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Abstract: A power system can be defined as flexible if it can within economic and technological
boundaries respond quickly and adequately to variations in supply and demand. The ongoing
penetration of variable and intermittent renewable energy sources (RES) like wind and solar imposes
additional and more critical requirement on power system flexibility. In this paper we propose a
method to quantify these requirements based on the comparison of seven demand side parameters
describing the statistical properties of the net load and the residual load of the referred power system.
Each one of these parameters reflects a separate requirement on the available conventional generation
in hourly and daily time scales—ramp up and ramp-down capabilities, technological minimum
of generation, daily variation of generation. The proposed approach can be used to predict the
requirements for generation flexibility according to the expected scenario of RES penetration in the
future development of energy power system. It has been applied and integrated from the Bulgarian
Transmission System Operator (TSO) which name is the Bulgarian Electricity System Operator (ESO).

Keywords: power system flexibility; variable and intermittent RES; demand-side parameters; net
and residual load; hourly and daily time scales

1. Introduction

The term flexibility has been only recently introduced in power systems and im-
mediately garnered tremendous interest [1]. The need for operational flexibility is also
increasing [2]. Despite its importance, flexibility has not been globally defined and it has
been approached differently in several studies in the literature.

In the literature, flexibility has been distinguished in two main categories namely,
planning and operational flexibility with the latter being in the scope of most studies.
Planning flexibility mainly concerns long term planning associated with transmission
system design [3]. On the other hand, operational flexibility is related to the equipment
of generation system and to its real time response in power changes through optimized
controllability [4]. Furthermore, since the interconnections of power systems that serve
different countries or areas and operated by different Transmission System Operators
(TSOs) have been dramatically increased, the term “exported flexibility” emerged. This
term defines the operating flexibility that a TSO can offer to a neighbor network through
the tie-points [5]. The general definition of flexibility in [6] is assumed to be more accurate
and defines flexibility as “the ability of a system to deploy its resources to respond to
changes in net load”. Concluding, flexible power systems must have adequate resources,
optimized operation and planning management [1].

Recently in the context of the BRIDGE initiative, flexibility has been given special
attention especially in relation with the distribution grid turning into a supply driven
system, placing decentralized producers and consumers in the center of the transmission
system. The flexibility concept in this, let’s say, ‘bottom up’, in the voltage level sense,
approach has been defined as:
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• Solutions to continually guarantee the balance of power generation and consumption
within the distribution grid in order to preserve its stability therefore increasingly rest
on the deployment and exploitation of operational flexibility [6];

• On the one hand, operational flexibility comprises the usage of energy storage systems,
such as battery, gas, water or multi-energy carrier storage [7];

• On the other hand, operational flexibility resources are also accessed by flexible con-
trollable consumption and generation units in terms of Demand Side Management and
Demand Response mechanisms, for instance on a residential city district level [8,9].

In this context, the Expert Group 3 of the Smart Grid Task Force of the European
Commission [9] defines the term flexibility in the following way: “On an individual
level, flexibility is the modification of generation injection and/or consumption patterns
in reaction to an external (signal or activation) in order to provide services within the
energy system”.

Since flexibility has been identified as an essential property of power systems, indices
and metrics that can be used to identify and evaluate a power system flexibility are
continually defined. Some already developed indices and metrics are Inflexibility Signs [10];
Flexibility Chart [11]; GIVAR, Flexibility assessment tool (FAST2) [12]; Insufficient ramping
resource expectation (IRRE) [13]; Normalized flexibility index (NFI) [14]; Loss of wind
estimation (LOWE) [15]; Lack of ramp probability (LORP) [16], Locational flexibility [17],
Ranking approach [18].

The uncertain nature of large-scale integration of variable renewable energy makes
it technically challenging [19–21]. In general, the generation portfolio is designed in such
a way that provides enough flexibility to cope with the variability of RES in the most
efficient manner managing load forecast error and unplanned generation outages. Due to
variable renewable sources like for instance wind and photovoltaic power the generation
capacity increases. Therefore, the system needs to be able to address the variability and
unpredictability associated with these sources [22]. The necessity to provide additional
flexibility while integrating large penetrations of intermittent generation got its recognition
from a central point of view. This issue, however, requires the view of the participants
in electricity markets [23]. Such participants could be flexibility providers or potential
providers. They will be able to provide this flexibility when this returns an economic
profit [24].

In this paper we argue the following: One system is more flexible than another one if it
is able to accommodate more RES without limits, under the condition that there is the same
demand and available RES generation. The variations of wind and PV are measured as
follows: seconds, minutes, hours, days, months, seasons and years. The aim is to manage
the daily net load cycle.

The focus of this work is on flexibility on an hourly and daily basis. The paper does
not analyze weekly and seasonal flexibility. It will be a subject of a further work. Variability
and uncertainty are the two characteristics of wind and PV generation that drive the need
for flexibility.

Frequent and natural fluctuations in wind and PV output pose challenges to conven-
tional generators. This is dictated by the need for fast sudden and large ramping and
frequent start-ups. The need for reserves is triggered by the unavoidable errors between
wind and PV generation forecasts and actual outputs. Hence to properly accommodate
large volumes of wind and PV power, the system has to be highly flexible to follow the
variable net demand and cope with the uncertainties.

These requirements are usually fulfilled by flexible generation, energy storage, and
flexible demand (demand side management). On the basis of these three basic options for
providing the flexibility needed, different metrics for quantification are applied.

In the joint report of the OECD and IEA [25], the ability of the power system to modify
generation and consumption in response to expected and unexpected variability is referred
to as flexibility [26]. It further classifies the flexibility needs into 3 basic groups: flexibility
for power, energy and transfer capacity [26]. There are different definitions for power
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system flexibility which reflect and emphasize on different requirement on the conventional
generation from operational perspective [27–31]. Generation system flexibility is quantified
by three main indicators—absolute power output range (MW), ramp rate (MW/min), and
power output continuity (energy) (MWh) [32].

2. Power System Probabilistic Approach for Flexibility Assessment

Maintaining the admissible voltage levels is of utmost importance for all participants
in the Electricity Energy System (EES) to reach good economic parameters. Since the
development of EES is made in line with a ten-year plan which is also in conformity with
the plans of the neighboring countries for ensuring safe and reliable work of the Bulgarian
EES in parallel with the European one, it would be beneficial to develop common rules to
stimulate users and consumers to participate more actively in the regulation of EES, both
in normal as well as emergency modes. This will increase the flexibility, the cross-border
power exchange and it will improve transparency and provide for better planning of loads
and generating capacities.

The challenges in front of the Bulgarian energy system are:

• Most of the Variable Renewable Energy (VRE) spread in BG is far from the load and in
areas with remote access. Photovoltaics are main part of VRE but the forecast of their
generation is still not sufficient;

• The main flexible resources are provided form coal and hydro power stations;
• Coal fired plants comprise a significant portion of the generation mix in Bulgaria.

During peak hours, most of them operate at maximum output or mid-merit, and
the system has fairly good ability to meet upward net load variations in short term.
During times of minimum demand though, a significant portion of coal power plants
are offline and their technical characteristics (namely start-up time) do not allow them
to offer flexibility in the 6 h time horizon.

There are also three main indicators which reflect and measure the problems with
RES. The variations of these indicators of which together with the increase of the total
installed capacity from wind power plants (WPP) and photovoltaic power plants (PvPP)
will predetermine the rising requirements for the regulating capacities and the commitment
of the generating units:

• The increase in the standard deviation of the hourly fluctuations of the residual load
along with the increase of the total installed capacity from wind and PV also deter-
mines the necessary increase of the respective operational reserve (aFRR—automatic
Frequency Restoration Reserves, mFRR—manual frequency restoration reserves and
RR—Replacement Reserves used to restore/support the required level of FRR) to
cover these fluctuations with a set probability corresponding to the adopted level of
security of supply;

• The increase in the diurnal range of negative and positive variation of the residual
load with an increase in the total installed capacity from wind and PV determines,
in turn, the required extension of the diurnal total regulating range supplied from
conventional generators;

• The increase in the total installed capacity from wind and PV leads to proportional
reduction of the minimum residual load to be “covered” by the conventional generat-
ing capacities.

Depending on the type, structure, ratio and operational parameters of the available
conventional generators in the EPS, one of the above three indicators will determine
maximum amount of total installed capacity from WPPs and PvPPs that can be seamlessly
integrated into the EPS, i.e., determining the most restrictive indicator from the above
mentioned: available operational reserve (aFRR, mFRR and RR) within an hour; available
diurnal regulating range or the ability to “cover” the minimum loads.

A number of statistical approaches and methods are used to quantify the influence and
“contribution” of WPPs and PvPPs on the enhancement of random factors in the operation
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of the EPS. This assessment is based on the quantitative comparison of all defining factors
of the energy regime / operating state obtained for the total and residual load or for
two variants of the residual load received for different values of the installed wind and
PV capacities.

The variation in the power output from WPPs and PvPPs over time is a purely random
process with continuously changing probability characteristics and indicators depending
on the change in the “availability” of the respective renewable energy resources—wind
and sun. The two random processes defining the mode of operation of the conventional
generators are respectively:

• The time series of the hourly loads of the EPS denote with Pi;
• The corresponding time series of the total power output from wind and PV denote

with RESi.

The residual or so-called net load is the part of the total system load that has to be
“covered” by conventional generating capacities in the power system and is calculated
as difference:

Pres
i = Pi − RESi, (1)

i.e., in this case, the cumulative wind and PV power output is seen as a “negative” load. The
resulting statistical time series Pres

i is also a random process whose equivalent probability
characteristics [30] and metrics are derived from those of the two random processes that
form it, the Theorems and Laws should be stated. It has already been pointed out that the
hourly fluctuations of the load and the power output of WPPs and PvPPs have a normal
probability distribution. Under this condition the standard deviation of the residual load
will be determined by the formula:

σ2
p−res = σ2

p + σ2
res ∓ 2R

p
res

σpσres, (2)

where σp−res—Standard deviation of the residual load; σp σ—Standard deviation of the
total load; σres—Standard deviation of the cumulative output from WPPs and PvPPs and
R p

res —Correlation coefficient between the two processes.
Based on the value of the correlation coefficient the following options are possible:
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p
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(
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)
The values of the correlation coefficients between the two processes and the verification

of their significance indicate that these processes can be considered independent, therefore
the first ratio is in effect. However, in cases of significant correlation, the calculation will
be performed according to the corresponding formula shown. As a result, the standard
deviation of the residual load will always be greater than the standard deviation of the
total (primary) load of the EPS. The difference:

∆σres−impact_IMPACT = σp−res − σp, (3)
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represents the total “contribution” of wind and PV to the increase in the standard deviation
of the residual load and the consequent need to increase the requirements for the regulating
reserves. This approach is used in the algorithm proposed below for assessing the joint
impact of WPPs and PvPPs.

The quantification of this impact on the energy regimes/operating states is based on a
comparison of the statistical and probability characteristics of the total load and the residual
load resulting from the subtraction of the WPPs and PvPPs output. This comparison is
carried out through scenario-based simulations with a gradual increase of the installed
capacity from wind and PV, which models the expected development of the total installed
capacity on the one hand and on the other the tendency and sensitivity of the energy
regime’s/operating state’s parameters to this development. As already mentioned, the
energy regime/operating state of the EPS is identified by the dynamic change in the power
output of the synchronous units in operation and the change in their number according to
the constantly altering operating conditions of the EPS:

• The random process of load variation;
• The random process of generation capacity availability due to forced outages of

generating equipment;
• The random process of variation of wind and solar power as well as production from

run-of-the-river HPPs.

Due to the influence of a number of persistent and occasional factors, the electrical
consumption in each power system is constantly changing in all time slots—from several
years to several seconds—which is a typical non-stationary random process. Reliable
maintenance of the balance between production and consumption is the main goal of
planning and control of the power system’s energy regimes. To achieve this, it is necessary
to continuously adjust the operating power of the system in accordance with the change
in the total load and the unexpected failures of the generating equipment. Depending on
the speed and direction of this change different types of reserve “located” on generators
with different maneuvering features and operating states must be activated or deactivated.
The selective start-up of a particular unit and the regulation of its operating power is
only possible with conventional generating units—thermal and hydro (reservoir and
daily compensators) where the primary energy carrier is virtually always available as its
availability can be stored and controlled. Unlike the wind, photovoltaic and run-of-the-river
hydro power stations, where the change in power output happens only with a change in the
intensity of the corresponding primary energy resource. These generating sources cannot
be run selectively but only when there is sufficient primary resource, i.e., they are virtually
non-dispatchable, and the electricity generated by them must be “absorbed” by the system
at the time of its “emergence” and regardless of the frequency and amplitude with which
it occurs (so-called “must take-energy”). For these reasons, the task of maintaining the
balance in an EPS becomes more difficult, because besides the random fluctuations of the
load and its predicted error, the power fluctuations of the renewable energy sources—wind,
photovoltaic and run-of-the-river hydro must be compensated as well.

3. Case Study

The comparative analysis of the basic statistical indicators and characteristics of the
total and residual load of the EPS is performed under the following conditions:

(1) Gross total load—realized hourly loads (power plants’ auxiliary consumption included)
of Bulgaria for 2014 with total annual electricity consumption of 36,875,896 MWh,
without taking into account the potential export of electricity.

(2) Realized hourly generations from WPPs and PvPPs in Bulgaria for 2019 (with installed
capacities valid by 31 December 2019: WPPs = 701 MW and PvPPs = 1039 MWp).

(3) The resulting residual load, as already indicated, is defined as the difference between
the total gross hourly load and the corresponding total hourly generation from WPPs
and PvPPs.
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Table 1 shows the extreme indicators between both types of loads as well as the
respective nominal and percentage differences.

Table 1. Indicators between both types of loads 1.

Day with: Gross Total Load Residual
Load

Difference
%

highest consumption, MWh 145,523 139,491 −6032.4 −4.1
lowest consumption, MWh 78,339 68,167 −10,171 −13.0
highest maximum load, MW 7106 6699 −407.03 −5.7
lowest maximum load, MW 3747 3558 −188.17 −5.0
lowest minimum load, MW 2656 2285 −371.66 −14.0
highest minimum load, MW 4890 4695 −195.07 −4.0
highest difference between maximum and minimum load, MW 2672 2686 14.2454 0.5
lowest difference between maximum and minimum load, MW 920 947 26.6213 2.9
highest density coefficient of the load profile 0.9161 0.8811 −0.035 −3.8
lowest density coefficient of the load profile 0.7566 0.6943 −0.0623 −8.2
highest hourly ramp up rate of the load, MW/h 724 753 28.9324 4.0
highest hourly ramp down rate of the load, MW/h −686 −734 −48.721 7.1
largest standard deviation of the hourly fluctuations, MW 311 326 14.7274 4.7
smallest standard deviation of the hourly fluctuations, MW 141 141 −0.3035 −0.2
longest series of consecutive increase of the hourly load 11 15 4 36.3
longest series of consecutive decrease of the hourly load 11 11 0 0
largest value within a series of hourly load increase, MW 2017 (8) 2123 (7) 106 5.2
largest value within a series of hourly load decrease, MW −2283 (9) −2416 (9) 133 5.8

1 The data is provided from the Electricity System Operator.

In Table 2 for comparison purposes are also shown the average annual values of the
main indicators and their nominal and percentage differences.

Table 2. Average annual values of the main indicators 2.

Yearly Average Value of: Gross Total Load Residual
Load

Difference
%

daily demand, MWh 101,030 94,065 −6964.9 −6.9
daily maximum load, MW 4986 4841 −145.1 −2.9
daily minimum load, MW 3320 3144 −176.94 −5.3
difference between maximum and minimum load in a single day, MW 1665 1697 31.839 1.9
density coefficient of the load profile (Pave/Pmax) 0.846 0.809 −0.0369 −4.4
highest hourly ramp up rate of the load in a single day, MW/h 431 424 −6.8265 −1.6
highest hourly ramp down rate of the load in a single day, MW/h −408 −416 −8.262 2.0
standard deviation of the hourly fluctuations of the load, MW 214 223 9.2246 4.3

2 The data is provided from the Electricity System Operator.

As additional, but very useful and expressive indicators, the following dimensions
are introduced:

• Nabs.min—number of hours in the year in which the residual load is lower than the
absolute minimum annual gross total load;

• Nmin.gen—number of hours in the year in which the residual load is lower than the
corresponding minimum admissible generation.

The minimum generation or the minimum admissible total operating power is deter-
mined in accordance to the mode of operation of each generation technology type. The
minimum admissible generation values for the Bulgarian power system are shown on
Figure 1 in hourly resolution.
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Figure 1. Variation of the minimum admissible generation in the EPS of Bulgaria in hourly resolution
during the year 2019.

The resulting Nabs.min and Nmin.gen values for the residual load considered here are
shown in Table 3.

Table 3. Residual load—initial conditions.

Residual Load Hours

Nabs.min 2794
Nmin.gen 171

Table 3 represents the hours provided from the Electricity System Operator in which
the residual load is lower than the corresponding minimum admissible generation in
the EPS.

In this way, the “problematic” periods of the year with regards to the minimum
residual loads are visualized. By simulating the power system operation with installed
capacity from wind—1400 MW and PV—2000 MW. In this case, the Nabs.min and Nmin.gen
values provided from the Electricity System Operator are given respectively in Table 4.

Table 4. Residual load—initial conditions.

Residual Load Hours

Nabs.min 3764
Nmin.gen 936

3.1. Methodology Description for Quantitative Estimation of the Impact of WPPs and PvPPs on
the Energy Regime Indicators of the EES

As has already been mentioned, the basic parameters set for evaluation, which depend
on the wind and PV installed capacity, are: Parameter 1—hourly and intra-hourly power
reserve needed for regulation size of aFRR, mFRR and RR; Parameter 2—24 h regulating
range of the generator mix; Parameter 3—technological minimum of the generation in the
power system—the ability to serve the minimum load.

Table 5 contains the so-called matrix of connectivity, where it is shown which of the
indicators which we use to evaluate the set parameters based on the total and residual load
comparison can be considered as quantitative measure of the basic energy regime parameters.
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Table 5. Relation between basic flexibility parameters and energy regime indicators.

Main Flexibility
Parameter Energy Regime Indicators Used to Evaluate Flexibility Parameters

Parameter 1 Indicator 1 - - Indicator 4 Indicator 5 - -
Parameter 2 - - Indicator 3 - - - -
Parameter 3 - Indicator 2 - - - Indicator 6 Indicator 7

Where the indicators are: Indicator 1—standard deviation of the hourly fluctuation
of the residual load; Indicator 2—absolute annual minimum residual load; Indicator 3—
maximum 24 h range of residual load variation; Indicator 4—maximum positive hourly
gradient of the residual load; Indicator 5—maximum negative hourly gradient of the
residual load; Indicator 6—number of hours in the year in which the residual load is lower
that the absolute annual minimum /total load/; Indicator 7—number of hours in the
year in which the residual load is lower that the corresponding threshold of the technical
minimum generation in the power system.

The creation of appropriate mathematical dependency models of the defined 7 in-
dicators requires a set of 504 simulations with incremental increase of the total installed
capacity from WPPs and PvPPs by a step of 100 MW in the range of 700–3000 MW for
wind and 1000–3000 MW for PV. By applying the multifactor linear regression method, the
functions of the 7 quantitative indicators of the installed capacity from wind and PV are
determined. The obtained mathematical models are:

(1) Mathematical model of the standard deviation of the hourly fluctuations of the
residual load:

STDEVres = 186 + 0.00 ∗ Pinst.wind + 0.02 ∗ Pinst.pv, (4)

(2) Mathematical model of the absolute minimum residual load:

Labs.min.res = 3475− 0.8 ∗ Pinst.wind − 0.57 ∗ Pinst.pv, (5)

(3) Mathematical model of the maximum 24-h range of residual load variation:

Rmax.res = 2209 + 0.54 ∗ Pinst.wind − 0.00 ∗ Pinst.pv, (6)

(4) Mathematical model of the maximum hourly positive gradient of the residual load:

dLmax.pos.res = 773 + 0.00 ∗ Pinst.wind − 0.02 ∗ Pinst.pv, (7)

(5) Mathematical model of the maximum hourly negative gradient of residual load:

dLmax.neg.res = −599− 0.01 ∗ Pinst.wind − 0.00 ∗ Pinst.pv, (8)

(6) Mathematical model of the number of hours in the year in which the residual load is
lower than the absolute annual minimum gross total load:

Nabs.min = −1308 + 0.80 ∗ Pinst.wind + 0.77 ∗ Pinst.pv, (9)

(7) Mathematical model of the number of hours in the year in which the residual load is
lower than the corresponding minimum admissible generation in the EPS:

Nmin.gen = −736 + 0.55 ∗ Pinst.wind + 0.39 ∗ Pinst.pv, (10)

The r2 (determination coefficient) for all seven regression models is above 0.75 which
means that these models can be used for evaluation with relatively high confidence. On the
basis of the results obtained here, the final matrix of the specific contribution of 1 MW in-
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stalled capacity from wind and PV to the change of each of the seven considered indicators
is calculated (Table 6).

Table 6. Matrix of influence (contribution) of 1 MW installed capacity from wind and PV on the change of the basic
parameters of the energy regime in the power system.

№ Regime Indicators
Contribution

of 1 MW
Contribution

of 1 MW
Wind PV

1 st. dev. of the hourly fluctuations of the residual load 0.00 0.02
2 absolute yearly minimum residual load −0.80 −0.57
3 max. 24-h range of the residual load variation 0.54 0.00
4 max. positive hourly gradient of the residual load 0.00 0.02
5 max. negative hourly gradient of the residual load −0.01 0.00

6 number of hours in the year in which the residual load is lower than the absolute minimum annual
gross total load 0.80 0.77

7 number of hours in the year in which the residual load is lower than the corresponding minimum
admissible generation 0.55 0.39

Contribution of 1 MW installed capacity from wind and PV on the change of the basic
indicators of the energy regime in the power system. The Table 7 presents more detailed
comparison between wind and PV generation for some of regime indicators.

Table 7. Influence of increasing RES over power system his is a table.

Regime Indicators Wind Power Plant PV Power Plant

Indicator 1 Do not affect the variation in a
time section

20 kW of back up power must
be provided for each MW of PV

Indicator 2
Have a grater “negative” impact on

the absolute residual load on an
annual basis

Each MW PV plant will reduce
residual load by 570 kW

Indicator 6
Each MW Wind power plant reduces
the absolute minimum residual load

during the year by 0.8 h

Each MW PV plant reduces the
absolute minimum residual

load during the year by 0.77 h

Indicator 7

The hours of the year in which the
EES has minimal technical capacity to

cope with the minimum load are
increased by 0.55 h for each MW

Wind power

The PV’s has less influence on
the hours of the year in which
the EES has minimal technical

capacity to handle the minimum
load. Each MW PV power plant
reduce the minimum technical

capacity by 0.39 h

After additional studies of indicator 7, for each combination of installed wind and
PV capacities in the range of 100–2000 MW, the amount of “excess” energy produced
by wind and PV installations is calculated, causing the residual load to drop below the
corresponding minimum admissible generation in the EPS. This is the amount of energy
that needs to be curtailed from the total annual production of wind and PV in order to
provide the necessary balance of the EPS. Figure 2 shows the dependence of the curtailed
generation in % from the simulated full annual production.

This dependence is nonlinear with an inflection zone in the range of 800–1100 MW
of installed PV capacity. The resulting two-factor regression model has the following
parameters:

Ecurt.% = −1.479 + 0.003 ∗ Pinst.wind + 0.001 ∗ Pinst.pv, (11)

The result obtained shows that the “contribution” of wind power to the part that is to
be curtailed from the total RES production is three times higher than that of PV power or
1% of the curtailment is formed by 0.3% of the installed wind power capacity and 0.1% by
the installed PV power capacity.



Energies 2021, 14, 2813 10 of 20

Figure 2. Dependence of the potential generation curtailment in % of the total annual production
from wind and PV on their installed capacity.

3.2. Sample Calculations for Different Variants of the Influencing Factors
3.2.1. Scenario 1

(A) Influencing factors
Estimated year: 2021; Expected annual electricity demand: 39,088,450 MWh; Expected

annual net export of electricity: 9,525,715 MWh; Estimated installed capacity from PV:
1500 MW; Estimated installed capacity from wind: 900 MW.

In this variant of influencing factors it is foreseen:
Electricity consumption growth by 6% compared to baseline electricity consumption

in 2014; Keeping net export at the 2014 level; An increase in PV installed capacity from
1030 MW in 2014 to 1500 MW in 2021; An increase of installed wind power capacity from
680 MW in 2014 to 900 MW in 2021.

(B) Results
In Table 8 comparative values of resulting indicators are given:

Table 8. Comparative values of resulting indicators for Scenario 1.

Index (MW) Gross Total Load Residual Load

Labs.min.res 3394 3124
Rmax.res 9281 8624

dLmax.neg.res −899 −974
dLmax.pos.res 1110 1073
STDEVres 272 285

3.2.2. Scenario 2

(A) Influencing factors
Estimated year: 2020; Expected annual electricity demand: 39,825,968 MWh; Expected

annual net export of electricity: 4,762,857 MWh; Estimated installed capacity from PV:
1700 MW; Estimated installed capacity from wind: 1000 MW.

This variant of the influencing factors assumes the following:
An increase in electricity consumption by 8% compared to baseline electricity demand

in 2014; A 50% reduction in net exports compared to the base year 2014; PV power installed
capacity increase from 1030 MW in 2014 to 1700 MW in 2021; An increase of installed wind
power from 680 MW in 2014 to 1000 MW in 2021.

(B) Results
In Table 9 comparative values of resulting indicators are given:
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Table 9. Comparative values of resulting indicators for Scenario 2.

Index (MW) Gross Total Load Residual Load

Labs.min.res 3252 2661
Rmax.res 8407 7686

dLmax.neg.res −761 −903
dLmax.pos.res 865 848
STDEVres 247 268

The results shown in Tables 8 and 9 were calculated with the help of a specially
designed MS Excel tool.

The first version of Pan-European Climatic Data Base (PECD 1.0) was created in 2014.
It uses a data series of 15 climate years—from 2000 to 2014. The second version—PECD
2.0 was developed in 2016. The new data set is richer, it covers 34 years—from 1982 to
2015. It embraces all member countries including Turkey as an observing member. Its big
value added is that the weather data in PECD 2.0 are synthetic hourly time series. They are
derived through reanalysis using Weather Research and Forecasting (WRF) model. The
rich dataset allows for simulation of RES hourly generations and weather-dependent load
variations. Dynamical downscaling is applied in order to get meteorological time series.
This is a method for obtaining high-resolution climate or climate change information from
reanalysis. The mesoscale downscaling method is used to generate time series of wind
speed and other meteorological fields for Europe.

DTU Wind Energy converts weather data—wind speed and solar irradiation—into
capacity factors of wind and PV generation. The applied methodology provides hourly
normalized load factor time series for wind production for the specified country by includ-
ing weighted contributions from the given points in the WRF database. Average wind
turbine power curve and the average height of turbine installation are being used derived
from the DTU internal wind generation data for Europe. PECD 2.0 delivers, for every
country, a set of hourly wind capacity factors and PV capacity factors for 34 years—totally
2 × 298,032 values. Due to this extensive database, statistical models of hourly wind and
PV generations are created. One can play with simulations of wind installed capacity in
the desired referent country.

• Calculation of residual load

From operational point of view the generating units in the Bulgarian power system
can be divided in dispatchable and non-dispatchable type.

Dispatchable units are all conventional units such as: nuclear (NUC); thermal—coal,
gas; hydro—reservoir.

Non-dispatchable units are: wind; photovoltaic; run-off-river (RoR); combined heat
and power (CHP); biomass.

Since nuclear conventional units are baseload units, they usually do not have any
contribution to the flexibility of the power system. For this reason they should be included
in the calculation of the residual load:

Presidual, i = Pgross,i − Gnuc,i − Gwind,i − Gpv,i − Gror, i − Gchp,i − Gbio,i, (12)

where Presidual, i—Residual load for hour i; Pgross,i—System gross load (country load + sched-
uled export) for hour i; Gnuc,i—Nuclear hourly generation for hour i; Gwind,i—Wind hourly
generation for hour i; Gpv,i—PV hourly generation for hour i; Gror, i—Run-off-river hourly
generation for hour i; Gchp,i—Chp hourly generation for hour I and Gbio,i—Biomass hourly
generation for hour i.

Following the above definition of residual load, the gross load should be covered by
the conventional units—thermal (on lignite and- hard coal) and hydro (reservoir). For this
reason there is a lower limit of total online thermal capacity which for Bulgarian power
system is set to be 500 MW.
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Residual load is taken from the Bulgarian’s Electricity System Operator (ESO). Hourly
generations of nuclear, run-off-river, combined heat and power (CHP) and biomass are
modeled on annual basis using approximation polynomials for separate hourly slots in
order to catch seasonal and diurnal patterns of variation. Expected scheduled export has
been modeled also on annual basis using stepwise linear regression with levelizing to
averages for four periods in the year. Simulations of hourly wind and PV generations
are done using the corresponding capacity factors from PECD 2.1 for year 2015. Figure 3
presents the model values of hourly generations of nuclear, CHP, biomass and run-off-river.

Figure 3. Model values of hourly generations of nuclear, CHP, biomass and run-off-river.

The expected average scheduled export is shown on Figure 4.

Figure 4. Expected average export.

The simulated hourly generations of wind and PV with installed capacities referring
to 30 April 2019 (wind—700 MW and PV—1040 MW), are shown on Figures 5 and 6.

• Calculation of hourly ramps of gross load and residual load

The hourly ramps of any time series are defined as the differences between two
consecutive hourly values of the process. In the case of gross load and residual load the
hourly ramps are calculated as follows:

dPgross, i = Pgross,i − Pgross,i−1, (13)

dPgross, i = Pgross,i − Pgross,i−1, (14)
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Figure 5. Simulated wind hourly generations.

Figure 6. Simulated PV hourly generations.

The resulting gross load and residual load hourly time series are shown in Figure 7.

Figure 7. Hourly values of gross load and resulting hourly values of residual load.

The hourly ramps of gross load are shown on Figure 8 and the resulting cumulative
distribution functions for different penetrations of wind and PV are shown on Figure 9.

Simulations of hourly generations of wind and PV have been done with the following
trends of increase of both installed capacities are shown in Table 10:
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Figure 8. Hourly ramps of gross load.

Figure 9. Resulting cumulative distribution functions for different penetrations of wind and PV.

Table 10. Trend of increase of installed capacities.

Increase, % Wind, MW PV, MW

0% 700 1040
25% 875 1300
50% 1050 1560
75% 1225 1820

100% 1400 2080

The resulting expectations (Mx) and standard deviations (σx) of the residual load for
the above five cases and the case without RES (renewable energy sources—wind + PV) are
as follows in Table 11:

Table 11. Change of resulting indicators with the increase of total installed capacity of RES.

No RES Now RES RES + 25% RES + 50% RES + 75% RES + 100%

Mx MW 0 0 0 0 0 0
σx MW 212 218 224 231 239 248
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Mathematical result expectation from the model may be positive or negative, being
zero indicates that the mathematical model is good.

The probability distribution functions (PDF) and the cumulative distribution functions
(CDF) for the 6 cases are shown on Figure 10.

Figure 10. Resulting probability distribution functions for different penetrations of wind and PV.

• Increasing the share of RES increases the capacity needed to cover the fluctuations in
the electricity generated by RES.

• We are currently using 212 MW to cover RES deviations. With a 100% increase of RES
we need to add an additional 36 MW of compensating power plants.

The linear regression model of the dependency of the standard deviation of the
residual load hourly ramps from the installed capacities of WIND and PV was calculated
using a multiple regression algorithm: The resulting model is as follows:

σresidual load = −538 + 0.50 ∗WINDcap − 0.13 ∗ PVcap, (15)

where WINDcap—installed wind capacity and PVcap—installed PV capacity.
This model can be used for calculating the standard deviation of hourly ramps of the

residual load for any penetration of WIND and PV capacities.
The operational features of conventional units in BG power system are shown in Table 12.
The dependency of the total 1 min ramp rate (MW/min) from the on-line capacity of

thermal units is calculated as well as dependency of total 15 min ramp rate. For hydro units
the total 1 min ramp rate is calculated as well as the total 5 min ramp rate of hydro units.

The most common metrics used to quantify the available ramp resource of the con-
ventional generation in a power system is the index called Insufficient Ramp Resource
Probability—IRRP. R is is the probability that a system will not have sufficient ramping
capability in a given direction over a year. Therefore, the IRRP needs to be specified over
different time intervals and in both the positive and negative direction. So the reliability of
a power system with respect to ramping is measured by IRRP.

The total ramp rates for different time interval—1 min, 15 min and 30 min of all
thermal and hydro units is shown in Figure 11.

The extreme total hourly generations of thermal and hydro units in BG power system
(2017 data) are estimated as follows: minimum hourly generation 1350 MW and maximum
5400 MW. The corresponding to 1350 MW online capacity value of total ramp rate for
30 min interval is 420 MW. Using the cumulative distribution functions of hourly ramps
of the residual load for different penetrations of wind and PV (Figure 11), the following
values of IRRP are calculated and presented in Table 13 below:
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Table 12. Thermal power plants (coal).

Power Plant Unit № Pins, MW Pmin, MW Pmax, MW Ramp Rate,
MW/min

Time to Ramp from
Pmin to Pmax, min

TPP MI 1 AES Galabovo
1 345 150 343 4 48
2 345 150 343 4 48

TPP MI 2

1 177 135 172 1.5 25
2 162 135 157 1.5 15
3 172 135 167 1.5 21
4 172 135 172 1.5 25
5 225 155 222 2 34
6 225 155 222 2 34
7 227 155 225 2 35
8 227 155 225 2 35

TPP MI 3 Contour Global

1 227 147 227 2.7 30
2 227 147 227 2.7 30
3 227 147 227 2.7 30
4 227 147 227 2.7 30

TPP Bobod dol
1 190 140 190 3 17
2 190 140 190 3 17
3 190 140 190 3 17

TPP Maritsa 3 1 100 85 100 0.8 19
TPP Ruse 1 100 85 100 0.8 19

TPP Varna
1 210 110 210 3 33
2 210 110 210 3 33
3 210 110 210 3 33

Figure 11. Total available ramp rates from thermal and hydro units vs. total on-line ro capacity for
different time intervals.

Table 13. Resulting values of IRRP with the increase of RES installed capacity.

No RES Now RES RES + 25% RES + 50% RES + 75% RES + 100%

0.0239 0.0272 0.0305 0.0347 0.0396 0.0453

The corresponding to 5400 MW online capacity value of total ramp rate for 30 min
interval is 2530 MW. For this value for all 6 cases the IRRP is equal to 0. Following the
CDF’s of all six cases and values of total ramp rates (30 min) the online capacities above
which the resulting IRRP are equal to zero were calculated. These capacities are as follows
in Table 14:

Table 14. Online capacities above which the resulting IRRP are equal to zero.

No RES Now RES RES + 25% RES + 50% RES + 75% RES + 100%

2640 2667 2724 2793 2860 2930
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The number of hours in the year with IRRP = 0 by referent cases is given in Table 15:

Table 15. The number of hours in the year with IRRP = 0 with the increase of RES installed capacity.

No RES Now RES RES + 25% RES + 50% RES + 75% RES + 100%

2640 2667 2724 2793 2860 2930

For all remaining hours IRRP is in the following intervals presented in Table 16:

Table 16. The number of hours in the year with IRRP=0 with the increase of RES installed capacity.

Power Plant Unit № Pins, MW Pmin, MW Pmax, MW Ramp Rate,
MW/min

Time to Ramp from
Pmin to Pmax, min

PSHPP Chaira
1 216 130 216 8 11
2 216 130 216 8 11
3 216 130 216 8 11
4 216 130 216 8 11

PSHPP Belmeken 1 75 5.2 72 3.6 19
2 75 5.2 72 3.6 19
3 75 5.2 72 3.6 19
4 75 5.2 72 3.6 19
5 75 5.2 72 3.6 19

HPP Sestrimo 1 120 15 120 17.5 6
2 120 15 120 17.5 6

HPP Momina klisura 1 61 22.5 61 3 13
2 61 22.5 61 3 13

HPP Batak 1 11.7 1 11.2 4 3
2 11.7 1 11.2 4 3
3 11.7 1 11.2 4 3
4 11.7 1 11.2 4 3

HPP Peshtera

1 27 1 21.6 6.4 3
2 27 1 21.6 6.4 3
3 27 1 21.6 6.4 3
4 27 1 21.6 6.4 3
5 27 1 21.6 6.4 3

HPP Aleko 1 23.7 4.3 23.7 2.7 7
2 23.7 4.3 23.7 2.7 7
3 23.7 4.3 23.7 2.7 7

HPP Teshel 1 30 6 30 1.5 16
2 30 6 30 1.5 16

HPP Devin 1 44 18 41 1.5 15
2 44 18 41 1.5 15

HPP Tsankov kamak 1 43.8 18 43.8 3 9
2 43.8 18 43.8 3 9

PSHPP Orfei

1 40 5 40 4 9
2 40 5 40 4 9
3 40 5 40 4 9
4 40 5 40 4 9

HPP Kritchim
1 41 15 41 4 7
2 41 15 41 4 7

HPP Kardzhali

1 31 10 27.5 5.2 3
2 31 10 27.5 5.2 3
3 31 10 27.5 5.2 3
4 31 10 27.5 5.2 3

HPP Studen kladenec

1 16.8 1 16.8 4.2 4
2 16.8 1 16.8 4.2 4
3 16.8 1 16.8 4.2 4
4 16.8 1 16.8 4.2 4
5 18 3 18 4.2 4

HPP Ivailovgrad
1 38 5 38 3 11
2 38 5 38 3 11
3 38 5 38 3 11

The number of hours with residual load being lower than the minimum must-run
capacity of thermal coal plants are calculated for two options; 600 MW must-run capacity
and 1000 MW must-run capacity. The results are as follows in Table 17:
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Table 17. Change of two important indicators with the increase of installed capacities of wind and PV plants.

Increase, % Wind, MW PV. MW Number of Hours with
Residual Load < 600 MW

Number of Hours with
Residual Load < 1000 MW

0% 700 1040 66 259
25% 875 1300 123 336
50% 1050 1560 169 436
75% 1225 1820 236 542

100% 1400 2080 343 676

The location of hours with residual load below 1000 MW for case 6 (wind = 1400 MW
and PV = 2080 MW) is also calculated. It is observed that most of the hours are in April
when PV generation is higher due to climatic conditions and at the same time the demand
is relatively low—this being the comfort period regarding daily average temperatures
when neither heating nor cooling demand is needed. For these hours curtailment of wind
and PV is needed in order to balance the system and this is identified as a downward
regulation problem.

4. Conclusions

The presented approach for quantifying the influence of RES penetration on flexibility
requirements has been applied for planning purposes in the Bulgarian power system.

• Examination of two estimated scenarios for 2021 electricity mix shows that with a
difference in RES penetration of 10%, difference in demand of 25% and decrease in net
exports by 50% (related with RES penetration increase in the adjacent countries), (i) the
number of hours of in the year in which the residual load is lower than the absolute
minimum annual gross total load will increase approximately 8 times and (ii) number
of hours in the year in which the residual load is lower than the corresponding
minimum admissible generation will increase approximately 4 times;

• The aforementioned results together with the coal units’ phase out program even
before 2022 and the lack of big industrial loads, lead the TSO of Bulgaria to the
estimation that further future integration of RES in the years beyond 2021 will result
in balancing problems;

• The fast increase in installed RES will cause big sudden changes in balancing the
‘generation- consumption’ of Bulgarian EES. With insufficient regulating capacities, it
will hamper the completion of the energy exchange schedules with neighboring EES;

• Installed RES plants are unable to provide the system operator with ancillary services
(primary and secondary frequency regulation and capacity exchange) and cannot
participate in the anti-emergency management of EES and recovering EES after heavy
damage. SPP cannot participate in covering maximum winter loads, which are around
19–21 PM, and WPP produce the most electrical energy between 02–06 AM, when the
consumption is minimal and there is excess energy in the grid.

This paper has presented a probabilistic approach for flexibility assessment in a
power system based on the calculation of a set of seven indicators which quantify the
impact of RES penetration based on the comparison between the net and the residual load
statistical properties. The proposed approach can be used to predict the requirements for
generation flexibility according to the expected scenario of RES penetration in the future
development of EES and specially in a ten-year development plan and can be used for
further probabilistic assessment of additional flexibility resources of system flexibility—
interconnection capacity, hydro power plants, demand response etc.

We have proven that the large amount of RES is a serious problem when regulation
towards the opposite direction (down) is needed. In this case it is important to turn on
additional consumers which at the present moment is achieved by using pumps for load
regulation. This possibility for the country has already been exhausted. Bulgaria does not
have possibilities for down regulation, and when additional RES are included, the situation
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deteriorates. The new RES causes big and sudden changes in the generation-consumption
balance and in the absence of regulating capacity, the electricity exchange schedules with
the neighboring EESs are hampered. This leads to a violation of the quality of secondary
regulation adopted by the countries from Continental Europe.

Further work will include the assessment of two and three hour ramps of the residual
load in order to catch extreme variations in wind generation during massive weather fronts
with high gradients of weather conditions We plan to use similar approach to differentiate
between expected energy not served (ENS) due to inadequate capacity, and ENS due to
inadequate flexibility.
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