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Abstract: In this work, an improved IMplicit Pressure and Explicit Saturation (IMPES) scheme is
proposed to solve the coupled partial differential equations to simulate the three-phase flows in
subsurface porous media. This scheme is the first IMPES algorithm for the three-phase flow problem
that is locally mass conservative for all phases. The key technique of this novel scheme relies on a new
formulation of the discrete pressure equation. Different from the conventional scheme, the discrete
pressure equation in this work is obtained by adding together the discrete conservation equations
of all phases, thus ensuring the consistency of the pressure equation with the three saturation
equations at the discrete level. This consistency is important, but unfortunately it is not satisfied in
the conventional IMPES schemes. In this paper, we address and fix an undesired and well-known
consequence of this inconsistency in the conventional IMPES in that the computed saturations are
conservative only for two phases in three-phase flows, but not for all three phases. Compared with the
standard IMPES scheme, the improved IMPES scheme has the following advantages: firstly, the mass
conservation of all the phases is preserved both locally and globally; secondly, it is unbiased toward
all phases, i.e., no reference phases need to be chosen; thirdly, the upwind scheme is applied to the
saturation of all phases instead of only the referenced phases; fourthly, numerical stability is greatly
improved because of phase-wise conservation and unbiased treatment. Numerical experiments are
also carried out to demonstrate the strength of the improved IMPES scheme.

Keywords: three-phase flow; full mass conservation; standard IMPES scheme; unbiased IMPES scheme

1. Introduction

Numerical simulation for subsurface flows has been extensively applied in industry,
such as in the management of groundwater energy and waste pollutants, petroleum
engineering, and exploitation of geothermal energy [1–13]. The main numerical methods
in the simulation include the Fully Implicit scheme (FI) [14–17] and the IMplicit EXplicit
scheme (IMEX) [18–20]. In the FI scheme, all the unknowns can be derived implicitly.
Therefore, it is unconditionally stable. However, it is extremely time-consuming to deal
with the nonlinear equations at each time step. Different from the FI scheme, the IMEX
scheme processes the linear terms implicitly, while the nonlinear terms explicitly. As a result
of this, only conditional stability is guaranteed. More specifically, the IMplicit-Pressure and
Explicit-Saturation (IMPES) scheme [15,19,21–26] is regarded as a kind of IMEX scheme,
which is extensively leveraged in the three-phase flow simulation in porous media. In the
IMPES scheme, the pressure is derived implicitly, then the Darcy velocity and saturation
are explicitly derived. The IMPES scheme provides the solution of high accuracy, with less
time cost than the FI scheme. Moreover, the IMPES scheme is easy to implement and has,
therefore, gained great popularity.
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In this work, a modified IMPES scheme is designed to simulate incompressible three-
phase flows in porous media with the discrete methods of cell-centered finite difference and
upwind [27]. An advanced discretized formulation is implied to obtain the total pressure by
summing up the discretized conservation equation of each phase, which could guarantee
the consistency of the pressure equation. Furthermore, the mass conservation of all the
phases can be preserved both locally and globally in this scheme.

This work is organized as follows. Section 2 presents an incompressible and immiscible
three-phase flow model. Section 3 reviews the standard IMPES scheme. Section 4 describes
the presentation of an improved IMPES scheme. Section 5 shows some applications of our
new method.

2. Mathematical Model

In this work, we consider the flow of three incompressible and immiscible phases in
porous media. This three-phase flow system can be used for the simulations in a number of
natural and engineering circumstances, in particular, the petroleum reservoirs consisting
of water, oil and gas phases if the density of the gas phase does not substantially change
in the system. We note that the gas phase needs to be modeled by a compressible phase
by using, for example, an equation of state, if its density varies substantially within the
domain. The assumptions of incompressibility and immiscibility are for the convenience of
presentation and numerical implementation here, but most of our results can be extended
to compressible three-phase flows in a straightforward way. We use the subscripts w, o and
g to denote the three phases (naming from water, oil and gas phases). The equations of
immiscible and incompressible three-phase flow are described by

φ
∂Sβ

∂t
+∇ · uβ = qβ, x ∈ Ω, t > 0, β = g, o, w, (1)

uβ = −
krβ

µβ
k(∇ pβ + ρβg∇z), x ∈ Ω, t > 0, β = g, o, w, (2)

Sg + So + Sw = 1, x ∈ Ω, t > 0, (3)

pcow = po − pw, x ∈ Ω, t > 0, (4)

pcgo = pg − po, x ∈ Ω, t > 0, (5)

Here, φ is the porosity, k is the absolute permeability, Sβ, ρβ, pβ, krβ, qβ, uβ and µβ

are the saturation, the density, the pressure, the relative permeability, the injection or
production rate, the Darcy velocity and the viscosity of β phase, respectively, while pcij is
the capillary pressure, g is the gravity and z is the depth.

The domain Ω ⊂ R2 is bounded. Γ = ∂Ω is the boundary condition of Ω, and
∂Ω = ΓD

⋃
ΓN , ΓD

⋂
ΓN = ∅, where ΓD and ΓN indicate Dirichlet and Neumann boundary

conditions. The inlet boundary is presented by Γin ⊂ Γ, where Γin = {x ∈ Ω : ut · n < 0},
ut = uw + uo + ug is the total Darcy velocity. The following initial and boundary conditions
are added to close the system

Sβ = S0
β, x ∈ Ω, t = 0, β = w, o, g, (6)

pβ = pB
β , x ∈ ΓD, t > 0, β = w, o, g, (7)

uβ · n = uB
β , x ∈ ΓN , t > 0, β = w, o, g, (8)

Sβ = SB
β , x ∈ Γin, t > 0, β = w, o, g, (9)

where n is the unit normal vector.



Energies 2021, 14, 2757 3 of 15

3. Standard IMPES Scheme

Following the last section, we can use standard IMPES scheme [24] to solve the PDEs.
The key point of the scheme is to decouple pressure and saturation, and the first step is to
sum up conservation equation of each phase, leading to

∇ · ut = qt, (10)

where qt = qw + qo + qg is the total injection or production rate and ut = uw + uo + ug is
the total Darcy velocity.

With the phase mobility λβ :=
kγβ

µβ
and the flow potential ψβ := pβ + ρβgz, the Darcy

velocity can be written as uβ = −λβk∇ψβ, where β ∈ {w, o, g}, and the potential change
ψcαβ between phase α and β can be described as

ψcow = ψo − ψw = pcow + (ρo − ρw)gz := ψcow(Sw, Sg), (11)

ψcgo = ψg − ψo = pcgo + (ρg − ρo)gz := ψcgo(Sw, Sg). (12)

The total phase mobility λt = λw +λg +λo and the fractional flow function fβ = λβ/λt
are substituted into Equation (2) to obtain the total Darcy velocity,

ut = −λtk∇ψo + fwλtk∇ψcow − fgλtk∇ψcgo, (13)

which can be rearranged to

−λtk∇ψo = ut − fwλtk∇ψcow + fgλtk∇ψcgo. (14)

Substituting Equation (13) into Equation (10), we have the pressure equation,

∇ · (−λtk∇ψo + fwλtk∇ψcow − fgλtk∇ψcgo) = qt, (15)

which yields,

−∇ · (λtk∇ψo) = qt +∇ · (λgk∇ψcgo)−∇ · (λwk∇ψcow) =: RHSpres(Sw, Sg). (16)

In the above relation, we find that if the saturations Sm
w and Sm

g are known, the pressure
Equation (16) is linear for ψo. By relating the Darcy velocities of the water and gas phases
to the total Darcy velocity, we find

uw = fwut + ( fg + fo)λwk∇ψcow + fwλgk∇ψcgo, (17)

ug = fgut − ( fw + fo)λgk∇ψcgo − fgλwk∇ψcow. (18)

By substituting Equations (17) and (18) into (1), the water and gas phases saturation
equations can be read as

φ
∂Sw

∂t
= qw −∇ · ( fwut)−∇ · (( fg + fo)λwk∇ψcow)−∇ · ( fwλgk∇ψcgo) =: RHS1,sat(Sw, Sg), (19)

φ
∂Sg

∂t
= qg −∇ · ( fgut) +∇ · (( fw + fo)λgk∇ψcgo) +∇ · ( fgλw∇ψcow) =: RHS2,sat(Sw, Sg), (20)

where

∇ψcow = (
∂ψcow

∂Sw
∇Sw +

∂ψcow

∂Sg
∇Sg), (21)

∇ψcgo = (
∂ψcgo

∂Sw
∇Sw +

∂ψcgo

∂Sg
∇Sg). (22)

If the saturations Sm
g and Sm

w at time step m are given, we can implicitly solve ψm+1
o by

the pressure Equation (16), and update the saturations Sm+1
w and Sm+1

g by the saturation
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Equations (19) and (20). Consequently, the oil phase saturation Sm+1
o can be calculated by

1− Sm+1
w − Sm+1

g . The saturation-pressure system can be decoupled by the standard IMPES
scheme which is summarized in Algorithm 1 for completeness.

Algorithm 1 Standard IMPES Scheme

1: Step 1. Given Sm
w and Sm

g , calculate um+1
cow and um+1

cgo by using

um+1
cow := λw(Sm

w )k∇ψm
cow(S

m
w , Sm

g ), um+1
cgo := −λg(Sm

g )k∇ψm
cgo(S

m
w , Sm

g ).

2: Step 2. Given Sm
w , Sm

g , um+1
cow and um+1

cgo , find um+1
t,o and ψm+1

o such that

∇ · um+1
t,o = qt −∇ · um+1

cow −∇ · um+1
cgo , um+1

t,o = −λtk∇ψm+1
o .

3: Step 3. Given Sm
w , Sm

g , um+1
t,o and ψm+1

o , update saturation of each phase by

ψ
Sm+1

g − Sm
g

tm+1 − tm
= qg −∇ · ( fgum+1

t,o − ( fo(Sm
w , Sm

g ) + fw(Sm
w ))u

m+1
cgo − fg(Sm

g )u
m+1
cow ),

ψ
Sm+1

w − Sm
w

tm+1 − tm
= qw −∇ · ( fwum+1

t,o + ( fo(Sm
w , Sm

g ) + fg(Sm
g ))u

m+1
cow + fw(Sm

w )u
m+1
cgo ),

Sm+1
o = 1− Sm+1

w − Sm+1
g .

The first and second equations in Step 3 of Algorithm 1 are clearly consistent with
Equation (1) when β = w, g. However, the third equation may not satisfy Equation (1).
Therefore, the standard IMPES scheme is locally mass conservative for the two reference
phases provided that the spatial discretization is also locally conservative, but this local
conservation is not preserved for the third phase. In next section, we will propose a fully
mass conservative IMPES scheme for this incompressible and immiscible three-phase flow
system.

4. Improved IMPES Scheme

In this section, we will introduce a modified scheme to improve the consistency of the
standard IMPES method. The governing equations for the incompressible and immiscible
three-phase model have been expressed in Section 2. The detailed discretization procedure
is showed below.

We first define wβ := −k(∇pβ + ρβg) and uβ := λβwβ. We use a rectangular mesh
for spatial discretization, and the domain Ω = (0, Lx)× (0, Ly) can be divided into M× N
cells, partitioned by δx × δy, where

δx : 0 = x0 < x1 < · · · < xM = Lx, δy : 0 = y0 < y1 < · · · < yN = Ly.

We introduce the following standard notation:

xi− 1
2
=

xi + xi−1

2
, yi− 1

2
=

yi + yi−1

2
,

hi = xi+ 1
2
− xi− 1

2
, hj = yi+ 1

2
− yi− 1

2
,

Ωi− 1
2 ,j− 1

2
= (xi−1, xi)× (yj−1, yj),

Ωi− 1
2 ,j = (xi−1, xi)× (yj− 1

2
, yj+ 1

2
),

Ωi,j− 1
2
= (xi− 1

2
, xi+ 1

2
)× (yj−1, yj).
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The cell-centered finite difference method is employed here to discretize pressure gra-
dient ∇p(x, y) at cell centers (xi− 1

2
, yi− 1

2
), and more details can be found in Rui et al. [28],

Weiser and Wheeler [29] and Negaral et al. [21]. The gradient of a general scalar quantity p
can be approximated by using a central finite difference in each direction:

∆−x pi,j− 1
2
=

pi+ 1
2 ,j− 1

2
− pi− 1

2 ,j− 1
2

xi+ 1
2
− xi− 1

2

, (23)

∆−y pi− 1
2 ,j =

pi− 1
2 ,j+ 1

2
− pi− 1

2 ,j− 1
2

yj+ 1
2
− yj− 1

2

. (24)

We can estimate wβ at the middle of edges by

wx
β,i,j− 1

2
= −ki,j− 1

2
(∆−x pβ,i+ 1

2 ,j− 1
2
+ ρβ,i,j− 1

2
gx

i,j− 1
2
), (25)

wy
β,i− 1

2 ,j
= −ki− 1

2 ,j(∆
−
y pβ,i− 1

2 ,j+ 1
2
+ ρβ,i− 1

2 ,jg
y
i− 1

2 ,j
), (26)

where ki,j− 1
2

is the harmonic average of ki− 1
2 ,j− 1

2
and ki− 1

2 ,j− 1
2

. Here, we only consider the
simplified situations, but Starnoni et al. [30] has applied to one- and two-phase flow in
porous media for the general circumstances. Subsequently, we will evaluate Darcy velocity
by the upwind method, which needs velocity direction information from the last time step.
In the very first time step, the direction velocities information is not yet known, and we
propose to use of the following formulations:

u0,x
β,i,j− 1

2
= λ

0
β,i,j− 1

2
w1,x

β,i,j− 1
2
, u0,y

β,i− 1
2 ,j

= λ
0
β,i− 1

2 ,jw
1,y
β,i− 1

2 ,j
,

where

λ
0
β,i,j− 1

2
=

1
2
(λβ(S0

w,i− 1
2 ,j− 1

2
, S0

g,i− 1
2 ,j− 1

2
) + λβ(S0

w,i+ 1
2 ,j− 1

2
, S0

g,i+ 1
2 ,j− 1

2
)), (27)

λ
0
β,i− 1

2 ,j =
1
2
(λβ(S0

w,i− 1
2 ,j− 1

2
, S0

g,i− 1
2 ,j− 1

2
) + λβ(S0

w,i− 1
2 ,j+ 1

2
, S0

g,i− 1
2 ,j+ 1

2
)). (28)

For all later time steps (i.e., m ≥ 1), the Darcy velocities are computed by

um,x
β,i,j− 1

2
= λβ(S

m,∗,x
w,i,j− 1

2
, Sm,∗,x

g,i,j− 1
2
)wm,x

β,i,j− 1
2
, um,y

β,i− 1
2 ,j

= λβ(S
m,∗,y
w,i− 1

2 ,j
, Sm,∗,y

g,i− 1
2 ,j
)wm,y

β,i− 1
2 ,j

.

The saturation Sm,∗
β for all phases can be discretized by the traditional upwind method

Sm,∗x
β,i,j− 1

2
=

Sm,∗x
β,i− 1

2 ,j− 1
2
, um−1,x

β,i,j− 1
2
≥ 0,

Sm,∗x
β,i+ 1

2 ,j− 1
2
, elsewise,

, Sm,∗y
β,i− 1

2 ,j
=


Sm,∗y

β,i− 1
2 ,j− 1

2
, um−1,y

β,i− 1
2 ,j
≥ 0,

Sm,∗y
β,i− 1

2 ,j+ 1
2
, otherwise.

.

With the above pressure and velocity formulations, we can obtain the discretized
forms of Equations (1)–(5) at each time step m,

φ
Sm+1

β,i− 1
2 ,j− 1

2
− Sm

β,i− 1
2 ,j− 1

2

tm+1 − tm
+ Bβ,i− 1

2 ,j− 1
2
(pm+1

β ) = qβ,i− 1
2 ,j− 1

2
, β = g, w, o, (29)

Sm+1
g,i− 1

2 ,j− 1
2
+ Sm+1

w,i− 1
2 ,j− 1

2
+ Sm+1

o,i− 1
2 ,j− 1

2
= 1, (30)

pm+1
o,i− 1

2 ,j− 1
2
− pm+1

w,i− 1
2 ,j− 1

2
= pcow(S

m
w,i− 1

2 ,j− 1
2
, Sm

g,i− 1
2 ,j− 1

2
), (31)

pm+1
g,i− 1

2 ,j− 1
2
− pm+1

o,i− 1
2 ,j− 1

2
= pcgo(S

m
g,i− 1

2 ,j− 1
2
, Sm

w,i− 1
2 ,j− 1

2
), (32)

where,
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Bβ,i− 1
2 ,j− 1

2
(pm+1

β ) =
λβ(S

m,∗,x
w,i,j− 1

2
, Sm,∗,x

g,i,j− 1
2
)wx,m+1

β,i,j− 1
2
− λβ(S

m,∗,x
w,i−1,j− 1

2
, Sm,∗,x

g,i−1,j− 1
2
)wx,m+1

β,i−1,j− 1
2

xi − xi−1

+
λβ(S

m,∗,y
w,i− 1

2 ,j
, Sm,∗,y

g,i− 1
2 ,j
)wy,m+1

β,i− 1
2 ,j
− λβ(S

m,∗,y
w,i− 1

2 ,j−1
Sm,∗,y

g,i− 1
2 ,j−1

)wy,m+1
β,i− 1

2 ,j−1

yj − yj−1
.

(33)

By summing up the above discrete conservation equations of all the three phases, the
total conservation equation is presented as

∑
β=g,w,o

Bβ,i− 1
2 ,j− 1

2
(pm+1

β ) = ∑
β=g,w,o

qβ,i− 1
2 ,j− 1

2
. (34)

The above equation has three unknown pressures pm+1
β , β = o, g, w. We need the

following two additional equations to implicitly solve pm+1
β :

pm+1
o,i− 1

2 ,j− 1
2
− pm+1

w,i− 1
2 ,j− 1

2
= pcow(Sm

w,i− 1
2 ,j− 1

2
, Sm

g,i− 1
2 ,j− 1

2
), (35)

pm+1
g,i− 1

2 ,j− 1
2
− pm+1

o,i− 1
2 ,j− 1

2
= pcgo(Sm

g,i− 1
2 ,j− 1

2
, Sm

w,i− 1
2 ,j− 1

2
). (36)

We consider pm+1
o as the primary unknown for pressures, and we can eliminate the

other two pressures pm+1
g and pm+1

w from the system. To do this, we substitute Equa-
tions (35) and (36) into Equation (34) to obtain

∑
β=g,w,o

Bβ,i− 1
2 ,j− 1

2
(pm+1

o ) = ∑
β=g,w,o

qβ,i− 1
2 ,j− 1

2
− Bg,i− 1

2 ,j− 1
2
(pm+1

cgo )+ Bw,i− 1
2 ,j− 1

2
(pm+1

cow ). (37)

Finally, the saturation Sm
β is explicitly updated by using the mass conservation law

for each phase. The complete procedure is shown in Algorithm 2. It is clear that the fully
conservative IMPES is unbiased toward any of the three phases. We state two methods to
update saturation, which is shown in step 3 of Algorithm 2, and the equivalence between
these two methods can be proven.

Algorithm 2 Improved IMPES Scheme

1: Step 1. Find pm+1
cow and pm+1

cgo by pm+1
cow = pm+1

o − pm+1
w and pm+1

cgo = pm+1
g − pm+1

o which

2: are the discretized formulations of the Equations (4) and (5).
3: Step 2. Find pm+1

o by solving the Equation (37), then update pm+1
g and pm+1

w by

pm+1
g = pm+1

cgo + pm+1
o , pm+1

w = pm+1
o − pm+1

cow . (38)

4: Step 3. Obtain wm+1
β from wm+1

β = −k(∇pm+1
β + ρm+1

β g), and solve the phase satura-

tion Sm+1
β by one of the following two methods,

5: Method I: Choose β = w, g, then update the saturation Sm+1
β by the Equation (29). The

6: oil phase saturation Sm+1
o can be given by Sm+1

o = 1− Sm+1
w − Sm+1

g .
7: Method II: Choose β = w, g, o, then update the saturation Sm+1

β by the Equation (29).
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Lemma 1. If Sm
w + Sm

g + Sm
o = 1, Method I is equivalent to Method II for the improved IMPES

scheme.

Proof. Firstly, using Method II, we can obtain the following three equations:

φ
Sm+1

w,i− 1
2 ,j− 1

2
− Sm

w,i− 1
2 ,j− 1

2

tm+1 − tm
+ Bw,i− 1

2 ,j− 1
2
(pm+1

w ) = qw,i− 1
2 ,j− 1

2
, (39)

φ
Sm+1

o,i− 1
2 ,j− 1

2
− Sm

o,i− 1
2 ,j− 1

2

tm+1 − tm
+ Bo,i− 1

2 ,j− 1
2
(pm+1

o ) = qo,i− 1
2 ,j− 1

2
, (40)

φ
Sm+1

g,i− 1
2 ,j− 1

2
− Sm

g,i− 1
2 ,j− 1

2

tm+1 − tm
+ Bg,i− 1

2 ,j− 1
2
(pm+1

g ) = qg,i− 1
2 ,j− 1

2
. (41)

With the relation (34), we can obtain

φ
Sm+1

w,i− 1
2 ,j− 1

2
− Sm

w,i− 1
2 ,j− 1

2

tm+1 − tm
+ φ

Sm+1
g,i− 1

2 ,j− 1
2
− Sm

g,i− 1
2 ,j− 1

2

tm+1 − tm
+ φ

Sm+1
o,i− 1

2 ,j− 1
2
− Sm

o,i− 1
2 ,j− 1

2

tm+1 − tm
= 0. (42)

Combining it with Sm
w + Sm

g + Sm
o = 1, we deduce

Sm+1
w + Sm+1

g + Sm+1
o = 1. (43)

Secondly, if Method I is used to this improved IMPES scheme, we have the forms below

φ
Sm+1

w,i− 1
2 ,j− 1

2
− Sm

w,i− 1
2 ,j− 1

2

tm+1 − tm
+ Bw,i− 1

2 ,j− 1
2
(pn+1

w ) = qw,i− 1
2 ,j− 1

2
, (44)

φ
Sm+1

g,i− 1
2 ,j− 1

2
− Sm

g,i− 1
2 ,j− 1

2

tm+1 − tm
+ Bg,i− 1

2 ,j− 1
2
(pm+1

g ) = qg,i− 1
2 ,j− 1

2
. (45)

Combining Equation (34) with the restriction Sk
w + Sk

g + Sk
o = 1, k = m, m + 1, we can

quickly find the following desired result

φ
Sm+1

o,i− 1
2 ,j− 1

2
− Sm

o,i− 1
2 ,j− 1

2

tm+1 − tm
+ Bo,i− 1

2 ,j− 1
2
(pm+1

o ) = qg,i− 1
2 ,j− 1

2
. (46)

Thus, Method I and Method II are equivalent.

The estimated saturation of three phases meets the discretized mass-conservation
Equation (29). For T is a finite partition of Ω, and any cell E ⊂ T , We have the following
local conservation of mass for three phases.

Lemma 2. For any E ⊂ T , the estimated saturation of three phases solved by the proposed IMPES
scheme meets the following local mass-conservation law on E,

∫
E

φ
Sm+1

β − Sm
β

tm+1 − tm dx +
∫

∂E
λβ(S

m,∗
β )wm+1

β · ndσ =
∫

E
qβdx, β = w, o, g. (47)

Proof. Let E ⊂ T be a element and define T = {Ei− 1
2 ,j− 1

2
= (xi−1, xi)× (yj−1, yj) : i =

1, 2, · · · , M; j = 1, 2, · · · , N}. We note that the saturation-conservative Equation (1) can be
rewritten into,

φSβ,t +∇ · (λβwβ) = qβ, β = w, o, g. (48)
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Using the divergence theorem, we have,∫
E

φSβ,tdx +
∫

∂E
λβwβ · ndσ =

∫
E

qβdx, β = w, o, g, (49)

where, n is the outer unit normal vector. When E = Ei− 1
2 ,j− 1

2
= (xi−1, xi) × (yj−1, yj),

applying the explicit method for time discretization, the Equation (49) can be rewritten into

∫
Ei− 1

2 ,j− 1
2

φ
Sm+1

β − Sm
β

tm+1 − tm dx +
∫

∂Ei− 1
2 ,j− 1

2

λβ(S
m,∗
β )wm+1

β · ndσ =
∫

Ei− 1
2 ,j− 1

2

qβdx, β = g, w, o. (50)

Since the rectangular cell Ei− 1
2 ,j− 1

2
⊂ T has four vertices xi−1,j, xi,j, xi,j−1, xi,j. We

denote ∂Ei− 1
2 ,j− 1

2
by the midpoints of cell edges. We also note that the Equation (50) can be

consistent with Equation (29) on Ei− 1
2 ,j− 1

2
. Therefore, the improved IMPES scheme is local

mass-conservative for three phases.

5. Numerical Experiments

In this section, four numerical experiments are simulated using our improved IMPES
scheme formulated in the previous section. These numerical results demonstrate various
features of the proposed scheme. The gravity and capillary pressure are neglected in
following three examples for convenience, but the proposed model and numerical scheme
in this paper are also applicable to cases with non-zero gravity and capillary pressure.
The gravity and capillary pressure effects are considered in example 4, which leads to the
counter current flow. The numerical experiment of example 4 is used to verify that the
proposed scheme can work well for the situation counter current flow.

Example 1. This example shows a three-phase flow in a homogeneous porous media
with a size of 100 × 100 m and a permeability of 100 md. The media are initially saturated
with water, oil and gas which have a volume fraction of 10%, 70% and 20% respectively.
Water is injected into the porous media at northeast corner of the domain with a constant
rate of 6.98 × 10−6 m3/s. Water–oil–gas mixture is produced at the southwest corner of
the domain, where the pressure is fixed at 1 atm. Figure 1 shows the pressure at different
time. Figures 2–4 illustrate the saturation of water, oil and gas at different times.
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Figure 1. Pressure at different time for Example 1: (a) Pressure (after 166 days). (b) Pressure (after 2489 days). (c) Pressure
(after 8296 days).
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Figure 2. Water saturation at different time for Example 1: (a) Water saturation (after 166 days). (b) Water saturation (after
2489 days). (c) Water saturation (after 8296 days).
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Figure 3. Oil saturation at different time for Example 1: (a) Oil saturation (after 166 days). (b) Oil saturation (after 2489 days).
(c) Oil saturation (after 8296 days).
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Figure 4. Gas saturation at different time for Example 1: (a) Gas saturation (after 166 days). (b) Gas saturation (after
2489 days). (c) Gas saturation (after 8296 days).

Example 2. This example shows a three-phase flow in layered porous media in a
square domain of [0, 100 m] × [0, 100 m] and a permeability field is shown in Figure 5.
Water is injected at the west edge of the domain with a constant rate, and the mixture is
produced at the east edge of the domain where pressure is fixed at 1 atm. Figure 6 shows
the pressure at different times. Figures 7–9 illustrate the saturation of water, oil and gas at
different times.
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Figure 5. Permeability (md) distribution for Example 2 .
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Figure 6. Pressure at different time for Example 2: (a) Pressure ( after 498 days). (b) Pressure (after 1328 days). (c) Pressure
(after 2489 days).
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Figure 7. Water saturation at different time for Example 2: (a) Water saturation (after 498 days). (b) Water saturation (after
1328 days). (c) Water saturation (after 2489 days).
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Figure 8. Oil saturation at different time for Example 2: (a) Oil saturation (after 166 days). (b) Oil saturation (after 2489 days).
(c) Oil saturation (after 8296 days).
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Figure 9. Gas saturation at different time for Example 2: (a) Gas saturation (after 498 days). (b) Gas saturation (after
1328 days). (c) Gas saturation (after 2489 days).

Example 3. This example shows a three-phase flow in a homogeneous porous media
with a square domain of [0, 120 m] × [0, 120 m] and a permeability is 120 md. In the
simulation of beginning, a block water is located at the center of the domain, there is no oil
in the rest of the domain. Water is injected into the porous media at the northeast corner of
the domain with a constant rate of 6.98 × 10−6 m3/s. Water–oil–gas mixture is produced at
the southwest corner of the domain, where the pressure is fixed at 1 atm. Figure 10 shows
the pressure field at different time. Figures 11–13 illustrate the saturation of water, oil and
gas at different time.
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Figure 10. Pressure at different time for Example 3: (a) Pressure (after 498 days). (b) Pressure ( after 8296 days). (c) Pressure
(after 24,887 days).
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Figure 11. Water saturation at different time for Example 3: (a) Water saturation (after 498 days). (b) Water saturation (after
8296 days). (c) Water saturation (after 24,887 days).
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Figure 12. Oil saturation at different time for Example 3: (a) Oil saturation (after 498 days). (b) Oil saturation (after
8296 days). (c) Oil saturation (after 24,887 days).
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Figure 13. Gas saturation at different time for Example 3: (a) Gas saturation (after 498 days). (b) Gas saturation (after
8296 days). (c) Gas saturation (after 24,887 days).

Example 4. This example illustrates a three-phase flow in a heterogeneous porous
media with a square domain of [0, 100 m]× [0, 100 m] and a permeability distribution is
shown in Figure 14. The gravity and capillarity is considered in this example. Water is
injected in the central part of west boundary at a constant rate of 1.3952× 10−4 m−4/s
and the pressure is set as 1 atm on the upper and lower parts of the east boundary where
the oil–gas–water mixture is yielded. No flow conditions are enforced on the rest parts of
the boundary. The initial distributions of oil, gas, water is shown in Figure 15. Figure 16
shows the Darcy velocity fields of the three phases. Figure 17 illustrates the saturation
distributions of water, oil and gas phase after 91,251 days. From the simulation results,
we find that the proposed numerical scheme is able to simulate this counter-current flow
situation well.
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Figure 14. Permeability (md) distribution for Example 4.
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Figure 15. Initial distribution of water (a), oil (b) and gas (c).
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Figure 16. Darcy velocity fields of water (a), oil (b), and gas (c).
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Figure 17. Saturation distribution of water (a), oil (b) and gas (c).

Finally, we calculated the residual (mass conservation error) of saturation equation
for each phase at every time step in the simulation by l∞ norm given by formula (51). For
the improved IMPES scheme, the calculated mass conservation errors of three phases at
all simulation time steps are in the magnitude of 10−16, which is considered to be zero
without the round-off error. We also ran this example with the same conditions using a
conventional IMPES scheme and calculated the residual of mass conservation equation of
each phase. The calculated errors of two referred phases (water and gas) at all simulation
time steps are in the magnitude of 10−16. However, we also calculated the global error
for each phase at all simulation time steps and found that the global error of non-referred
phase is accumulating from in magnitude of 10−10 to 10−4.

errβ,m = max
1≤x≤nx−1,1≤j≤ny−1

|φi− 1
2 ,j− 1

2

Sβ,m
i− 1

2 ,j− 1
2
− Sβ,m−1

i− 1
2 ,j− 1

2

tm − tm−1 + Bβ,i− 1
2 ,j− 1

2
− qβ,i− 1

2 ,j− 1
2
|. (51)
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6. Conclusions

In this work, we have proposed an improved IMPES to simulate three-phase flow sys-
tems. Conventional IMPES schemes discretize the pressure equation and two (out of three)
saturation equations independently. While this independence could allow one to choose a
separate desired numerical algorithm for each of the pressure and saturation equations, the
discretized pressure equation is unfortunately inconsistent with the discretized saturation
equations. To address this issue, we proposed an improved IMPES scheme, where the
discretized pressure equation is fully consistent with the discretized saturation equations.
Specifically, the discrete pressure equation in our algorithm is not obtained by discretizing
the continuum pressure equation as most people did in the literature; instead, it is obtained
by summing up the discretized formulations of the conservation equations for all phases.

Even though the decoupling of the pressure and saturation is majorly based on
conventional IMPES schemes, the consistency in our decoupling yields a number of desired
numerical features. The most significant improvement in the numerical behavior is the
mass conservative property honored in each of the three phases both locally and globally.
Conventional IMPES usually solves only two saturation equations numerically (which we
refer to as two reference phases), but not the third saturation equation; thus it has a built-in
bias, which is eliminated in our improved IMPES scheme. In particular, the conventional
IMPES upwinds only the two reference phases, but our scheme is able to apply the upwind
scheme to all three phases.

We used the common cell-centered finite difference method for spatial discretization
in our numerical examples, but other locally conservative spatial discretizations can also be
used in our improved IMPES. Four numerical cases have been carried out to demonstrate
the strengths of the improved IMPES scheme. Various flow patterns and a number of
different boundary conditions were numerically studied. We also repeated the same
numerical examples using conventional IMPES (not shown in this paper for brevity)
and enhanced numerical stability has been observed in our scheme as compared to the
conventional one. In numerical example 4, we also considered the effects of capillary and
gravity for three-phase flow in heterogeneous porous media. Since the gravity segregation
among three phases, the counter-current flow is appeared in vertical orientation of the
reservoir. We did not consider the compressibility and miscibility of gas for three-phase
flow in this study, which is to consider compressible and partially miscible three phases as
our near future work.
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