANN has
a good overall fit but has a weakness of unstable performances in certain time zones.
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Figure 6. The goodness-of-fit of each model is analyzed by time. Each column represents hours, and
each row represents a model. Each figure is a representation of the errors of the relevant method
during the relevant time.

4.3. Analysis of a Certain Day after Magnifying and Refocusing

In this section, we compare the performances of EM and ANN-based on a certain day.
In addition, we refocus on the overfitting issue of ANN more clearly. ANN has an issue of
overfitting with various training datasets. The top row of Figure 7 shows that both EM and
ANN predicting PV outputs. The bottom row of Figure 7 enlarges among EM, ANN, and
real values of PV from 28th of June to 3rd of July.
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Figure 7. Comparison performances between EM and ANN.

In Figure 7, the results of ANN and EM are represented in blue and red, respectively.
Actual values are expressed in gray shades. During the periods of rainy days, EM has
more stable predicting results compared to ANN. ANN has no mountain-shaped fit results
like the overfitting results. The results of EM are explainable to predict the PV outputs.
Especially, from 28th of June to 29th of June, and 2nd of July, the predicted values of ANN
are very volatile, and if a real-time prediction result was required, the ANN’s results are
useless. The results of EM are also the same in that it is not suitable for the periods, but EM
yields explainable mountain-shape results. Without the sudden rain, EM would have been
a very good fit.

Considering the overall aspects, the advantages of EM can be summarized as follows.

• Goodness of Fit: Overall results of the fit are excellent with ANN (deep neural net-
work).

• Stability: There is little difference in performance between performances based on
R2 values.

• Explainable model: It is an interpretable model as described before.
• Lightness: The model is light and estimates θ(k) very fast. The reason is that Q

(
θ|θ(k)

)
is not the function of θ(k).

• Avoid overfitting issue: It is more free from the overfitting issue than other complex
models (ANN).

• No hyperparameter: There are no separate hyperparameters to be set to train the
model. This means that it is easy to use overall aspects with no expertise.

5. Concluding Remarks
5.1. Summary

This research conducted PV prediction with Korea Meteorological predicting data.
To analyze predicting data, latent variables were introduced and an EM process that can
optimize both PV and latent variables was designed. For performance comparison, various
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methods and comparative experiments were performed, and the proposed method proved
to be excellent in performance while having several advantages, such as providing an
interpretable model that is free from overfitting issues.

The proposed model had many advantages over the existing methods. There are many
advantages, such as performance, stability of the model, lightness, and no hyperparameters,
but the main advantage is that a new hierarchical model including latent variables is
proposed. In this study, a model including one latent variable has been studied, but various
latent variables that were not observed may be included depending on the situation. Our
methods could easily be extended to these studies.

5.2. Future Research

In our model, the value of m is assumed to be a constant. This means that the rate at
which the sun shines is always the same. From a macroscopic point of view, this is correct,
but it may not be the case if you observe the data more in high resolution. For example, the
rate of sunshine may vary depending on the season. In some seasons the sun rises long,
in some seasons it does not. This seasonality is not reflected in our study. In addition, m
may vary by region. Some areas may have a longer sun than others. In the end, m is not a
constant, but a variable that changes subtly according to time and space. If we model these
subtle local fluctuations, the performance of the prediction model can be improved. In the
future, we plan to study a prediction model that reflects seasonality.
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