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Abstract: The 5G communication network will underpin a vast number of new and emerging services,
paving the way for unprecedented performance and capabilities in mobile networks. In this setting,
the Internet of Things (IoT) will proliferate, and IoT devices will be included in many 5G application
contexts, including the Smart Grid. Even though 5G technology has been designed by taking security
into account, design provisions may be undermined by software-rooted vulnerabilities in IoT devices
that allow threat actors to compromise the devices, demote confidentiality, integrity and availability,
and even pose risks for the operation of the power grid critical infrastructures. In this paper, we
assess the current state of the vulnerabilities in IoT software utilized in smart grid applications from
a source code point of view. To that end, we identified and analyzed open-source software that is
used in the power grid and the IoT domain that varies in characteristics and functionality, ranging
from operating systems to communication protocols, allowing us to obtain a more complete view
of the vulnerability landscape. The results of this study can be used in the domain of software
development, to enhance the security of produced software, as well as in the domain of automated
software testing, targeting improvements to vulnerability detection mechanisms, especially with a
focus on the reduction of false positives.

Keywords: Internet of Things; software vulnerabilities; security; robustness

1. Introduction

The 5G communication network will enable new applications to emerge in many
societal and economic functions such as energy, transport, and health by providing im-
proved and new features over its predecessors with respect to capacity, delay, service
development, energy consumption, connectivity, and more. The next generation network
will support an increasingly diverse set of new and emerging services, paving the way for
unprecedented performance and capabilities in mobile networks. It introduces a new core
network architecture with the main feature being network slicing which will enable the
offering of dedicated network slices enabling services per need. This allows for flexible,
smart and scalable adaptation of the network resources available at a given time to meet
the requirements of the services supported [1]. All these characteristics will enable further
proliferation of the IoT, introducing the “5G-enabled IoT” era, which will support the
deployment of a massive number of IoT devices towards covering the ever-increasing
demand for wireless services, delivering advanced and secure applications and services—
including blockchain-supported services (e.g., [2–4])—and stimulating economic and social
growth [5].

The Internet of Things (IoT) refers to Internet-enabled devices that can communicate,
sense, and make changes in their environment. They comprise an extensively diverse range
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of consumer, enterprise, and industrial products like smart meters, smart watches, smart
TVs, connected cars, inventory optimization sensors, and face recognition cameras. Various
predictions have been published about the rate of the IoT proliferation over the next years.
According to a survey conducted by IHS Markit, the number of connected IoT devices will
increase by 12% on average annually starting from 27 billion in 2017 to reach 125 billion in
2030 [6]. Another survey conducted by Statista, estimates the connected IoT devices will
reach 75 billion in 2025 [7].

The 5G technology along with the ever-increasing IoT will greatly benefit innovation in
the power sector, through its utilization in smart grids. The coupling of 5G with smart grids
will pave the way for efficient power consumption, management, and monitoring, along
with automation and intelligent control [8]. This will result in a transformation of today’s
power network bringing radical changes in the production, transmission, and consump-
tion of electricity while supporting bidirectional flow of data and power between power
providers and end-consumers. Specifically, smart grids will connect the whole supply chain
of the industry; from the existing legacy control and communications infrastructure, to the
generation and transmission systems, to the distribution network and the end-consumers’
premises [9]. The information transmitted in smart grids is generated by IoT devices called
smart meters, and this information is utilized to supply the aforementioned applications
and benefits. The smart grid communication channels also accommodate the exchange of
control information between smart meters, meter data management systems, and other
systems that partly comprise the power grid.

Even though 5G technology has been designed by taking security into account, the
underlying cyber security threat landscape is evolving rapidly. The advent of the IoT has
not only brought benefits; it has also brought serious security and privacy considerations.
Numerous publications have provided a comprehensive mapping of the threat landscape
in IoT, smart grid and 5G systems and the identification of relevant mitigation strategies,
including [10–17]. More specifically, reference [10] portrays the threat landscape of next
generation IoT-enabled smart grids, while reference [15] examines the security measures
that are deemed appropriate for smart grids. The work in [16] presents dimensionality
reduction-based approaches for detecting and classifying internet-scale probing attempts
in the IoT, while reference [17] discusses artificial intelligence (AI)-based techniques for
performing intrusion detection in critical infrastructures. Reference [11] focuses on the
hardware trojans targeting IoT devices. Reference [13] provides an extensive analysis of
5G security, while reference [14] reviews the 5G specification and identifies aspects of user
privacy and security that are not adequately covered

Considering the above, we can conclude that the main body of knowledge in the field
focuses on policy, procedural, protocol design, architectural and contextual (including
human) factors. It is important, however, to note that the root causes of many major security
incidents that have been reported, including the Mirai botnet [18] and Stuxnet [19], and that
can be traced to software faults. The importance of software faults is very high, considering
that the very essence of the IoT is that they are accessible publicly through the Internet
and, therefore, architectural defenses cannot offer full protection by completely isolating
devices with vulnerable software. As smart grids infrastructure includes IoT devices
(e.g., smart meters) that perform critical operations and handle sensitive information they
are attractive targets for adversaries as well. The current literature reports numerous types
of attack against smart grids. Attackers may attempt to capture or alter the data flowing
through a smart grid network, thus compromising the confidentiality or integrity of the
system respectively. Most importantly, attackers may attempt to disrupt the operation of
the system, thus compromising its availability [12].

The need for decreased costs to create market demand, along with huge competition,
has led to a situation where the security aspect of device software and firmware does
not receive enough attention, and consequently products reaching the market suffer from
various of vulnerabilities, allowing threat actors to compromise them with little or no effort
at all. Indicatively, reference [20] reports that out of 13 small office-home office (SOHO)
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router and network attached storage (NAS) devices tested, all of them had vulnerabilities
resulting in 125 common vulnerability exposures (CVEs), while the response of some of
some of the manufacturers to the vulnerability reports filed to them was from non-existent
to suboptimal.

Most vulnerabilities can be traced to insecure coding practices by the software devel-
opers [21]. While much work has been published on IoT vulnerability analysis, most of it
employs black-box approaches like penetration testing and fuzzing [22–26]. Little work
has been published focusing on white-box testing of open-source software running on
IoT devices, by examining the underlying source code and the vulnerabilities stemming
from it. Even less work has been published for software vulnerabilities in the context of
smart grids. Vulnerability research in the IoT domain can greatly benefit from source code
reviews, since they usually discover different vulnerabilities than those discovered through
black-box approaches. Furthermore, vulnerabilities discovered in open-source software
can be documented in detail providing useful information for avoiding the recurrence of
the same coding errors.

Alnaeli et al. [27] evaluate three IoT software systems written in C/C++, namely:
openWSN (https://openwsn.atlassian.net/wiki/spaces/OW/overview; accessed on 13
May 2021), Contiki (http://www.contiki-os.org/), and TinyOS (http://www.tinyos.net/).
The evaluation is based on the usage of unsafe functions, i.e., functions where the developer
is responsible to ensure that the buffer provided for the storage of the result is large enough;
if not, a buffer overflow may occur. In the recent years, for each unsafe function, a safe
counterpart has been introduced, where the maximum buffer size that can be used by
the function is supplied as an additional parameter. The evaluation in [27] is broken
down into three “research questions”: (1) “What is the number of unsafe functions used
per system?”, (2) “Which unsafe functions are the most prevalent?”, and (3) “Over the
history of a system, is the presence of unsafe functions increasing or decreasing?”. The
detection of insecure functions was performed using the UnsafeFunsDetector tool developed
by one of the main authors. The results of the work indicate that Contiki has the largest
occurrence of insecure functions, while memcpy is the most-used insecure function between
the three evaluated systems followed by strlen, strcmp, and snprintf. The evaluation for the
third question was performed on 5 different versions of each software system, released
over the course of 5 years, with the results showing a fairly flat to increasing trend in the
usage of insecure functions between versions. The authors extended their work in [28] to
include an additional 15 IoT software systems written in C/C++. The results of this larger
dataset showed uOS-Embedded (https://github.com/sergev/uos-embedded/wiki/about;
accessed on 13 May 2021) to have the largest number of unsafe functions calls, while
memcpy remained the most used insecure function. The 5-year trend was examined for
only 4 of the newly added systems where three of them showed a flat trend and one a
decreasing trend.

Ferrara et al. [29] discuss the Open Web Application Security Project (OWASP) IoT
Top 10 [30] list and how effective static analysis would be in preventing these vulnerability
categories. The static analysis tool used as reference is Julia (https://www.juliasoft.com/,
https://news.grammatech.com/grammatech-acquires-juliasoft?hs_preview=CMJoYrRi-
32593222452; accessed on May 13 2021). Taking into account that the OWASP Top 10
list [31] is used as a reference for evaluating Static application security testing (SAST),
the authors use this information to deduce the effectiveness of SAST on the IoT-focused
list of most prevalent vulnerabilities. In other words, the judgment of the effectiveness
of Julia’s on the OWASP IoT Top 10 [30] is performed on a theoretical level at this point.
Additionally, the authors present an extension of Julia’s injection checker that aims to
address the novel challenges arising from IoT systems. The extension includes two main
functionalities. The first one utilizes Julia’s taint analysis engine to detect possible sensitive
information leakage by following the propagation of data supplied to sensors that provide
a public application programming interface (API). The second one allows a user to specify
sources and sinks through an Excel spreadsheet which contains all the API calls that handle
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sensitive data. Julia’s taint analysis engine returns a report of all the possible data flow
graphs with possible leakages. The authors test the extended version of Julia on five projects
based on Android Things which were chosen to be designed so that an edge program and
an Android application communicate through some channels. The experimental results
showed that issues related to the IoT-specific vulnerability categories were present in 4 out
of 5 systems and were detected successfully.

Medeiros et al. [32] evaluate the source code of energy metering software which
provide a web interface for smart meters. The source code is evaluated from a security
perspective using the WAP (http://awap.sourceforge.net/#acks; accessed on 13 May 2021)
(Web Application Protection) tool, which performs static analysis on PHP code and was
developed by the main author. Additionally, the tool inserts fixes that correct the identified
flaws and produces a report that educates the developers on how to avoid similar mistakes.
The energy metering software evaluated are emoncms (http://openenergymonitor.org/)
and measureit (https://code.google.com/p/measureit/; accessed on 13 May 2021). The
analysis reported three SQL injection and 14 XSS (Cross-site scripting) vulnerabilities, some
of which are discussed in detail. From the 17 reported vulnerabilities, 14 were confirmed
through their successful exploitation, while 3 of them were not successfully exploited,
meaning they were either false positives or the writers did not achieve to implement the
appropriate exploit.

Sachidananda et al. [33] propose a framework for the collection, analysis, and genera-
tion of static analysis reports for IoT open-source software. The writers have gathered a
large number of IoT firmwares, Android packages (APKs), operating systems, etc. using
a web crawler that they designed. Furthermore, they have designed a tool for statically
analyzing IoT firmware binaries called FirmScanner. The risk rating of identified vulnera-
bilities is performed through a customized version of OWASP’s Risk Rating Methodology
(https://owasp.org/www-community/OWASP_Risk_Rating_Methodology; accessed on
13 May 2021). The part of this work that is more pertinent to ours is the utilization of
static analysis tools to scan 50 IoT open-source software systems, ranging from operating
systems to network stacks. As each static analysis tool works differently, the writers take
this into account by using each one to detect different types of issues. The tools used are Vi-
sual Code Grepper (VCG) (https://sourceforge.net/projects/visualcodegrepp/; accessed
on 13 May 2021), CPPCheck (http://cppcheck.sourceforge.net/), Yasca (https://github.
com/scovetta/yasca; accessed on 13 May 2021), FindBugs (http://findbugs.sourceforge.
net/), FindSecBugs (https://find-sec-bugs.github.io/), and the PMD source code analyzer
(https://pmd.github.io/). The paper discusses some of the vulnerabilities found, clas-
sified under the Buffer Overflow, Code Injection, Memory Leaks, and Time of Check vs.
Time of Use (TOCTOU) categories. This analysis resulted in 7 new CVE requests and the
identification of 342 existing CVEs and 894 vulnerable code clones.

In this paper, we assess the current state of the vulnerabilities in IoT software utilized
in smart grids applications from a source code point of view. To that end, we identified and
analyzed open-source software that is used in the power grid and the IoT domain that varies
in characteristics and functionality, ranging from operating systems to communication
protocols, allowing us to obtain a more complete view of the vulnerability landscape. The
source code vulnerability assessment was performed through Static Application Security
Testing (SAST). Specifically, the SonarCloud and the Codacy platforms was used for
this purpose. The results were subsequently assessed manually, in order to discern true
positives and false positives. True positives correspond to reports that actually involve
some security issue and needs to be corrected, whereas false positives correspond to
reports where the code does not pose any security concern, and no action needs to be
taken. Reference [34] identifies two main root causes for false positives in software security
analysis: (a) technical issues, where the detection engine is not able to properly analyze
the call stack, the control flow or the referenced objects, resulting in an incorrect warning;
(b) contextual issues, where the code that has been flagged cannot be executed in contexts

http://awap.sourceforge.net/#acks
http://openenergymonitor.org/
https://code.google.com/p/measureit/
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://sourceforge.net/projects/visualcodegrepp/
http://cppcheck.sourceforge.net/
https://github.com/scovetta/yasca
https://github.com/scovetta/yasca
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
https://find-sec-bugs.github.io/
https://pmd.github.io/
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where the issue would not be exploited (e.g., debug mode, which is normally turned off in
production environments, or operations in trustworthy environments).

Furthermore, the results were categorized using a customized vulnerability categoriza-
tion based on the OWASP Top 10 list [31] and the MITRE Common Weakness Enumeration
(CWE) categorization scheme [35], as well as on the occurrence frequency and possible
impact of the identified vulnerabilities in our dataset. The results of this study can be used
in the domain of software development, to enhance the security of produced software, as
well as in the domain of automated software testing, for the targeting of improvements
to the vulnerability detection mechanisms, especially with a focus on the reduction of
false positives.

Our work advances the state-of-the-art in the current literature in the following respects:

1. It provides an updated and comprehensive landscape of software security faults in the
domain of IoT software used for the implementation of 5G devices and smart grids. To
support comprehensiveness, we identified and analyzed software that is widely used
in the target domain. The comprehensiveness of the landscape is further supported
by using a wide multitude of tools for automated security scanning, which includes
all scanners used by the platforms used in our experiments for the software security
faults analysis, namely Codacy (Codacy scanners: https://docs.codacy.com/getting-
started/supported-languages-and-tools/) and SonarCloud (languages and scanner
rules for SonarCloud: https://www.sonarqube.org/features/multi-languages/).

2. It provides a classification of software faults into standardized categories, supporting
the awareness of developers and researchers on the types of software security issues
that may appear in software within the target domain.

3. It includes an extensive discussion on true and false positives, which can be exploited
by researchers and practitioners to better focus on the areas needing review.

4. The paper results may be utilized in the IoT device software development domain,
to raise awareness of software developers and testers so as to improve the security
of built software, as well as in the domain of automated software testing, targeting
improvements to the vulnerability detection mechanisms. Additionally, the results
can be used in the overall security and risk assessment of 5G systems.

The rest of this paper is structured as follows: Section 2 presents the software that
was used in the vulnerability analysis, and the categorization scheme that was utilized for
vulnerability classification. Section 3 presents the results of the analysis, while Section 4
discusses the results obtained, concludes the paper and outlines future work.

2. Materials and Methods

In order to assess the current state of the software vulnerabilities in IoT software, we
conducted an extensive search for sources of software that is extensively used in the context
of IoT devices. The software could be used at any level of the software stack, including
operating system-level, application-level and library-level. Open-source repositories, such
as GitHub (https://github.com) and SourceForge (https://sourceforge.net/), but also
extended to generic web searches to cover custom distributions available from company or
organization sites. The evaluated software is presented in Section 2.1.

The following criteria were taken into account in the process of selecting the software
to be analyzed was as follows:

• The software should be widely applicable in the implementation of 5G-enabled
IoT devices.

• The overall software selection should provide the broadest possible coverage regarding
5G-enabled IoT device software stack components,

• The languages in which the software is implemented should at least cover C/C++
(mostly used for low-level implementations), Java (a portable compiled language used
in many platform and application implementations) and Python (a scripting language
widely employed for realizing applications, services and utilities).

https://docs.codacy.com/getting-started/supported-languages-and-tools/
https://docs.codacy.com/getting-started/supported-languages-and-tools/
https://www.sonarqube.org/features/multi-languages/
https://github.com
https://sourceforge.net/
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When multiple implementations for some specific functionalities were found on
GitHub (e.g., implementations of the IEC 61850 protocols), the implementation with the
highest number of stars and forks was selected, since this is bound to be more widely
used. For the one specific functionality (the implementation of the ModBus protocol), we
opted to include two distinct implementations, to demonstrate that security issues across
different realizations of the same functionality may diverge significantly.

The selected software was subsequently analyzed for security issues. Code secu-
rity analysis was performed using automated security tools, and the results were sub-
sequently manually inspected to distinguish true positives from false positives. For the
automated analysis we used the SonarCloud (https://sonarcloud.io/) and the Codacy
(https://app.codacy.com/) environments. In SonarCloud the following security anal-
ysis tools were utilized: SonarScanner for Maven (https://docs.sonarqube.org/latest/
analysis/scan/sonarscanner-for-maven/) and for Gradle (https://docs.sonarqube.org/
latest/analysis/scan/sonarscanner-for-gradle/) (Java); SonarScanner CLI (https://docs.
sonarqube.org/latest/analysis/scan/sonarscanner/) (C/C++); and automatic analysis
(online) for Python. In Codacy, all rules were turned on. The results were then processed
and organized according to security issue categories; to build the categorization scheme
we examined the software issue categories recorded in OWASP top-10 [31] as well as
the MITRE Common Weakness Enumeration (CWE) categorization scheme [35]. The IoT
software issue categorization scheme used in this paper is presented in Section 2.2.

Each reported issue was independently assessed by two reviewers, who inspected
the code related to the alleged vulnerability, considering the variables/objects involved
and the context within which the code is executed. For true positives, the reviewer also
classified the issue under the most relevant category. In case of a disagreement, the two
reviewers discussed the different viewpoints, until a consensus was reached. Overall, the
process used for conducting the security review is a combination of automated and manual
review, following the prescription of MITRE [36], and is in-line with the procedures used
to assess the security of software used in specific application domains, e.g., as reported for
SDN controllers [37] and medical devices [38].

2.1. Evaluated Software

In the following paragraphs we present the software used in our evaluation. For each
software, we present a brief description, including the functionalities of the smart grid
devices that the software supports. Characteristics of all the software analyzed, such as
source code location, release date, version etc. are summarized in Table 1.

2.1.1. jSML (Java Smart Message Language)

jSML is an open-source Java library that implements the Smart Message Language
(SML) communication protocol [39], and is made available under the Mozilla Public License
v2.0. SML is used for the transmission of smart meter data with messages following
a similar notation to that of ASN.1 [40]. The message encoding rules defined by the
SML standard are similar but not identical to those of the Basic Encoding Rules (BER)
encoding [40]. The jSML library can be used to construct, encode and send SML messages
as well as receive and decode them. Additionally, it provides an implementation of the
necessary SML transport layers for communication over TCP/IP and serial connections.

https://sonarcloud.io/
https://app.codacy.com/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-maven/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-maven/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-gradle/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-for-gradle/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner/
https://docs.sonarqube.org/latest/analysis/scan/sonarscanner/
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Table 1. Software projects used in the analysis.

Software Brief Description Version Release Date Language

jSML (https:
//www.openmuc.org/sml/) Java implementation of the Smart Message Language 1.1.2 19 Oct. 2018 Java

lib60870 (https://github.com/
mz-automation/lib60870)

C implementation of the IEC 60870-5-101 and
60870-5-104 protocols 2.3.0 16 Oct. 2020 C

libiec61850 (https://github.com/
mz-automation/libiec61850)

Implementation of the MMS, GOOSE and
SMV protocols 1.4.2.1 04 Apr.2020 C

JavaSMQ (https://github.com/
RealTimeLogic/JavaSMQ) Implementation of the SMQ, publish–subscribe system N/A 07 Dec. 2018 Java

Pymodbus (https://github.com/
riptideio/pymodbus) A full Modbus protocol implementation 2.5.1 28 Mar. 2021 Python

Modbus4j (https://github.com/
infiniteautomation/modbus4j) A Java implementation of the Modbus protocol 3.0.3 8 Jan. 2020 Java

Minnow server
(https://github.com/

RealTimeLogic/MinnowServer)
Small and fast embedded HTTP(S) WebSocket server N/A 03 Apr. 2019 C

Boa Webserver (https://github.
com/shrugly/boa-0.94.13)

simple and lightweight HTTP server for
embedded devices 0.94.13 30 Jul. 2002 C

Thttpd (https:
//acme.com/software/thttpd) Tiny HTTP server for embedded devices 2.29 23 May 2018 C

MicroWebSrv/2 (https://github.
com/jczic/MicroWebSrv)

A micro HTTP server supporting WebSockets and
numerous python/micropython features 2.0 12 Oct. 2020 Python

Busybox (https://busybox.net) A set of tiny versions of many Unix utilities, packaged
with a minimal operating system 1.31.1 25 Oct. 2019 C

2.1.2. lib60870

lib60870 is an open-source C library that implements the International Electrotech-
nical Commission (IEC) 60870-5-101/104 protocol [41,42], which includes provisions for
sending basic telecontrol messages between two systems, employing a communication
profile that utilizes permanent data circuits between the involved systems. The library is
compatible with the C99 standard and it is designed to be easy to use. It implements both
the client (master station) and server (slave or controlled station) sides and implements
all data types defined in the IEC 60870-5-101/104 standards [41,42] (companion standards
to support any of the standards within the 60870-5 family). The API for client/server
communications is strictly asynchronous: the requests must be sent using non-blocking
functions and the responses and other events must be handled in callback functions. Some
of the functionality provided by the library includes but is not limited to: balanced and
unbalanced modes support for IEC 60870-5-101 [41], client/server TCP/IP communication
and TLS communication support for IEC 60870-5-104 [42].

2.1.3. libiec61850

libiec61850 is an open-source C library for the IEC 61850 standard implementing
the MMS (Manufacturing Message Specification) [43], GOOSE (Generic Object Oriented
Substation Event) [44] and SMV (Sampled Measured Values) [45] communication protocols.
It is used for the creation of IEC 61850 client and server applications with support for
Linux, Windows and MacOS PCs as well as embedded systems. The library provides many
features which include but are not limited to TLS support, flexible API to connect custom
databases, and a C#/.NET API additionally to the C API. The library is compatible with
the C99 standard and licensed under a GPLv3 license.

https://www.openmuc.org/sml/
https://www.openmuc.org/sml/
https://github.com/mz-automation/lib60870
https://github.com/mz-automation/lib60870
https://github.com/mz-automation/libiec61850
https://github.com/mz-automation/libiec61850
https://github.com/RealTimeLogic/JavaSMQ
https://github.com/RealTimeLogic/JavaSMQ
https://github.com/riptideio/pymodbus
https://github.com/riptideio/pymodbus
https://github.com/infiniteautomation/modbus4j
https://github.com/infiniteautomation/modbus4j
https://github.com/RealTimeLogic/MinnowServer
https://github.com/RealTimeLogic/MinnowServer
https://github.com/shrugly/boa-0.94.13
https://github.com/shrugly/boa-0.94.13
https://acme.com/software/thttpd
https://acme.com/software/thttpd
https://github.com/jczic/MicroWebSrv
https://github.com/jczic/MicroWebSrv
https://busybox.net
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2.1.4. JavaSMQ

JavaSMQ is an open-source Java/Android library implementing the Simple Message
Queue (SMQ) protocol [46] which is used for resource-constrained devices communications.
SMQ is based on the publish-subscribe model and is similar to publish/subscribe protocols
like Message Queuing Telemetry Transport (MQTT) [47]. However, SMQ provides ex-
tended functionality to provide useful features for device management such as one-to-one
messaging and inclusion of a virtualized sender’s address in every message, enabling the
recipient to reply to the sender. The SMQ broker is setup in a Barracuda App Server and
can run on any device ranging from embedded devices to cloud servers. SMQ enables
horizontal scaling and redundancy through the support of clustering. The JavaSMQ library
is designed for operation only over TLS connections, which is not the case for SMQ which
supports both non-secure and secure (TLS) connections. The software is designed to run
on standard Java or Android and is licensed under an EPL 2.0 license.

2.1.5. Pymodbus

Pymodbus is an implementation of the Modbus protocol [48] written in Python. Mod-
bus is an application-layer messaging protocol, mainly targeted to the communication
with automation devices. Its newer versions provide authentication and message-integrity
protection, through the encapsulation of MODBUS packets in TLS messages. The Py-
modbus implementation uses asynchronous I/O for its communications core and the
Tornado Python web framework for request/response handling, being thus highly efficient.
Pymodbus is distributed under a permissive, non-standard license.

2.1.6. Modbus4j

Modbus4j is an implementation of the Modbus protocol [48] written in Java by Infinite
Automation Systems and Serotonin Software. It implements both slave and master func-
tionalities and supports a number of transports including Serial ASCII, Remote Terminal
Unit (RTU), TCP, and UDP transports. automatic request partitioning and response data
type parsing. It has high performance and ships with an easy-to-use API under the GNU
General Public License v3.0, while commercial licenses are also available.

2.1.7. Minnow Server

Minnow server is an embedded HTTPS WebSocket server written in C, which is
designed to be small and fast to allow microcontrollers with no external memory to be
used as real-time web servers. The implementation follows the HTML5 WebSocket specifi-
cation [49], which allows JavaScript applications to communicate with embedded devices
by opening channels that are persistent, bidirectional, full-duplex and asynchronous. The
Minnow Server is designed to host Single Page Applications (SPA) [50] that can be imple-
mented using modern frameworks like AngularJS, ReactJS, and Vue.js. Minnow server
offers both open-source and commercial licensing options. The open-source license is
GPLv2.

2.1.8. Boa Webserver

Boa is a single-tasking HTTP server written in C. The single-tasking characteristic
means that the server does not use multi-process or multi-threading models to achieve
concurrent handling of multiple connections; rather, it utilizes an internal state-table for
active connections and non-blocking I/O operations to achieve an efficient multiplexing all
incoming requests. Forking is only used for CGI programs (which is required), automatic
directory generation, and automatic file decompression [51]. The latest stable version of
this software was released in 2002 with version number 0.94.13. The latest development
version 0.94.14rc21 was released in 2005 [52]. Even though it’s outdated and out of support,
it can still be found occasionally on embedded firmware images [53]. We used the source
code from a project stored on GitHub [53] that has made minimal changes to Boa in order
to allow it to build successfully on modern systems. It is licensed under a GPL-2.0 license.
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2.1.9. thttpd

thttpd is a HTTP server written in C. It is designed to be lightweight and portable. It
runs in a single thread, it does not fork and performs efficient memory allocation [54]. It
provides a useful feature called throttling which allows to set the maximum byte rates on
URLs or URL groups. Other features include multihoming (i.e., handling systems with
multiple network cards, allowing for different features and options to be specified for each
network interface), basic authentication and access control. Additionally, it supports the
CGI 1.1 specification [55]. The software is licensed under a BSD license.

2.1.10. MicroWebSrv/2

MicroWebSrv is a HTTP Web server written in Python. It supports WebSockets [49],
html/python templating and routing handlers for MicroPython [56]. It is designed to
be lightweight and easy to integrate. Its successor, the MicroWebSrv2, was written from
scratch to meet the demands of the IoT world by making it more efficient. This is achieved
through internal mechanisms that work directly at I/O level, operate asynchronously in
an end-to-end fashion and manage memory efficiently. These servers are typically used
in microcontrollers such as Pycom [57], ESP32 [58], and STM32 [59]. Both versions of the
server are licensed under a MIT license.

2.1.11. Busybox

Busybox—also dubbed as “The Swiss Army Knife of Embedded Linux” [60]—is a
single-binary application providing lighter versions of common Unix utilities. It was de-
signed with size-optimization in mind and for use in environments with limited resources.
The utilities provided have fewer options than their GNU counterparts, but the options
provided are the most commonly used ones and behave similarly [61]. BusyBox takes
advantage of the common elements shared by the Unix utilities, e.g., utilities like grep and
find both use directory recursion code. Since all utilities are included in a single executable,
they can share these common elements, thus saving more space [62]. Furthermore, it is
designed to be modular, allowing for inclusion and exclusion of utilities at compile time,
making embedded systems customization easy [63]. BusyBox is a very popular choice
for embedded devices and can be found in most IoT devices [64]. It is licensed under the
GPLv2 license.

2.2. Internet of Things (IoT) Software Issue Categorization Scheme

In this section we describe the categorization scheme used for the classification of
the IoT device software issues that are reported in the results section (Section 3). The
selection of categories started by considering software issue categories recorded in OWASP
top-10 [31] as well as the MITRE CWE categorization scheme [35]. The MITRE CWE
categorization scheme employs different abstraction levels, namely pillars, classes, base
weaknesses and variants, in descending order of abstraction level. From this scheme, we
utilize only the “classes” and “base weaknesses” levels in our reporting, since pillars are
too generic and variants are too specific.

Subsequently, the software issues collected after analyzing the software (and filtering
out false positives) were assigned to categories. For conciseness purposes, only selected
software issue categories are presented in the results section; the categories that are included
in the presentation were chosen based on two factors: (1) the occurrence frequency of a
category in the generated reports and (2) the possible impact of a category, with higher
impacts being favored over lower ones.

Since the categories of the OWASP categorization scheme overlap, the category that
was deemed to better describe the nature and the characteristics of the identified issues
was selected for use in the result reporting section.
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2.2.1. Improper Certificate Validation

Improper certificate validation vulnerabilities occur when the software in question
does not perform certificate validation or performs it incorrectly. The incorrect validation
can occur through various inconsistencies in the code like improper validation of certificate
expiration, revocation, chain of trust, etc. The possible impacts of this vulnerability include
an attacker gaining privileges and/or assuming a trusted identity which could lead to
complete host takeover [65]. For example, an accepted malicious certificate might allow
an attacker to perform an MITM attack by spoofing a trusted entity and intercepting the
communications between client and host. This can include the client accepting spoofed
data thinking it originated from the host. An attacker could also mislead the client into
connecting to an attacker-controlled host posing as a legitimate one [66].

The “Improper Certificate Validation” software issue category is associated with the
OWASP Top 10 2017 Category A6 “Security Misconfiguration” [31] and the MITRE CWEs
listed in Table 2:

Table 2. MITRE Common Weakness Enumerations (CWEs) related to Improper Certificate Validation.

CWE ID CWE Description

MITRE CWE-295 Improper Certificate Validation” [65]
(class-level category)

2.2.2. Buffer Overflow

Buffer overflow occurs when a program inserts data in a buffer with the data size
exceeding the buffer’s capacity and overwrites the subsequent space in memory [67]. A
buffer overflow can cause a system crash, but it can also be exploited by an attacker to
control the execution flow of the vulnerable program or even to execute arbitrary code
with the privileges of the exploited program [68]. In a typical buffer overflow exploitation
scenario, the overwritten memory contains the return address of the exploited function,
i.e., the memory address that points to what will be accessed/executed next. An attacker
would try overwriting this address with an address of his choosing. The new address
usually points to a part of the memory where her/his malicious code resides [69]. Buffer
overflows are more common in languages like C/C++ where the developers must perform
memory management manually, unlike modern languages like Java and C# that have
built-in features preventing buffer overflows [70].

The “Buffer overflow” software issue category relates to the OWASP Top 10 2017
Category A9 “Using Components with Known Vulnerabilities” [31] as well as with the
MITRE CWE categories listed in Table 3:

Table 3. MITRE CWEs related to Buffer overflow.

CWE ID CWE Description

MITRE CWE-676 Use of Potentially Dangerous Function [71] (base-level category)

MITRE CWE-119 Improper Restriction of Operations within the Bounds of a
Memory Buffer [72] (class-level category)

MITRE CWE-120 Buffer Copy without Checking Size of Input (‘Classic Buffer
Overflow’) [73] (base-level category).

2.2.3. Weak Cryptography

Weak cryptography can be the source of various vulnerabilities as many security-
sensitive operations rely heavily on cryptography. Some of the most common weak-
nesses encountered in vulnerable applications are the use of insecure algorithms (e.g.,
DES, MD5, etc.), the use of insecure pseudo-random generators, the insecure implemen-
tation/utilization of secure encryption/hashing algorithms, and using algorithms for
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cryptographic purposes outside the recommended ones (e.g., password hashing with inse-
cure/”fast” hash functions) [21]. For applications requiring encrypted communications,
issues can occur by using insecure versions or/and insecure configuration of SSL/TLS [74].
Weak cryptography can affect the confidentiality, integrity and availability of an application,
with its impact ranging from information disclosure to complete host takeover.

The “Weak Cryptography” software issue category is associated with the OWASP Top
10 2017 Categories A3 “Sensitive Data Exposure” and A6 “Security Misconfiguration” [31],
as well as with the MITRE CWE categories listed in Table 4:

Table 4. MITRE CWEs related to weak cryptography.

CWE ID CWE Description

MITRE CWE-326 Inadequate Encryption Strength [75]
(class-level category)

MITRE CWE-327 Use of a Broken or Risky Cryptographic
Algorithm [76] (class-level category)

MITRE CWE-330 Use of Insufficiently Random Values [77]
(class-level category)

MITRE CWE-338
Use of Cryptographically Weak

Pseudo-Random Number Generator (PRNG)”
[78] (base-level category)

MITRE CWE-916 Use of Password Hash with Insufficient
Computational Effort (base-level category)

2.2.4. Sensitive Data Exposure

Sensitive data exposure occurs when an application does not take the appropriate
measures to protect the sensitive information handled by it. Sensitive data can include
anything from personally identifiable information (PII) to credit card information and
passwords [74]. It can occur through insecure cryptographic practices, e.g., insecure hashing
of stored passwords, insecure communications, e.g., misconfigured HTTPS vulnerable to
downgrade attacks [21], leftover debug code [79], SQL injection, and more. This category
is closely related to the Weak Cryptography category. The impact of this category ranges
from information disclosure to complete host takeover.

The “Sensitive data exposure” software issue category is associated with the MITRE
CWE categories listed in Table 5:

Table 5. MITRE CWEs related to sensitive data exposure.

CWE ID CWE Description

MITRE CWE-200 Exposure of Sensitive Information to an
Unauthorized Actor [80] (class-level category)

MITRE CWE-215 Information Exposure Through Debug
Information [81] (base-level category)

MITRE CWE-319 Cleartext Transmission of Sensitive
Information [82] (base-level category)

MITRE CWE-489 Active Debug Code [79] (base-level category)

2.2.5. Race Condition

A race condition is a condition of a program where its behavior depends on relative
timing or interleaving of multiple threads or processes [83] and can be found in multi-
threaded programs. A race condition attack includes forcing a system that’s implemented
to perform some tasks in a predefined sequence to perform two or more operations simul-
taneously. It exploits the time gap between the separate parts that consist an operation
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interfering with the intended sequence of execution. For example, when a database update
takes place, an attacker could execute a race condition attack. The attack may be possible
because the update is not executed in one single command, so during the update process,
which could take little or much time, the system is unprotected (assuming lack of the rele-
vant controls). During this period an attacker can compromise the system with malicious
queries [84]. The potential impacts of a race condition attack affect the confidentiality,
integrity, and availability of the vulnerable application and can even result in complete
host takeover.

The “Race condition” software issue category is associated is associated with the
OWASP Top 10 2017 Category A3 “Sensitive data exposure” and A6 “Security Misconfigu-
ration” [31], as well as with the MITRE categories listed in Table 6:

Table 6. Race condition.

CWE ID CWE Description

MITRE CWE-367 Time-of-check Time-of-use (TOCTOU) Race
Condition [85] (base-level category)

2.2.6. Broken Access Control

Broken access control occurs when the access control mechanisms in place can be
bypassed to perform unauthorized actions. An attacker can have unauthorized access
to information, manipulate data, and even compromise the system completely [86]. The
impact of these attacks can affect the confidentiality, integrity and availability of the
application. Access control vulnerabilities are typically divided in horizontal and vertical
privilege escalation vulnerabilities, where the first refers to a user performing actions or
accessing data of another user with the same level of permissions and the second refers to
performing actions or accessing data of users with elevated privileges [87]. An example of
broken access control are insecure direct object references (IDOR) vulnerabilities, where the
persistent object can be accessed directly through the application interface, e.g., a URL that
includes the internal id of the object [88]. The impact of broken access control exploitation
can range from information disclosure to complete host takeover.

The “Broken access control” software issue category is associated is associated with
the OWASP Top 10 2017 Category A5 “Broken Access Control” [31], as well as with the
MITRE categories listed in Table 7:

Table 7. Broken Access Control.

CWE ID CWE Description

MITRE CWE-266 Incorrect Privilege Assignment” [89]
(base-level category)

MITRE CWE-732 Incorrect Permission Assignment for Critical
Resource” [90] (class-level category)

3. Software Vulnerability Analysis Results

In this section we present the results obtained from the analysis. Each subsection
contains the results for each project summarized in a table along with some notes about the
results and their assessment. SonarCloud uses a categorization of security-related issues,
the categories are Vulnerability and Security Hotspot. The documentation states that the
main difference between them is “the need of a review”, i.e.:

• vulnerabilities are locations in the code for which the analyzer computes with a high
degree of confidence that exploits can be crafted and successfully applied, leading to
security incidents.

• security hotspots are locations in the code which are tagged as “suspicious” by the
analyzer, albeit with a lower degree of confidence. Security hotspots should be more
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rigorously examined by developers to determine whether they actually introduce
some vulnerability or not.

We recognize this distinction in the presentation of our results with the corresponding
categories “vulnerabilities” and “hotspots”.

It is important to note here that code for which no vulnerabilities and no hotspots
have been reported by the tools is not necessarily security risk-free. Security issues may
exist and skip detection by automated tools and even during security expert code reviews.
In the analysis presented in this paper, this is demonstrated by the existence of two known
vulnerabilities in the Boa server, which evaded detection (c.f. Section 3.8). No claim is
made that the analysis results provide a full report of the existing vulnerabilities, however
the goal to portray the most common software security issues in 5G IoT device software
can still be achieved, even if few security issue instances are missed.

For conciseness, the report for each software includes only the security issue categories
for which at least one vulnerability or hotspot was detected; the remaining security issue
categories are omitted.

3.1. jSML

Table 8 lists the number of security issues of different categories identified in jSML.
Two vulnerabilities were reported for this application, both relating to improper certificate
validation (CWE-295). Specifically, the application was found to have defined methods for
certificates’ validation that were empty.

Table 8. Number of security issues of different categories in jSML.

Security Issue Category
# of Vulnerabilities # of Hotspots

Total False Positives Total False Positives

Improper Certificate Validation 2 0

3.2. lib60870

Table 9 lists the number of security issues of different categories identified in lib60870.
The vulnerabilities reported for this application are categorized in the “buffer overflow”
category (CWE-676 and CWE-119) and miscellaneous category.

Table 9. Number of security issues of different categories in lib60870.

Security Issue Category
# of Vulnerabilities # of Hotspots

Total False Positives Total False Positives

Buffer Overflow 5 2 9 9
Misc 2 2 0 0

All buffer overflow reports are associated with the use of the sprintf function; two of
them are safe, since the buffers are carefully allocated to be able to store all characters to
be stored by the sprintf function, while in three cases it is possible that the payload may
exceed buffer capacity.

Similarly, nine security hotspots are reported for this application (5 by SonarCloud and
4 by Codacy) and all of them are categorized in the “buffer overflow” category (CWE-676
and CWE-119). Specifically, four issues were associated with the use of the strcpy/strncpy
functions, however the manual review showed that the corresponding memory areas
have been allocated to have ample size, hence no vulnerability is introduced by the use
of these functions. Five issues are associated with the use of the strlen function, which
again operates in a secure fashion since the argument is verified to be a non-null pointer
and the contents of the buffer indicated are valid and appropriately terminated by a
NULL character.
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Codacy reported two instances of using the usleep function as vulnerabilities, under the
rationale that the interaction of this function with the alarm signal (SIGALRM) and other
timer functions such as sleep(), alarm(), setitimer(), and nanosleep() is unspecified (CWE-676).
However, the application does not use any of these functions, therefore the two reports are
characterized as false positives.

3.3. libiec61850

Table 10 lists the number of security issues of different categories identified in li-
biec61850. All buffer overflow reported vulnerabilities are associated with the use of the
sprintf function, which operates however on buffers that are able to hold the relevant
payload in its entirety (CWE-676 and CWE-119).

Table 10. Number of security issues of different categories in libiec61850.

Security Issue Category
# of Vulnerabilities # of Hotspots

Total False Positives Total False Positives

Buffer Overflow 7 7 392 100%
Sensitive Data Exposure 22 13

Misc 3 3

Buffer overflow hotspots were associated with a variety of string handling functions
(strcpy, strlen, sprintf etc.), the usage of which has been found to be safe in the contexts
they were used. Of the hotspots reported by each tool, 30% were manually inspected and
the code in all instances was found to be safe, since it operates on buffers of adequate size.
Considering the results of the manual inspection, a 100% false positive rate is reported in
the table above.

Sensitive data exposure issues were associated with logging statements, which were
directed to the console (or a file, if the console was redirected, which is a typical case). Of
these messages, 13 have a constant text, which does not disclose any data and are classified
as false positives. The remaining nine, include data objects that may leak and therefore
should not be logged, except in debugging contexts, and therefore these instances are
classified as true positives. Under a more strict interpretation, even the constant texts
displayed disclose the operation that is being carried out, and consequently all 22 sensitive
data exposure instances could be classified as true positives.

Codacy reported three instances of using the usleep function as vulnerabilities, under
the rationale that the interaction of this function with SIGALRM and other timer functions
such as sleep(), alarm(), setitimer(), and nanosleep() is unspecified (CWE-676). However, the
application does not use any of these functions, therefore the two reports are characterized
as false positives.

3.4. JavaSMQ

Table 11 lists the number of security issues of different categories identified in JavaSMQ.
Three vulnerabilities were reported in this software, which were classified under the “Im-
proper Certificate Validation” category (MITRE, CWE-295). Specifically, the certificate is not
validated and the hostname in the certificate is not verified to match the actual hostname.
Additionally, the report included a security issue under the “Weak Cryptography” category
(CWE-327 and MITRE, CWE-326), where the application uses the insecure SSL protocol
instead of TLS.
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Table 11. Number of security issues of different categories in JavaSMQ.

Security Issue Category
# of Vulnerabilities # of Hotspots

Total False Positives Total False Positives

Improper Certificate Validation 3 0
Weak Cryptography 1 0

3.5. pyModbus

Table 12 lists the number of security issues of different categories identified in pyMod-
bus. The pyModbus library analysis did not report any vulnerabilities, however a number
of hotspots were identified.

Table 12. Number of security issues of different categories in pyModbus.

Security Issue Category
# of Vulnerabilities # of Hotspots

Total False Positives Total False Positives

Buffer overflow 2 2
Weak Cryptography 24 5

Sensitive Data Exposure 52 5
Misc 7 6

Two buffer overflow errors were associated with the use of the strlen function, which
however operates on properly verified buffers and is, therefore, safe.

Out of the 24 weak cryptography” hotspots reported, 22 pertain to the use of URLs
using the insecure “http” protocol (as contrasted to the use of the secure “https” protocol),
while 5 correspond to the use of the random.randint() function, which is known to be
inadequate for security-related tasks.

Considering the issues corresponding to the use of “http” URLs, 18 of them serve
documentation purposes, however they are printed in log files and user interaction screens,
and the user may then directly utilize the URL, which may lead to visits to attacking
websites (e.g., through DNS poisoning). One “http” URL usage is embedded in a setup
program which utilizes the URL to download packages; in this context the use of an “http”
URL may lead to an attack with a higher probability. Under the rationale presented above,
all 19 usages of “http” URLs are classified as true positives.

Considering the five “weak cryptography” hotspots reported, all of them pertain to the
use of the random.randint() function, which is known to be inadequate for security-related
tasks (CWE-330 and CWE-338). Two uses are located in testing code, while three more
correspond to uses within the main application library code. However, these functions
are used for internal purposes only, for which no plausible exploitation scenario can be
formulated. Consequently, all reported “weak cryptography” hotspots are classified as
false positives.

Out of the 52 “Sensitive Data Exposure” hotspots, 5 correspond to the detailed printing
of stack traces in the event of an exception data (CVE-2018-1999007, CVE-2015-5306 and
CVE-2013-2006) and 4 pertain to the usage of publicly writable directories.

The code related to the detailed printing of stack traces in the event of an exception
is used solely in test programs, and hence does not pose any security risk, especially con-
sidering that typically code developed for production environments includes specialized
exception handlers, and therefore the probability that this practice is directly ported into
a production environment is low. Under this viewpoint, these 5 reports are classified as
false positives.

Regarding the 43 reports pertaining to the use of loggers, 40 of them are found in
example programs and three in the application’s main code. The use of loggers is not
a security vulnerability on its own right; however, a misconfigured logger may lead to
leakage of security-sensitive data, which can be directly exploited (e.g., credentials) or serve
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as additional information to facilitate the attackers’ work (e.g., system paths, values of
parameters and so forth). Considering that developers may use the example with minimal
changes to serve their purposes, it would be strongly desirable for examples to be crafted
in such ways that they minimize risks when used in production environments (e.g., use a
hardened configuration), or at least provide heads-up notices for developers and system
administrators regarding the security risks involved and the best practices that can be
followed. From this viewpoint, all 43 logger-related “sensitive data exposure” warnings
are considered as true positives.

The four reports corresponding to the use of publicly writable directories are again in
examples, but in the same line of thought (probability that the code is used directly into
production applications with no security-conscious adaptations), they are considered as
true positives.

The 6 reports under the “Misc” category correspond to the following cases:

• one use of code a regular expression (CVE-2017-16021 and CVE-2018-13863): Inap-
propriately crafted regular expressions may necessitate high central processing unit
(CPU) power memory amounts to be evaluated, and consequently lead to resource
depletion and denial of service attacks. However, in this case the regular expression is
safe to use and, furthermore, it is used for configuration purposes, at the beginning of
the program execution.

• One binding of the server to all available interfaces (using a bind address equal to
0.0.0.0) which, however, is desirable in order to serve all interfaces, and hence it is
classified as a false positive.

• Four uses of the pickle Python library, which may involve security hazards if commu-
nicating with unknown peers and/or using unencrypted channels. None of these
conditions are met however here, hence the reports are classified as false positives.

• One instance of using an XML file without proper validation. Typically, the relevant
file is provided by the administrator; however, safeguarding the XML file processing
procedure using more secure method counterparts or options would be desirable.

3.6. Modbus4j

Table 13 lists the number of security issues of different categories identified in Mod-
bus4j. For the Modbus4j library, two vulnerabilities and two security hotspots were identi-
fied. The vulnerabilities, classified under the “misc” category, correspond to cases where
the return values of methods (File.delete() and File.renameTo()) are not properly checked.
This is a direct instance of the MITRE CWE-754 weakness, “Improper Check for Unusual
Exceptional Conditions”, which may lead to silently failing backup operations.

Table 13. Number of security issues of different categories in Modbus4j.

Security Issue Category
# of Vulnerabilities # of Hotspots

Total False Positives Total False Positives

Sensitive data exposure 2 0
Misc 2 0

The 2 “Sensitive Data Exposure” hotspots correspond to the detailed printing of
stack traces in the event of an exception. The relevant exceptions are within the main
application code, and may expose sensitive data (CVE-2018-1999007, CVE-2015-5306 and
CVE-2013-2006). Therefore, the relevant instances are classified as true positives.

3.7. Minnow Server

Table 14 lists the number of security issues of different categories identified in the
Minnow Server. The Mininow server analysis did not report any vulnerabilities; however, a
number of hotspots were identified. A “Weak Cryptography” security hotspot was verified
as a vulnerability, since the Math.random function—which is known to be insecure due to
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the predictability of the pseudo-random number sequence—was used to produce random
values (CWE-330 and CWE-338). The random values are used for collision backoff when
generating unique IDs, and hence could be exploited for DoS attacks.

Table 14. Number of security issues of different categories in the Minnow Server.

Security Issue Category
# of Vulnerabilities # of Hotspots

Total False Positives Total False Positives

Buffer Overflow 6 6
Weak Cryptography 1 0

Sensitive Data Exposure 2 2
Misc 1 1

SonarCloud detected two Sensitive Data Exposure hotspots. However, the manual
review concluded they are both false positives. In the first case, information is presented
to the user through Javascript’s alert function, however this is only information of debug
nature that is already present in the client. In the second case, an alert message is displayed,
which is a constant string that does not disclose sensitive information.

Six security hotspots under the “Buffer Overflow” category were identified, however
their manual inspection resulted in their characterization as false positives, since they
operate on appropriately allocated and validated string buffers.

Finally, one issue classified under the “Misc” category pertains to the use of code a
regular expression (CVE-2017-16021 and CVE-2018-13863): Inappropriately crafted regular
expressions may necessitate high CPU power memory amounts to be evaluated, and
consequently lead to resource depletion and denial of service attacks. However, in this case
the regular expression is safe, so the report is classified as a false positive.

3.8. Boa Webserver

Table 15 lists the number of security issues of different categories identified in the Boa
Webserver. The analysis indicated four vulnerabilities that are classified under the “buffer
overflow” category (MITRE CWE-676, MITRE CWE-119 and MITRE CWE-120). Two of
these locations are quite improbable to exploit, since they relate to the configured host
name and this is defined by the administrator, however the code should be amended to be
fully secure. One reported vulnerability has been verified to be a false positive, while one
additional bug has been verified to introduce in the software a case that can be exploited.

Table 15. Number of security issues of different categories in the Boa Webserver.

Security Issue Category
# of Vulnerabilities # of Hotspots

Total False Positives Total False Positives

Buffer Overflow 4 1 46 46
Weak Cryptography 2 2

Broken Access Control 2 1
Misc. 5

Considering the reported security hotspots, for two cases categorized under Weak
Cryptography, the HTTP protocol is hardcoded and this is reported as insecure (MITRE
CWE-326); however, the version of the BOA server used in the analysis does not support
HTTPS, hence the use of the HTTP protocol is expected.

Forty two buffer overflow hotspots were reported relating to uses of the strlen and
sctrcpy functions. However, the strings referenced therein have been already checked for
their size and the uses of the functions are safe. Four more buffer overflow hotspots were
associated to reading of data in loops, however the code was verified to be secure.

One of the “broken access control” security hotspot relates to the existence of a library
function that creates files in a fashion that grants read permissions to the general public
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(others), which may lead to sensitive data exposure (MITRE CWE 266 and MITRE CWE
732). While the creation of files with this level of permission may be desirable in some cases,
it would be preferable for the calling code to explicitly specify the required permission level,
rather than implicitly relying on the appropriate setting of the umask parameter [91], which
is an implicit requirement and thus more probable to evade the developer’s attention. The
second broken access control security hotspot relates to the setting of umask to the value of
~0600, which is highly secure; however, it appears that the bitwise negation operator could
not be properly interpreted by the security analyzer.

In five cases reported under the “misc” category, the return values of functions are
not properly checked (CWE-252); the relevant resources (directories) have been checked
at previous times, however their status may have changed. Specifically, this relates to the
absence of checking the return value of the function chdir, which could lead to broken
access control, including the misinterpretation of relative pathnames.

Finally, it is worth noting that two known vulnerabilities exist for this version of
the software, which SonarCloud failed to detect. The exploitation of vulnerability CVE-
2009-4496 (https://nvd.nist.gov/vuln/detail/CVE-2009-4496) could allow an attacker to
execute arbitrary commands or overwrite files through a specially crafted HTTP request
containing an escape sequence for a terminal emulator. This vulnerability can be traced
back to lack of input sanitization of non-printable characters. The other vulnerability
(https://github.com/shrugly/boa-0.94.13/blob/master/README.md#unfixed; accessed
on 13 May 2021) occurs from an insecure configuration of the application, where failing
to use the DefaultType in boa.conf results in requests with invalid MIME type leading to a
segmentation fault. This can be exploited for executing a DoS attack.

3.9. thttpd

Table 16 lists the number of security issues of different categories identified in the
thttpd Webserver. Buffer overflow bugs are falsely reported, since the relevant uses of
sprintf use carefully allocated buffers and/or size specifiers within the format.

Table 16. Number of security issues of different categories in the thttpd webserver.

Security Issue Category
# of Vulnerabilities # of Hotspots

Total False Positives Total False Positives

Buffer Overflow 5 5 155 155
Weak Cryptography 1 1

Sensitive Data Exposure 1 0
Race Condition 3 3

Race conditions are reported owing to the existence of “time-of-check vs. time-of-use”
conditions; yet, adequate checks are made in the time of use and the time of check is only
used as an optimization method, therefore no vulnerability exists.

The sensitive data exposure hotspot relates to the creation of a directory with extra-
neous permissions (read and execute permissions are granted to “group” and “others”),
which may lead to data leakage (CWE-266 and MITRE CWE-732).

Considering the hotspots reported, one hotspot is categorized under the “Weak cryp-
tography category”, where the HTTP protocol is hardcoded; however, the version of the
thttpd server used in the analysis does not support HTTPS, hence the use of hardcoded
HTTP is justified.

Many uses of strlen, strncpy and sctrcpy are reported as possible buffer overflows, yet
the strings referenced therein have been already checked for their size, or the size of the
destination buffer is correctly defined (strncpy), hence the uses of the functions are safe.

3.10. MicroWebSrv

Table 17 lists the number of security issues of different categories identified in the
MicroWebSrv Webserver. This software was found to have only one hotspot, which was

https://nvd.nist.gov/vuln/detail/CVE-2009-4496
https://github.com/shrugly/boa-0.94.13/blob/master/README.md#unfixed
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classified under the “Weak cryptography” category. Specifically, the SHA-1 algorithm—
which is proven to be insecure—is used in the context of the creation of an HTTP response
(CWE-916), therefore the security hotspot is verified to be a true positive.

Table 17. Number of security issues of different categories in the MicroWebSrv webserver.

Security Issue Category
# of Vulnerabilities # of Hotspots

Total False Positives Total False Positives

Weak Cryptography 1 0

3.11. Busybox

Table 18 lists the number of security issues of different categories identified in Busybox.
Busybox was the software for which the largest number of bugs and hotspots were detected.
This was expected, since BusyBox is a complete operating system containing also a number
of applications, and its source code tree is much larger that the source tree of the other
software used in the analysis.

Table 18. Number of security issues of different categories in Busybox.

Security Issue Category
# of Vulnerabilities # of Hotspots

Total False Positives Total False Positives

Buffer Overflow 83 100% 226 100%
Weak Cryptography 1

Race Condition 9 1
Broken Access Control 42 40

Misc 22 22

The analysis reported nine Race Condition issues (MITRE CWE-367); out of them,
one was assessed to be a false positive. Specifically, a file is first removed (if existent) and
then created back; however, the return values are properly checked and no vulnerability is
introduced. Out of the remaining eight bug reports classified under the “Race Condition”
category, one case of permission changes may be refactored to be more secure, and seven
cases could be refactored to remove any race condition window.

A total of 83 “buffer overflow” alleged vulnerabilities were reported; after verifying
30% of the reported bugs, a false positive rate of 100% was estimated: all bugs were asso-
ciated with the use of string handling functions (sprint, strlen, strcpy, strcat etc.), however
the string buffers used therein are appropriately allocated and validated, therefore no
vulnerabilities are introduced.

One hotspot was classified under the “Weak Cryptography”; this hotspot refers to
one hardcoded use of the insecure HTTP protocol instead of the secure HTTPS protocol
(CWE-326). 212 buffer overflow hotspots were associated with the use of string functions
(strcpy, strlen, strcat etc.). After manually inspecting 30% of the reported cases, it was
determined that functions are used safely by applying the appropriate checks on their
arguments. 14 more buffer overflow hotspots were related to the use of loops for reading
input, however they were verified to be safe. Taking the above into account, a false positive
rate of 100% is reported in the table.

Broken access control notifications refer to (a) granting of permissions to “others”
(i.e., general public) which, however, is the standard Unix behavior and can be regulated
further by users and applications especially through the use of explicit permission setting
or the use of the umask feature (CWE-266 and MITRE CWE-732); (b) ensuring that a
suitable directory is selected after chroot (a special operation available under Unix where
the program operates within a limited and restricted view of the filesystem) (CWE-754) and
(c) setting of capabilities (CWE-754). Out of these items, two errors falling in case (b) are
deemed to be true positives, i.e., items requiring intervention to ensure secure operation.
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Codacy reported 22 instances of using the usleep function as vulnerabilities, under the
rationale that the interaction of this function with SIGALRM and other timer functions
such as sleep(), alarm(), setitimer(), and nanosleep() is unspecified (CWE-676). However, the
application does not use any of these functions, therefore the two reports are characterized
as false positives.

4. Discussion

In this paper, we have provided a map of the status of vulnerabilities in software that
is used for IoT devices in the context of Smart Grids, which was compiled by conducting
security analysis on the code of open-source projects. The goal of this mapping is to raise
developer awareness regarding common security pitfalls in IoT device for Smart Grids
software development, so that developers would avoid relevant errors and adopt secure
software coding practices. Table 19 depicts the overall statistics of the software security
analysis performed on the 11 software packages examined in this paper.

Table 19. Overall statistics of the analysis performed on all examined software.

Software Bug Category
# of Bugs # of Hotspots

Total False Positives Total False Positives

Improper Certificate Validation 2 0 0 0
Buffer Overflow 104 98 836 836

Weak Cryptography 1 0 30 8
Sensitive Data Exposure 22 13 57 7

Race Condition 12 4 0 0
Broken Access Control 0 0 44 41

While buffer overflows are the most reported type of security issue, both under the
“vulnerability” and the “security hotspot” classifications, the vast majority of these reports
are false positives. This indicates that developers are aware of the caveats present in
languages that are prone to buffer overflows (predominantly C and C++), as well as the
severity of this type of faults, and carefully develop and scrutinize their code to ensure that
it is buffer overflow-free. On the other hand, we can observe that code analysis tools need
further development to increase the precision of software vulnerability reporting, limiting
the number of buffer overflow false positive reports. It has to be noted here that the features
of the C/C++ language, such as dynamic memory (re)allocation, pointer passing, pointer
arithmetic, forced typecasting etc. make the accurate detection of buffer overflows very
difficult, and therefore code analysis tools may opt to overreport vulnerabilities, instead of
risking not reporting some security-related bug.

Improper or non-existent certificate validation was identified as a bug in two of the
analyzed software packages; this number is deemed to be high, since some of the tested
software did not provide any support for encrypting data-at-transit, hence this type of vul-
nerability could not occur therein. Contrary to the case of buffer overflows, it appears that
developers are not adequately informed of the risks associated with improper certificate
validation or familiarized with the best practices for handling encrypted communications.
Notably, this holds despite the fact that this type of error is recorded in the OWASP 2017 top
ten [31], however the relevant category “A3—Sensitive Data Exposure” is too broad and,
therefore, the association between the error type and the category may not be sufficiently
apparent. More awareness needs to be developed, whereas the creation and promotion of
code patterns for securely managing certificates could also contribute to the reduction of
errors associated with improper certificate validation.

Similar remarks can be recorded for the use of weak cryptography. Developers seem
to be unaware of the developments regarding the level of security that different ciphers or
randomization functions offer, and use in their code elements that introduce vulnerabili-
ties. It is worth noting that avoiding the use of weak cryptography is a continuous task,
since the advent of cryptanalytic techniques, the discovery of flaws in methods and the
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increase of computer processing power renders methods and techniques that were formerly
considered secure as vulnerable, while the introduction of new cryptographic techniques
changes the best practice recommendations regarding the configurations used to achieve
optimal security.

Race conditions is a class of errors that are present in many multiprocessing/
multitasking environments, where accidentally occurring or purposefully attempted inter-
leaving of operations may lead to a number of hazards [92], notably including deadlocks,
access to confidential data, demotion of integrity (including incorrect result computation)
or privilege escalation. In order to avoid race conditions, the current toolchest of developers
includes a number of instruments, techniques and methods, such as thread-safe libraries,
process and thread synchronization methods, library functions that are guaranteed to
operate atomically eliminating any TOCTOU-based errors [85] (e.g., the introduction of
the faccess function enables the use of the secure fopen/faccess function sequence instead of
the TOCTOU-vulnerable access/fopen function sequence). The exploitation of experience
gained from operating system and parallel application development, coupled with the use
of model-based checking tools such as [93–95], which are able to follow all possible appli-
cation execution paths and more thoroughly cover the possible instruction interleaving
sequences, may lead to a reduction of race condition introduction windows.

The broken access control-related vulnerabilities mainly pertain to over-permissive
file and directory assignments, as well as omissions to ensure that the correct working
directory has been set. The latter cases also relates to a number of security issues that have
been classified under the “miscellaneous” category; however, the mechanics of the two
error types are different (not invoking a necessary function vs. failure to check the result of
some function, respectively). Developers should ensure that new objects are created with
the minimum required set of permissions, and additionally ensure that the correct working
directory is always set, to avoid misinterpretations of relative pathnames.

Finally, certain known security issues were not discovered by the security analyzers
(CVE-2009-4496 and improper handling of invalid MIME type specifications in the boa
server, c.f. Section 3.6). This fact demonstrates that while automated security analysis
is a valuable and indispensable tool in a security-aware development process, it cannot
currently replace the rigorous review by security expert teams.

It is worth noting that the methodology used in this paper for identifying the most
important software security issues in the domain of 5G-enabled IoT devices is in-line
with the procedures used to assess the security of software used in specific application
domains (e.g., [27,28]) and can be used in other domains as well. The methodology starts
with harvesting widespread software packages used in the domain, while subsequently
the packages are analyzed for security issues using a combination of automated and
manual methods, following the proposal of MITRE regarding software package security
analysis [36].

Designers and implementers of smart grid and 5G-enabled systems need to consider
that software deficiencies is only one of the factors that determine the overall system
security level, and in this sense, other complementary factors need to be taken into account
as well. Reference [14] identifies that the 5G protocol allows for using null encryption and
null authentication in valid 5G environments, an option directly poses security and privacy
issues. Ref. [14] also asserts that the 5G protocol specification places implicit trust on pre-
authentication messages, a feature can be exploited by malicious parties, while additionally
a number of LTE protocol exploits may have considerable impact on the security of a
5G system. However, simple specification and protocol deficiencies, such as the support
of null encryption/authentication and implicit trust, specifications and protocols may
exhibit more subtle issues, subject to specific entity interactions and state transitions. Such
issues can be unveiled through exhaustive protocol validation using appropriate tools
such as Scyther [96], Scyther-proof [97] and Tamarin [98]. Along these lines, reference [99]
examines the vulnerabilities of the IEC 61850 GOOSE publish–subscribe protocol towards
the substation protection within the smart grid setup, and assesses their impact. This
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research has demonstrated that the GOOSE protocol of IEC 61850 entails vulnerabilities
and is prone to malicious attacks even under the compliance of the IEC 62351 security
standard; these vulnerabilities need to be addressed in subsequent standards and protocol
revisions. Reference [100] introduces a fuzzing tester termed as “IECFuzzer” which can be
used to exploit the potential denial-of-service vulnerabilities of IEC61850 protocol, but also
to verify the robustness of PLC devices using IEC61850 protocol.

Reference [101] presents a formal security assessment of the Modbus protocol through
a Promela model, identifying counterexamples where the lack of security mechanisms
can be exploited by malicious parties to realize man-in-the-middle attacks and inject
falsified data. Similarly, reference [102] uses Scapy [103] to exploit weaknesses in the
Modbus over TCP/IP, and reports on two attacks on the Modbus protocol, with one
attack resulting in an infection of the master with malware and the second one realizing a
man-in-the-middle exploit. Reference [104] introduces a real-time cyber-physical test bed
utilizing Opnet’s System-in-the-Loop (SITL) simulator for examining security properties,
and analyses the Modbus protocol on top of this test bed. The experiments performed
unveiled the possibility of a man-in-the-middle attack using carefully timed transmission
of crafted packets, as well as the potential of DoS attacks severely delaying the flow of
information from Intelligent Electronic Devices (IEDs) to the control center. IoT devices
have proliferated and nowadays are extensively used in numerous domains to support a
multitude of operations and automations. In the context of smart grids, IoT devices also
play an important role, including the metering of consumption as well as power distribution
and redirection. The advent of the 5G network technology will further boost the widespread
use of IoT-based services and the development of new ones; however, software security for
IoT devices is a key enabler for this development, since software vulnerabilities may cause a
variety of adverse effects, ranging from private data leakages to the collapse of critical smart
grid infrastructures. Developers and testers of code realizing services and applications in
the domain of IoT should increase their awareness levels regarding best coding practices
and security pitfalls, and employ appropriate tools to ascertain a maximal security level.
Similarly, protocol designers should address deficiencies in the specifications that can be
exploited to realize attacks against systems that are based on the corresponding protocols. It
has to be noted that the examination of the protocols’ security properties is performed using
simulation, which may be conducted either in software-only fashion [101,102] or using a
hardware/system in the loop approach [99,104]. In protocol security analysis simulations,
only data transmission and protocol state transitions are modeled within the simulation
system; by contrast, in static software security assessment, the properties of the instructions,
libraries and instruction sequences are examined to identify potential vulnerabilities. In
this sense, the two approaches work complementarily, but cannot be combined due to the
fundamental differences in the modeling level and tools (e.g., Petri-Nets, Promela processes
and messages, Scyther roles and claims or BAN constructs [105,106] vs. concrete software
instructions. Typically, a protocol has first to be verified for correctness and security, and
subsequently its implementations need to be checked, to ensure that protocol security
guarantees are not undermined due to security issues in the code. In this paper, we focus
only on the software security assessment aspects, while work and results on protocols’
security properties verification can be used in a complementary fashion.).

Our future work will include the security analysis of additional software in the power
grid domain, as well as the examination of software in other domains. We also plan to
consider the combined assessment of results concerning communication protocol security
through relevant simulation-based tools (e.g., Scyther) on the one hand (e.g., [99–101]), and
results from the software implementation security assessment on the other hand, towards
the computation of a comprehensive risk level of 5G and smart grid systems. Finally,
the effectiveness of model-based checking tools such as [93–95] in the identification of
security-related issues, and the interplay between secure software development practices
and the operation of forensics in the domain of 5G and Smart Grid computing [107] will
be studied.
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