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Abstract: The proliferation of renewable energy resources (RES), especially solar photovoltaic (PV)
generation resources, causes overvoltage and line overloading in distribution networks. This study
proposes a two-level volt–var control method based on multiple timescales. The on-load tap changer
(OLTC) operates on an hourly timescale, to regulate the voltage on the secondary winding. In the
15-minutes timescale, PV-connected smart inverters and static var compensators (SVCs) are obliged
to compensate the reactive power for the voltage control at the point of common coupling. In the
multi-timescale voltage control framework, this study proposes a new multi-sectional volt–var curve
(MSVVC) of a PV inverter. The objective of the MSVVC is to minimize the energy loss in the network,
improve the voltage profile, and obtain the operational margin of other reactive power compensation
devices. In the process of determining the optimal parameters of the MSVVC, stochastic modeling-
based load flow analysis is utilized to consider the intermittency and uncertainty of RES generation.
The effectiveness of the proposed method is verified on the IEEE 33-bus system in comparison with
the conventional volt–var curve cases.

Keywords: distribution network; photovoltaic generation; stochastic analysis; volt–var curve

1. Introduction

Distributed generation (DG) in distribution networks, which is mainly based on
renewable energy resources (RES), has been witnessing increasing usage. Owing to the
low R/X ratio in transmission networks, the bus voltage is mainly affected by the reactive
power. In contrast, in distribution networks with a high R/X ratio, the bus voltage is
affected by both active and reactive power. As a result, the increasing proliferation of DGs
causes a voltage rise and may even result in the violation of the allowable voltage limit in
conventional distribution networks. Moreover, the intermittent and uncertain nature of RES
generation causes frequent voltage fluctuations and deteriorates the power quality [1–5].

Active distribution networks (ADNs) are a representative solution for addressing these
challenges. Moreover, a coordination of DGs with voltage control devices is implemented
using ADNs for increasing hosting capacity and power quality without voltage issues [6].
Volt–var control, which uses a voltage regulator to maintain the network voltage within
an acceptable range, is one of the main methods in ADNs [7]. In general, conventional
volt–var control devices, such as on-load tap changers (OLTCs) and capacitor banks (CBs),
have slow response characteristics (e.g., ranging from several seconds to minutes). Their
response capability is not sufficient to deal with fast voltage fluctuations, such as transient
cloud movements. Moreover, because of the intrinsic characteristics of mechanical devices,
their lifetime can be dramatically reduced owing to frequent tap changes. On the other
hand, power electronics-interfaced devices (PEIDs), such as static var compensators (SVCs)
and static synchronous compensators (STATCOMs), have fast response characteristics
to support reactive power [1]. Smart inverters (SIs) are a type of PEID and there is a
growing need for SIs with volt–var control functions [8]. SIs should operate with rigid
regulations owing to technical and legal regulations [9]. The reactive power output of
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the SIs is regulated based on the volt–var curve (VVC) to reduce voltage fluctuation and
improve voltage reliability. The IEEE 1547 standard presents a guideline for RES generators
to maintain voltages at the connection point [10]. Likewise, grid codes are standards for
regulating RES plants for distribution networks connections. In Europe and Italy, the
following grid codes [11] and standards CEI 0–16 [12], CEI 0–21 [13] are used, respectively.

The network operation strategy in ADNs can be classified into two types based on the
communication structure: centralized control strategies, which are communication-based
types, and local control schemes that are independent from the centralized communication
structure [14]. In local control, as illustrated in Figure 1a, the local controller (LC) receives
information from the point of common coupling (PCC) [15–17]. These control schemes
are effective for rapid voltage regulation, and are suitable for the intermittent nature of
RES. However, there is no coordination with other DGs, which means that the objectives
cannot be efficiently achieved. In centralized control, as shown in Figure 1b, the main
controller (i.e., distribution management system (DMS)) receives information from the grid.
This information enables the DMS to make optimal decisions and apply control actions to
distributed generation units (DGUs). However, the inaccuracy of the measurement and the
intermittent nature of renewable energy can interfere with the decision [18,19]. Figure 1c
shows the approach combining centralized and local control schemes. The combined
control can be divided into two parts. At the local level, the LC collects PCC measurement
information and adjusts the reactive power of the DGU according to bus voltages. The DMS
receives the data from each LC and proposes optimal parameter settings using the collected
information [20].

Figure 1. Classification of control schemes (a) local control; (b) centralized control; and (c) com-
bined control.

Takasawa, Y. et al. [21] proposed fixed parameters of VVC using the daily variability
index (DVI) and daily clearness index (DCI) based on solar irradiance, PV penetration rate,
and weather conditions. This study focused on minimizing energy losses; however, it did
not consider the fluctuation of the RES output. In addition, this method did not consider
the bus voltage, which is an important factor in the distribution network. Dao et al. [22]
proposed the optimization of VVC, which focused on the minimization of system losses.
However, because the reactive power output of VVC is fixed, VVC devices do not provide
adequate reactive power when the PV output is low. Reference [23] improves the hosting
capacity in distribution networks through the proposed smart inverter. However, it only
focused on the hosting capacity based on the power factor of the system, so it may not
optimize the VVC and improve the performance of the distribution network. The optimiza-
tion of VVC parameters in PV inverters based on weather conditions was proposed in [24],
which is divided into aggressive, moderate, and mild cases. However, the method requires
a large volume of data to adapt the volt–var function, and it is difficult to divide all the
data into only three cases.

This study proposes a two-timescale framework to reflect the different response char-
acteristics of voltage control devices. The main controller (i.e., hourly timescale) and LCs
(i.e., 15 min timescale) coordinate with each other. The DMS adjusts the OLTC tap position
and provides optimal parameters in the section table of MSVVC for the hourly timescale.
In the 15 min timescale, the LCs regulate the reactive power of SVCs and RES inverters in
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response to the terminal bus voltages. The stochastic modeling of the load demand and
RES generation was applied to take the uncertainties of the RES into account. Owing to the
distribution networks’ complexity as the growing presence of DGs, it is difficult to analyze
the reliability of the distribution networks. Thus, the stochastic approach which can account
for the occurrence or probability of each state is applied. Stochastic methods represent the
high precision of networks and can improve the reliability performance by analyzing the
probabilities of each state [6]. Load demand and RES generation follow normal and beta
distribution functions, respectively. Stochastic variations are considered using the Monte
Carlo method. In the 15 min timescale, 200 samplings were generated by the Monte Carlo
method, that is, 800 samplings were generated for 1 h. The main contributions of this study
are as follows:

• A new multi-sectional volt–var curve (MSVVC) of the PV inverter which follows the
IEEE 1547 standard [10] is proposed. The MSVVC section table is updated by the main
controller in the hourly timescale for the objective of network expected energy loss
minimization, and the inverters operate along the MSVVC in the 15 min timescale.

• To manage the uncertainty of the load demand and the RES output, parameters of
the MSVVC were determined using the Monte Carlo-based stochastic analysis and
non-linear optimization.

• Using the active control of reactive power output in PV inverters, other reactive power
compensators (i.e., SVCs) can obtain an operational margin. The proposed method
can cope with more severe voltage issues than the conventional method.

• The proposed method helps the RES inverter generate or absorb more reactive power
than the conventional method, which, in turn, leads to network voltage profile im-
provement. Thus, the bus voltage in the distribution network can be kept within the
allowed margin, even when the load demand and RES power outputs fluctuate.

The rest of this paper is organized as follows: Section 2 introduces the analysis method-
ology consisting of stochastic modeling, the proposed method, MSVVC, and the volt–var
control framework. Section 3 presents a scenario construction that uses Monte Carlo sam-
pling to demonstrate the effects of MSVVC. The test was implemented in the IEEE 33-bus
system with several volt–var control devices, and Section 4 concludes the paper.

2. Proposed Methodology
2.1. Stochastic Modeling of Load Demand and RES Generation

The stochastic variation of load demand and RES generation follow normal and beta
distributions, respectively [25–27]. Equation (1) shows the normal distribution function:

f (x) =
1

σ
√

2π
exp[−1

2
(

x− µ

σ

2
)] (1)

where µ and σ denote the mean value and standard deviation, respectively:

f (x) =
xα−1(1− x)β−1

B(α, β)
(2)

Equation (2) shows the beta distribution function, which has two hyper-parameters, α
and β. The mean value and variance are defined by the relationship between α and β as
follows [27]:

Mean : E[X] =
α

α + β
(3)

Variance : σ2 =
αβ

(α + β)2(α + β + 1)
(4)

The probability density functions (PDFs) of the normal and beta distributions are
illustrated in Figure 2. In this study, the stochastic variations in load demand follow the
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actual data that form the normal distribution; variations in PV output are based on the beta
distribution [28,29].

Figure 2. (a) PDF of normal distribution function; (b) and PDF of beta distribution function.

2.2. Proposed Multi-Sectional Volt–Var Curve of PV Inverter

In Figure 3, the green curve shows the conventional VVC of the PV inverter recom-
mended by the IEEE 1547 standard [10]. The conventional VVC can regulate the bus voltage
through the linear relationship between the reactive power output and the voltage at the
PCC, whereas the proposed MSVVC divides the VVC into multiple sections to actively
compensate for reactive power. Although the PV inverter with conventional VVC can
compensate reactive power according to the bus voltage, the objective function cannot be
considered. Note that both conventional VVC and MSVVC have the same reactive power
output limits.

Figure 3. Schematic diagram of the conventional volt–var curve and multi-sectional volt–var curve.

To determine the optimal parameter of the MSVVC section table, the total expected
energy loss has to be minimized while satisfying the rated voltage range over the variation
of load demand and PV generation. For the entire system, Kirchhoff’s current law (KCL)-
based power flow was performed as described in (5). The mathematical model can be
formulated as shown in (5)–(13). The minimum/maximum vectors are denoted by a bar
above/bar below (e.g., (•)/(•) ):

Ibus = YbusVbus (5)

min ∑
t

Br

∑
j=1

Pj
loss(t) (6)

subject to:
Pj

loss = I2
j Rj, ∀j (7)
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V0(t) = Vsub + ntap(t)×Vtap (8)

ntap ≤ ntap(t) ≤ ntap (9)

Qi
SVC ≤ Qi

SVC(t) ≤ Qi
SVC, ∀i (10)

Qi
PV ≤ Qi

PV(t) ≤ Qi
PV , ∀i (11)

Qi
PV = −

√
Si

PV
2 − [Pi

PV(t)]
2 (12)

Qi
PV =

√
Si

PV
2 − [Pi

PV(t)]
2 (13)

Vi ≤ Vi(t) ≤ Vi, ∀i (14)

where Br denotes the total number of lines and (6) is the objective function, which is
minimizing the power loss of the whole network. The power loss for branch j is as shown
in (7). Pj

loss(t) represents the power loss of the j-th branch during a 15 min interval (t-th
time) in an hour. Vsub is the primary voltage of the substation, which is typically 1.0 p.u.
The secondary side voltage of the substation V0(t) can be calculated by (8), where Vtap

is the voltage step per tap and ntap denotes the tap position of the OLTC. In (9)–(11),
the operation constraints of the volt–var control devices are shown; ntap(t) is the OLTC
tap position, Qi

SVC(t) and Qi
PV(t) denote the reactive power output of SVC and PV. The

reactive power output limit of PV is estimated by (12) and (13), where the rated capacity
and active power of the PV are represented by Si

PV and Pi
PV(t), respectively. In (14), the

desired voltage limits are imposed for each node.
The decision variables in (6) are the points on the y axis of the proposed MSVVC

section table. The points on the x axis are determined based on the probability distribution
of the voltage with the PV installed:

P[VL
p1 ≤ V ≤ VH

p1] = p1 (15)

P[VL
p2 ≤ V ≤ VH

p2] = p2 (16)

where the values p1 and p2 determine the x coordinate voltages VL
p1, VH

p1, VL
p2, and VH

p2,
respectively. In Figure 4, f (V) means kernel density estimation function, which is the
distribution of bus voltages. Owing to the variations of load demand and PV generation,
bus voltages also have a distribution function. The voltage Vm is the mode value of the
kernel density function, so it has a maximum probability. Therefore, the MSVVC on the
inverter can include up to five points compared to the conventional VVC, as illustrated in
Figure 4. If the x axis coordinate value exists in the dead band (voltage between V2 and V3),
the y axis coordinate value is ignored.

As illustrated in Figure 5, for all x axis values determined by (15) and (16), the
corresponding y axis values are determined by the proposed optimization process as
QL

p1, QH
p1, QL

p2, QH
p2, and Qm. To inject or absorb more reactive power in proportion to the

PCC voltage variation, the constraints between the y axis values are expressed as (17).
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Figure 4. Determination of x values in multi-sectional volt–var curve.

Figure 5. Representation of multi-sectional volt–var curve.

Qmax ≥ QL
p1 ≥ QL

p2 ≥ Qm ≥ QH
p2 ≥ QH

p1 ≥ Qmin, 0 ≤ Qmax ≤ QPV , QPV ≤ Qmin ≤ 0 (17)

QMSVVC(V) =



Qmax if V ≤ V1
QMSVVC(V1)−QMSVVC(VL

p1)

V1−VL
p1

(V −VL
p1) + QL

p1 if V1 ≤ V ≤ VL
p1

QMSVVC(VL
p1)−QMSVVC(VL

p2)

VL
p1−VL

p2
(V −VL

p2) + QL
p2 if VL

p1 ≤ V ≤ VL
p2

QMSVVC(VL
p2)−QMSVVC(Vm)

VL
p2−Vm

(V −Vm) + Qm if VL
p2 ≤ V ≤ Vm

QMSVVC(Vm)−QMSVVC(VH
p2)

Vm−VH
p2

(V −VH
p2) + QH

p2 if Vm ≤ V ≤ VH
p2

QMSVVC(VH
p2)−QMSVVC(VH

p1)

VH
p2−VH

p1
(V −VH

p1) + QH
p1 if VH

p2 ≤ V ≤ VH
p1

QMSVVC(VH
p1)−QMSVVC(V2)

VH
p1−V2

(V −V2) if VH
p1 ≤ V ≤ V2

0 if V2 ≤ V ≤ V3
QMSVVC(V3)−QMSVVC(V4)

V3−V4
(V −V4) + Qmin if V3 ≤ V ≤ V4

(18)
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Equation (18) shows the formulation of the proposed MSVVC according to the x and
y axis values. In (18), each section has the function of different slopes, which depends on
the x axis and y axis values. Note that the function of all the sections is a linear function.
In addition, if the selected voltage value exists in the dead band (i.e., between V2 and V3),
there is no reactive power compensation.

2.3. Volt–Var Control Framework with Multi-Sectional Volt–Var Curve

Figure 6 illustrates the coordinated volt–var control framework in the hourly and
15 min timescale. In the hourly timescale, mechanical volt–var control devices such as
OLTCs and CBs operate to regulate the slow voltage variation, and the optimal parameters
in MSVVC section tables (illustrated as ‘Box’ in Figure 6) are determined by proposed
optimization process. In the 15 min timescale, each PV inverter regulates the reactive power
output according to the MSVVC. Moreover, SVCs absorb or inject reactive power based on
the voltage set point. The proposed optimization sequences are as follows:

1. Stochastic modeling of load demand and PV output considering the uncertainty and
intermittency nature is applied. The load demand and PV output follow normal and
beta distribution, respectively.

2. Through the load flow analysis for the load demand and PV output data, voltage
distribution is generated and fitted through kernel density function as presented in
Figure 4.

3. The x-coordinate values of MSVVC (i.e., VL
p1, VH

p1, VL
p2, VH

p2, and Vm) are determined.
To determine the x axis values, PV inverters do not compensate reactive power. They
are defined by the probability p1 and p2 as shown in Equations (15) and (16). Moreover,
the voltage with the maximum probability is defined to the mode value Vm.

4. Through the proposed optimization process, the y coordinate values of MSVVC (i.e.,
reactive power output of PV inverter) are determined. The objective function is to
minimize the total expected energy loss with following the several constraints as
described in Equations (9)–(14). Through a series of processes, the MSVVC section
table is generated every hour.

5. The DMS generates the MSVVC section table and regulates OLTC tap position every
hour. Then, PV inverters compensate reactive power with MSVVC in the 15 min
timescale. Moreover, SVCs compensate reactive power to maintain PCC voltages as
1.0 p.u.

Figure 6. Proposed framework of the coordinated volt–var control.

3. Case Studies
3.1. Stochastic Model

Section 3.1 describes the stochastic model of load demand and RES generation.
The 15 min intervals of the load demand and RES generation daily output profiles are
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shown in Figure 7. The load demand and PV output data are obtained from the trans-
mission system operator of Korea (called Korea Power Exchange) [28]. The load data are
derived from IEEE 33-bus system with constant power factor [30]. In this study, all DGUs
are assumed to be solar PV.

Figure 7. Daily profile of the (a) load demand; and (b) RES power generation output.

The stochastic variations of RES generation are assumed to follow the beta distribution,
where the shape parameters are set to α = β = 6.06 [29].

By considering the predicted load demand and RES generation with stochastic vari-
ations, 200 random scenarios were generated by Monte Carlo sampling for each time
step (15 min), and load flow analysis was performed. Thus, 200 voltage combinations are
generated for each 15 min timescale. Because MSVVC section tables are updated on an
hourly timescale, a total of 800 sampling data are considered to determine the x axis values
of MSVVC. The values of the x axis in the MSVVC depend on p1 and p2. In this study, the
probabilities p1 and p2 are set to 0.8 and 0.5, respectively. In other words, the probability
of voltage existing between VL

p1 and VH
p1 is 80%, and the probability of voltage existing

between VL
p2 and VH

p2 is 50% based on the mode voltage Vm. The voltages V1, V2, V3, and V4
are set to 0.92, 0.99, 1.01 and 1.08, respectively.

3.2. Parameter Settings

The IEEE 33-bus test system was used to verify the effectiveness of the proposed
method, as shown in Figure 8. In this study, the primary voltage of the substation is set
to 1.0 p.u., and the OLTC located at the substation has 20 taps with voltage variations of
0.005 p.u. per tap. Therefore, the OLTC voltage range was set to ±5%.

Table 1 shows the installed location and capacity information of PV inverters and
SVCs. The rated capacity of all PV inverters are set to 824 KVA, and the maximum active
power capacity is set to 700 KW according to Figure 9 [10].

Table 1. PV inverter and SVC capacity information.

PV Inverter SVC

Location (Node) 7, 9, 11, 13, 19, 21, 22,
25, 27, 30 6, 10, 26, 32

Capacity S (KVA) 824 ±500
Maximum P (KW) 700 -
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Figure 8. Modified IEEE 33 radial distribution system.

Figure 9. Reactive power capability of PV inverter.

The maximum output limit of the reactive power in the PV inverter is determined
by the rated capacity and current active power output described in (12) and (13). The
operating region is determined by the constraints shown in Figure 9. Moreover, the PV
cannot exceed the maximum active power generation, nor can it absorb active power.

To solve the proposed non-linear optimization problem and efficiently simulate dis-
tribution systems with VVC, a co-simulation between two different software packages
(OpenDSS 8.6.7.1 and MATLAB R2020b) is proposed. An overview of the co-simulation
schemes is presented in Figure 10. The network topology is modeled and the load flow anal-
ysis is performed using OpenDSS, which is mainly used for distribution system analysis.
Using the results of the load flow analysis (voltage, current, and power), the optimization
problem was formulated and solved in MATLAB. In this study, a metaheuristic solver
genetic algorithm is proposed to solve the problem.

A genetic algorithm is a metaheuristic method which imitates the natural selection
process. The population pool is made up with several individuals and they are selected for
the next generation by a fitness evaluation for each generation. Each selected individual
called parents in a population pool has better properties. The individuals are defined
as reactive power outputs of PV inverters and 10 PV plants are installed in this paper.
Therefore, a maximum of 50 individuals became variables for one generation. Figure 11
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shows the flowchart of the proposed genetic algorithm. The first step is to generate a
population pool satisfying constraint (17) and set gen = 1. Then, the volt–var curve of
the PV inverter is changed because individuals are defined as reactive power outputs
of the PV volt–var curve. Based on the reflected information, load flow calculation is
performed through OpenDSS. If all operating constraints from (9)–(14) are satisfied, the
fitness evaluation (i.e., energy loss) proceeds. In a parents selection step, the elitist strategy
is performed to copy the elite genes from the highest fitness individuals for choosing the
next generation. In order to find the global optimal, the crossover and mutation processes
are applied. In the crossover process, the operator selects two random individuals and
exchanges their information. The mutation operator randomly changes one gene to give
new information. The entire procedure is repeated until the maximum generation exceeded.

Figure 10. Overview of OpenDSS and MATLAB co-simulation.

Figure 11. The flowchart of the proposed genetic algorithm.
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3.3. Simulation Results

In the proposed method, the DMS dispatches the optimal OLTC tap position every
hour and transmits the MSVVC section table to each PV inverter. In the 15 min timescale,
the reactive power output of the PV inverter is determined based on the MSVVC. If the
active power output of the PV inverter is less than 5%, the reactive power cannot be
compensated, as shown in Figure 9.

The DMS requests appropriate the tap changing of the OLTC to remain within the
desired voltage range (±5% of the rated voltage). The 24 h OLTC tap position profile
is shown in Figure 12. However, owing to the uncertainty of the load demand and RES
output, the bus voltage can be violated during the OLTC tap dispatching time. To examine
this, two case studies were conducted. In the first case (Figure 13a), the tap changing of
the OLTC was performed based on the forecasted mean value of the load demand and
RES power generation. In the second case (Figure 13b), the tap changing operation was
coordinated with the MSVVC section table through the proposed method in Section 2.2.
The bus voltage profiles produced by the 800 random scenarios are shown in Figure 13.
The horizontal red lines in Figure 13 mean the voltage limits which are set to ±5% of the
nominal voltages. Thus, above the horizontal red line are the upper limits of voltages (i.e.,
1.05 p.u.) and below are the horizontal lower limits of voltages (i.e., 0.95 p.u.). Owing to the
stochastic changes in load demand and RES output, the deterministic method violates the
lower voltage limits, as illustrated in Figure 13a. However, the MSVVC meets the allowable
voltage range and improves the voltage profile, as shown in Figure 13b.

Figure 12. OLTC tap position.

Figure 13. Voltage profiles for (a) conventional VVC method; and (b) MSVVC method.
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The voltage performance index (VPI) is the root mean square deviation between the
rated voltage Vi

rated and bus voltage Vi
k . The VPI is applied to represent the voltage profile

improvement. The rated bus voltage is defined as the mean value of the i-th bus and is
affected by the current tap position and the output of other volt–var control devices. VPI is
defined as follows:

VPI =

√√√√NB

∑
i=1

NS

∑
k=1

(Vi
rated −Vi

k)
2 (19)

where NB is the number of buses in the system, and NS denotes the number of sampled
data. Table 2 presents the comparison results of the different stochastic methods in terms of
the average VPI and voltage violation. Three cases were performed to investigate the effect
of MSVVC. In case 1, the tap positions are optimized to minimize the expected energy loss
while satisfying the voltage limits with the conventional VVC. In case 2, the conventional
VVC is used as in case 1, but the tap positions are equal to those of case 3. In case 3, the
tap positions and MSVVC parameters are optimized to minimize the total expected energy
loss while satisfying the rated voltage range.

Table 2. Comparison between case studies for VPI and energy loss.

Case 1 Case 2 Case 3

MIN voltage (p.u.) 0.9504 0.9446 0.9505
MAX voltage (p.u.) 1.0383 1.0383 1.0381

Average VPI 3.5156 3.4678 3.3086

In cases 1 and 3, the bus voltage range was satisfied within the allowed range. How-
ever, case 2 represents a low-voltage violation owing to the limited reactive power com-
pensation capability of the conventional VVC. In addition, case 3 represents a minimum
average VPI of 3.3086 compared to the other two cases.

Figure 14 describes the comparison of obtained MSVVC depending on the PV location
at ninth hour. (PV7 means the PV is located in bus 7). Each PV inverter obtains a different
VVC according to its location and time. Conventional VVC is represented by black lines for
all PV inverters. However, all the MSVVC points are optimized to minimize the expected
energy loss.

Figure 14. Comparison of the conventional VVC and MSVVC.

A comparison of the reactive power output in SVC at a specific time (hour = 9 h) is
shown in Figure 15. Through the active control of the voltage regulation of the MSVVC, the
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reactive power output of the SVC can be saved through the proposed MSVVC. In bus 32, the
reactive power output of the SVC is almost 100% of its capacity owing to the low voltage.

Figure 15. Comparison of the SVC reactive power output.

Table 3 compares the different cases in terms of expected energy loss and cumulative
reactive power output of SVCs. Although case 1 shows better performance for the SVC
margin among the cases, it shows poorer performance in terms of the expected energy loss.
For case 3, the performance in terms of the expected energy loss is approximately 20.5%
better compared to case 1. Moreover, case 3 has less expected energy loss and SVC output
than case 2.

Table 3. Comparison of the SVC reactive power output.

Case 1 Case 2 Case 3

Expected energy loss (KWh) 99.039 85.774 82.175
Voltage violation No Yes No

SVC output (KVarh) 670.57 1001.4 954.71

4. Discussion

In the proposed optimization process, the objective function in (6) and the voltage
distribution under the Monte Carlo simulation (VL

p1, VH
p1, VL

p2, VH
p2, and Vm) depend on

the distribution network topology (line data and network configuration). Therefore, if
the connection state between feeders is changed through network reconfiguration, the
efficiency of the optimal parameter tuning of MSVVC in the previous time step could
decrease. The system operator can observe the network topology status through DMS.
Using this, in the proposed optimization process, the operator can use the data on the
network topology changed in the previous time step to dispatch the optimal OLTC tap
position and parameter of MSVVC in the next time step. The best way is to develop a
strategy for network reconfiguration in the DMS separately and calculate the optimal
parameter of MSVVC and the tap position of the OLTC coordinating with the expected
network topology in the next time step. However, this is an area that will not be considered
in this study.

5. Conclusions

This study proposed a new stochastic analysis-based VVC scheme for a smart inverter
by dividing the curve into multiple sections. Compared to the conventional VVC, the
proposed method offers multiple benefits such as reducing the total expected energy loss,
obtaining the SVC output margin, improving the voltage profile, and mitigating voltage
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problems based on the variability of the RES power output. To analyze the uncertainty
and intermittent nature of RES generation, the stochastic modeling of RES generation is
adapted, which is also applied to the modeling of load demand. Owing to the differences
in the characteristics of the devices, a coordinated dispatch strategy is proposed as two
timescales. The OLTC tap position and MSVVC section table are scheduled in the hourly
timescale. In the 15 min timescale, the PV inverter that follows the MSVVC, and the
SVC outputs are dispatched. The proposed method is simulated by the collaboration of
OpenDSS and MATLAB; OpenDSS models the distribution network and performs the
power flow, and MATLAB solves the non-linear problem using a genetic algorithm to
obtain VVC parameters.

The proposed method applies each PV inverter to minimize the total expected energy
loss. The load demand and PV output were modeled based on historical data, and Monte
Carlo sampling was applied to analyze its variations. In our future work, the application of
MSVVC to maximize the hosting capacity in distribution networks will be investigated.
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