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Abstract: This paper proposes a mathematical model in order to simulate Day-ahead markets of
large-scale multi-energy systems with a high share of renewable energy. Furthermore, it analyses the
importance of including unit commitment when performing such analysis. The results of the case
study, which is performed for the North Sea region, show the influence of massive renewable pene-
tration in the energy sector and increasing electrification of the district heating sector towards 2050,
and how this impacts the role of other energy sources, such as thermal and hydro. The penetration of
wind and solar is likely to challenge the need for balancing in the system as well as the profitability of
thermal units. The degree of influence of the unit commitment approach is found to be dependent on
the configuration of the energy system. Overall, including unit commitment constraints with integer
variables leads to more realistic behaviour of the units, at the cost of considerably increasing the
computational time. Relaxing integer variables significantly reduces the computational time, without
highly compromising the accuracy of the results. The proposed model, together with the insights
from the study case, can be especially useful for system operators for optimal operational planning.

Keywords: energy system; large scale; day ahead market; operational planning; unit commitment

1. Introduction

Energy systems, including all energy vectors, such as heating, transportation, and
agriculture, are converting to electricity-based energy usage, due to climate change and
environmental concerns. The European Commission has the vision of decarbonising the
whole energy system by 2050 [1]. Denmark, in this direction, has the ambition to completely
phase-out coal by 2030 [2]. Renewable based electricity generators, such as hydro, wind,
solar photovoltaic (PV), or biomass, are replacing the carbon-based generators. Many
of these renewable energy sources are inherently variable in nature, such as wind, solar,
or micro-hydro. Consequently, increasing the share of such variable renewable energy
(VRE) sources in electricity systems increases the variability and uncertainty in the full
energy system.

Maintaining a stable and secure operation in the electricity system with large share
of VRE can be very challenging for the power system operators. Major challenges that
are involved in operational planning are the estimation of operational reserves [3], or
determining the ramp requirements and flexibility for the generators. This information is
then used in order to mitigate the impact of variability in the electric power system.

Operational planning should include the co-optimisation of all the sectors to avoid
infeasibilities and sub-optimal solutions. For example, the estimation of reserves from
combined heat and power (CHP) units while only performing the optimisation of electrical
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power systems can create infeasibilities for the units in real-time due to heating constraints
and, thereby, challenging the security of the system. Exploiting the synergies of multi-
energy analysis can also include, for instance, planning maintenance of the units when
considering the needs of the different parts of the energy sector.

The operation of the system generally takes place in real life through different en-
ergy markets. Examples of these market for electricity are day-ahead (DA), intra-day, or
balancing markets. This paper focuses on simulating the operation of the DA market.

It is generally relevant to consider the unit commitment (UC) problem when sim-
ulating the operation of the DA market [4]. Different UC modelling approaches have
been researched for many years [4–6]. Mixed integer programming (MIP) is a widely
used methodology for UC. However, MIP based methods are computationally expensive.
Lagrangian relaxation offers saving in computational time without compromising the
accuracy [7].

The simulation of DA operation of large-scale multi-energy systems when considering
UC constraints is computationally challenging. In the literature, either such a problem has
been handled for a small system (for example, a six-bus system in [8]) or a compromise
has been made in terms of simulation horizon (24 h in [9]), technologies involved (such
as only for electrical systems), or scenario years analysed. Recently, UC based studies
have also been applied for multi-carrier energy systems, but, again, the application has
been limited to small test systems [10]. Performing these operational planning studies
for short term can lead to infeasible solutions and it is otherwise sub-optimal for reasons,
such as being unable to consider long-term constraints, for example, yearly schedule of
hydro reservoirs. The integration of VRE has also been limited in the sense of modelling
the details of weather dependencies.

Table 1 shows an analysis of the available literature concerning relevant features for
the scope of this paper. It can be observed that there is no available literature that can
handle all of the features.

Table 1. Coverage of existing literature on day-ahead market modelling.

The Analysis Included: [5] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23]

a large-scale system ! ! ! ! ! ! ! ! ! ! ! !

several scenario years

annual storage scheduling ! ! ! ! ! !

full year hourly results ! ! ! ! ! ! ! ! ! !

multi-energy markets ! ! ! ! ! !

influence of unit commitment ! ! ! ! ! ! ! ! !

planned maintenance scheduling ! ! ! !

renewable energy sources ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

The novelty of this paper involves developing a methodology for integrating all
of the features that are mentioned in Table 1 to simulate the DA market and using the
developed methodology to provide analysis and recommendations for future scenarios of
very large energy systems. The efficacy of the developed methodology is applied for case
studies of large-scale energy systems of North Sea countries for 2020, 2030, and 2050 energy
scenarios, including a detailed representation of renewable variations. The computational
and practical challenges in modelling and implementation for such a large system are
discussed. The computational cost and accuracy of the results for different UC modelling
approaches are also compared. Even though the existing literature has deeply investigated
the UC problem, introducing such analysis for the context of this study (large scale, different
scenario years, multi-energy system) can be relevant in understanding the advantages and
disadvantages of the UC approach when simulating the DA market.
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The paper is structured, as follows. Section 2 explains the mathematical model-based
methodology that was applied to model the DA market operation. Because the scale of the
problem is large in terms of technologies, geography, and time period, special considerations
need to be taken in order to reduce computational complexity, as described in Section 3.
Section 4 presents the case study. Section 5 shows the results and discusses the limitations of
the study, while Section 6 summarises the conclusions. The symbols used are shown in the
nomenclature section at the end of the article.

2. Mathematical Modelling

The methodology used in this paper to simulate the DA market can be divided
into four stages: DA optimisation (Section 2.1), VRE simulations (Section 2.2), storage
and planned maintenance optimisation (Section 2.3), and stochastic outage simulations
(Section 2.4). The stages are linked, as shown in the flow chart of Figure 1. Section 2.5
presents the sensitivity cases studied in this paper, which focus on the UC modelling
approach.

Figure 1. Flow chart of the methodology.

The optimisations and simulations, except for the VRE simulations, are performed
with the energy system model Balmorel [24], an energy system tool, deterministic, open
source [25], with a bottom-up approach. It has been traditionally used in order to model
the electricity and district heating sectors, although it is being developed to increase its
capabilities and include more sectors [26].
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The temporal representation used is composed of years y ∈ Y, which are composed of
seasons s ∈ S (in this paper days), which are disaggregated into time steps t ∈ T (in this
paper hours).

The geographical representation used is composed of countries, which are composed
of regions r ∈ R, which are composed of areas a ∈ A. The regions in the model repre-
sent copperplates for the transmission of electricity. The areas in the model represent
copperplates for the transmission of heat.

2.1. Day-Ahead Optimisation

The DA optimisation of the energy markets is performed on a daily basis in order to
model the behaviour of the spot market of electricity. This means that consecutive dispatch
optimisations of 24 h are performed. The results are linked from day-to-day, meaning that
operational decisions made in previous days can have a limiting effect on the operation on
the following days, depending on the flexibility of the units g ∈ GGG.

The storage content at the beginning of each day for the DA optimisation, as well as
the planned maintenance, is fixed from the storage and planned maintenance optimisation.
Additionally, the availability of the units within the day is also affected by stochastic outage,
which, together with the planned maintenance, determine the final availability of the units
to participate in the markets. A detailed mathematical formulation of the problem can be
found in Appendix A of [27]. For the sake of space limitation, only a few equations are
shown here.

2.1.1. Objective Function

The objective function includes all the operational costs of the studied system in the
studied time steps and during the solving phase the value of the objective function is
minimised (Equation (1)). Furthermore, the time steps considered correspond to one day.
In this paper, the costs have been aggregated into variable operational and maintenance
costs (cvom

y ), and emission tax costs (cemi
y ). The fixed operational and maintenance costs

(C f om
y ), which depend on the installed capacity, are also included in the objective function

as a parameter. The disaggregation of these costs can be found in Equations (A2) to (A6)
of [27].

min ∑
y∈Y

cvom
y + cemi

y + C f om
y (1)

2.1.2. System Constraints

There are two main system constraints that need to be fulfilled in every time step. One
of them is the electricity balance in each region. The electricity production (pel

g,a,y,s,t) of
electricity generation units (EL) minus the electricity storage loading (stolg,a,y,s,t) of storage
units (STO) and minus the electricity demand resulting from heat production (ph

g,a,y,s,t) of
electricity-to-heat units (PTOH) in all areas that belong to the region (AR) must equal the
inelastic electricity demand of the region (Del

r,y,s,t) plus the export flows (xr,r′ ,y,s,t) minus
import flows (xr′ ,r,y,s,t) with other regions. The transmission losses (xloss) are allocated to
electricity import:

∑
a∈AR

(
∑

g∈EL
pel

g,a,y,s,t − ∑
g∈STO,g∈EL

stolg,a,y,s,t − ∑
g∈PTOH

ph
g,a,y,s,t

ηg,s,t

)

= Del
r,y,s,t + ∑

r′∈R

(
xr,r′ ,y,s,t − xr′ ,r,y,s,t · (1− xloss)

)
∀r ∈ R, y ∈ Y, s ∈ S, t ∈ T

(2)

The other system constraint is the heat balance in each area, where the heat production
(ph

g,a,y,s,t) of the units generating heat (HEAT) minus the endogenous loading of heat
storage (stolg,a,y,s,t) must equal the inelastic heat demand (Dh

a,y,s,t):
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∑
g∈HEAT

ph
g,a,y,s,t − ∑

g∈STO,g∈HEAT
stolg,a,y,s,t = Dh

a,y,s,t ∀a ∈ A, y ∈ Y, s ∈ S, t ∈ T (3)

Ancillary services in the electricity sector were not included to simplify the problem.

2.1.3. Technological Constraints

The generation technologies in the model are split into three categories: dispatchable
generation units, pure storage units, and VRE units. Dispatchable technologies include
electricity-only, combined heat and power, heat pumps, boilers, geothermal, and hydro-
electric power with reservoirs and seasonal inflow. These units are subject to several
technical constraints. The operation of these technologies depends on the available units
in each time step and the specific technical characteristics of each type. The equations
that are relevant for each of these technologies are described from (A29) to (A48) in the
report [27]. The storage units modelled without seasonal inflow that can only modify their
storage level based on their active loading and unloading are defined as pure storage units.
These technologies are hydro pumping, electric batteries, pit heat storage, or hot water
tanks. The relevant equations for these units are Equations (A49) to (A71) in [27]. The
non-dispatchable technologies included are solar heating, solar PV, wind offshore and
onshore, and hydro-run-of-river. The equations limiting their production are (A72) and
(A73) in [27]. Furthermore, electricity trade is allowed between regions, which are assumed
to be copper plates, and it is limited to the available transmission capacity between the
regions in each time step. The relevant equation limiting their operation is (A74) in [27].
Heat trade between areas is not allowed.

2.2. Modelling of Renewable Generation Including Fluctuations

The CorRES model [28] is used for the simulation of the VRE generation time series
being used as inputs for Balmorel. The CorRES model is based on data from the weather
research and forecasting model [29]. In addition to modelling the spatiotemporal dependen-
cies in solar PV and wind generation, CorRES allows for the modelling of VRE technology
development impacts on the VRE time series. For the presented case study, the assumed
VRE technology developments towards 2050 are described in [30]. The resolution of the
simulated VRE generation time series is hourly; the data are aggregated to the regions that
were used in Balmorel.

2.3. Storage and Planned Maintenance Optimisation

When simulating the DA market, it is important to capture that some of the decisions
that market participants take into account future market price expectations, rather than
just planning for the next 24 h. The planned maintenance and use of storage are part of
these long-term decisions. In this paper, these two decisions are obtained by performing a
full year dispatch optimisation. Planned maintenance and storage content at the beginning
of each season are saved and forced in the DA optimisation. Planned maintenance is also
used in the stochastic outage simulation in order to calculate the available capacity for
production that can suffer an unexpected outage.

The formulation is similar to the one shown in Section 2.1, with a few exceptions. In
this optimisation, the time steps considered correspond to one year. All of the equations
can be found in [27]. In this paper, only some equations are shown.

2.3.1. Available Units

The number of available units available for generation (nav,on
g,a,y,s,t) is constrained by

the total number of units (installed fuel capacity of a unit type (FCg,a,y) divided by the
size of each unit type (USgen

g )), and the amount of units on planned maintenance (nnav,pm
g,a,y,s ).

The number of units on planned maintenance influence the availability factor of the units
when simulating the DA market.
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FCg,a,y

USgen
g
− nnav,pm

g,a,y,s ≥ nav,on
g,a,y,s,t ∀g ∈ GGG, a ∈ A, y ∈ Y, s ∈ S, t ∈ T (4)

The maximum number of units on maintenance is limited by the total installed number
of units:

FCg,a,y

USgen
g
≥ nnav,pm

g,a,y,s ∀g ∈ GGG, a ∈ A, y ∈ Y, s ∈ S (5)

2.3.2. Yearly Maintenance Requirement

The minimum maintenance time of each technology (MMTg) needs to be respected
during the year:

∑
s∈S

nnav,pm
g,a,y,s = MMTg ·

FCg,a,y

USgen
g

∀g ∈ GGG, a ∈ A, y ∈ Y (6)

2.3.3. Uninterrupted Maintenance

Units starting up maintenance (nnav,pm,su
g,a,y,s ) must be on maintenance during the min-

imum maintenance time without interruption, i.e., the maintenance must take place in
consecutive seasons:

MMTg

∑
s′=1

nnav,pm,su
g,a,y,s−s′ ≤ nnav,pm

g,a,y,s ∀g ∈ GGG, a ∈ A, y ∈ Y, s ∈ S (7)

2.3.4. Logical Conditions

The number of units on maintenance depends on the units starting or stopping
maintenance (nnav,pm,sd):

nnav,pm
g,a,y,s − nnav,pm

g,a,y,s−1 = nnav,pm,su
g,a,y,s − nnav,pm,sd

g,a,y,s ∀g ∈ GGG, a ∈ A, y ∈ Y, s ∈ S (8)

In order to reflect the discrete nature of the generation units that are part of the energy
system, the following variables are restricted to be positive integer variables Z+. However,
this constraint is relaxed due to the computational complexity in the optimisation, as
mentioned in Section 3.2.

nav,on
g,a,y,s,t, nnav,pm

g,a,y,s , nnav,pm,su
g,a,y,s , nnav,pm,sd

g,a,y,s ∈ Z+ ∀g ∈ GGG, a ∈ A, y ∈ Y, s ∈ S, t ∈ T (9)

2.4. Stochastic Outage Simulations

Unexpected operational problems can lead to making units being unavailable until
the problem is fixed, which can influence market prices. Hence, it is relevant to capture
these occurrences. Using, as input parameters, the size of a single unit, the total capacity
of a unit type in each area, the planned maintenance (if previously calculated), and the
probability of an unexpected outage, for each time step and unit in the system, Monte
carlo simulations are performed in order to simulate these outages. The outcome from
these simulations is then fed to the DA optimisation, and the relevant variables fixed. This
approach is applied to all units except the VRE ones, since their availability is part of the
time series used. The formulation can be found in Equations (A85) and (A86) of [27].

2.5. Sensitivity Cases: Unit Commitment Modelling Approaches

In order to analyse the importance of the UC modelling approach when modelling
the DA market, three different sensitivity cases of UC modelling approaches are studied
in the DA optimisations: (1) adding UC constraints with integer commitment variables
(UC-MIP), (2) adding UC constraints with relaxed commitment variables (UC-RMIP), and
(3) not adding constraints nor corresponding commitment variables (NO-UC).



Energies 2021, 14, 88 7 of 17

3. Special Considerations for Long-Term Operational Planning of Large-Scale
Energy System
3.1. Unit Commitment Assumptions

Introducing UC in the optimisation allows for an improved representation of conven-
tional generation, at the cost of increasing considerably computational complexity due to
the use integer variables. Solving a large-scale MIP problem can be intractable. In order to
deal with this problem, one can either relax the integer variables, or limit the technologies
modelled with integer variables. In this paper, the second approach is considered so the
impact of the different optimisation approaches can be evaluated. The technologies that are
modelled with UC integer variables are almost all type of fuel-based thermal plants, i.e., gas
turbines, steam turbines, combined cycle turbines, and boilers. Engines were not included,
since they are very fast and their size is generally much smaller than other generators,
making their impact negligible. The rest of the technologies, i.e., hydro reservoirs, other
storage, electricity-to-heat (P2H), and VRE, were not modelled with UC variables in order
to reduce the complexity of the problem.

3.2. Simplifications in Storage and Planned Maintenance Optimisation

Optimal planning of maintenance is solved as a relaxed mixed integer problem (RMIP),
including all days of the years, but with 1 every 3 h to reduce the complexity. Planned
maintenance is only computed for the units that were modelled with UC (see Section 3.1).

4. Case Study: The North Sea Offshore Grid

The study case used in this paper corresponds to the offshore grid scenario pre-
sented in [30], developed as part of the project North Sea Offshore Network—Denmark.
The scenario focuses on the following countries: Germany, Great Britain, Norway, Den-
mark, Belgium, and Netherlands. The sectors included are the electricicity and district
heating sectors. The study case shows, towards 2050, a high share of VRE, transmission
interconnection, and partial electrification of the district heating sector in the countries in
focus. The capacity development (Figure 2) was highly influenced by the assumptions on
increasing CO2 EU ETS price: 6.06, 76.70, and 130.38 e 2012/ton in 2020, 2030, and 2050,
respectively. More details about the scenario can be read in [30–32].

Figure 2. Installed capacity in the countries in focus (GW). The types considered are heat boilers,
combined heat and power back pressure (CHP-BP), and CHP extraction (CHP-EXT), electricity-only
thermal units (condensing), hydro reservoirs, hydro run-of-river (ROR), P2H, other electricity storage
(PURE-EL-STO), heat storage (PURE-HEAT-STO), solar PV, wind offshore (WIND-OFF), and wind
onshore (WIND-ON).
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5. Results and Discussion

First, Section 5.1 focuses on key results that were obtained from the storage and
planned maintenance optimisations. Section 5.2 presents the results from the Day-Ahead
optimisations, focusing on the influence of VRE penetration and the UC modelling ap-
proach. Section 5.3 discusses the limitations of the study. Costs and prices are in e 2012,
which is the base year used for economic data in the model.

5.1. Storage and Planned Maintenance Optimisation
5.1.1. Planned Maintenance

Figure 3 shows the share of installed capacity under planned maintenance of district
heating units burning waste in Denmark. Units burning waste tend to show high capacity
factors and, hence, the scheduling of their maintenance is of relevance. The results show
that most of the planned maintenance takes place during summer, which is when the
district heat demand is lowest. For CHP units, by 2020, most of the maintenance takes
place in July (89%), and towards 2050, a larger share of the maintenance takes place in
earlier months. The fact that, in 2050, maintenance in May is 34% of the total could be
linked to solar PV generation, since, in Denmark, the production of this technology is the
highest in this month, favoring the use of P2H and, hence, leading to less need for CHP
units to be operative. For district heating boilers, no significant difference towards 2050
is observed.

Figure 3. The share of capacity on maintenance of district heating units burning waste in Denmark.

5.1.2. Planned Storage Use

The aggregated planned energy content along the year of hydro reservoirs with
seasonal inflow, one of the types of storage considered in the model, is shown in Figure 4
for Norway. The purpose of this figure is to analyse the influence of VRE penetration
towards 2050 on the use of this type storage during the year. The minimum value of each
profile has been subtracted. The results show that the reservoirs are mainly filled during
the summer and discharged during winter. The maximum energy content is higher in 2020
than in 2030 and 2050. This is a result of storing less energy in the reservoir during the year,
which is linked to using hydro energy for balancing VRE. Furthermore, the evolution of
the content in 2020 is smoother than in 2030 and 2050, which is influenced by the volatility
and seasonality of VRE generation. These results strengthen the importance of performing
full year optimisations towards 2050.
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Figure 4. Planned energy content (TWh) along the year of hydro reservoirs in Norway at the
beginning of each season, i.e., day. The minimum value of each profile has been subtracted.

5.2. Day-Ahead Optimisation
5.2.1. Annual Production

Figure 5 depicts the aggregated generation of electricity and heat per year, scenario,
and technology in the countries in focus for different UC approaches. The penetration
of VRE in the electricity sector towards 2050 is remarkable, at the expense of decreasing
the use of thermal technologies. The results show that the share of CO2 free generation
increases from 64% in 2020 to 91%, which is linked to the assumed VRE penetration. On the
heating side, the generation of P2H units increases towards 2050 at the expense of thermal
units. Introducing UC constraints slightly increases the aggregated production of thermal
power units and reduces VRE generation.

Figure 5. Production development per commodity, year, technology type, and unit commitment (UC)
approach (TWh).
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The average capacity factor of thermal power units for electricity with/without heat
generation is shown in Figure 6 for the UC-MIP approach. The difference with NO-UC and
UC-RMIP is negligible. The electricity capacity factor is calculated with rated electricity
generation capacity, whereas the heat one uses the rated heat generation capacity. The
results show that, towards 2050, the average electricity capacity factor decreases for CHP
back pressure units, CHP extraction units, and electricity-only units, especially for the last
two types. The heat capacity factor also tends to decrease. These results suggest that the
massive penetration of VRE might challenge the profitability of thermal units towards 2050.

Figure 6. Average capacity factor development of thermal power units for electricity (left) and heat
(right) generation using UC-MIP. The difference with NO-UC and UC-RMIP is negligible.

5.2.2. System Costs

Table 2 shows the disaggregated operational costs development in the countries in
focus per UC approach. The total operational costs increase in 2030 with respect to 2020,
and then decrease in 2050 when compared to 2030. This development is linked to VRE
penetration and CO2 tax assumptions. By 2030, there is still considerable fossil generation,
leading to high CO2 tax costs. By 2050, even though the CO2 tax is higher than in 2030,
there is much less fossil generation, which, together with further VRE penetration, leads to
considerably less variable costs. Using UC-RMIP leads to much closer results to UC-MIP
than using NO-UC, although the difference decreases towards 2050, again due to less fossil
generation. Not including UC constraints, i.e., using NO-UC, underestimates both variable
and CO2 costs, since it overestimates the flexibility of the units when ignoring relevant
costs, such as start-up.

Table 2. Disaggregated operational costs (billion e ).

Year Modelling
Approach

Fixed
Costs

Variable
Costs

Emission
Costs Total

2020

NO-UC 8.2 12.3 1.8 22.4

UC-RMIP 8.2 13.6 1.9 23.7

UC-MIP 8.2 14.1 1.9 24.2

2030

NO-UC 9.6 13.5 6.3 29.4

UC-RMIP 9.6 14.4 6.5 30.5

UC-MIP 9.6 14.7 6.6 30.9

2050

NO-UC 10.6 8.5 6.1 25.2

UC-RMIP 10.6 9.0 6.2 25.8

UC-MIP 10.6 9.1 6.3 26.0
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5.2.3. Hourly Electricity Balance

Figure 7 depicts the hourly electricity balance for four representative days for the years
2020, 2030, and 2050, for Great Britain and with the UC-MIP approach. The graph includes
aggregated generation and demand per type, as well as electricity prices. The prices are
derived from the dual variable of the electricity balance equation (Equation (2)). The pene-
tration of VRE replaces most thermal generation towards 2050. Such a large penetration of
VRE energy highlights the need for proper planning of balancing resources towards 2050,
since forecast errors could challenge the correct operation of the system.

Figure 7. Hourly dispatch and electricity prices for four representative days of each year in Great
Britain using UC-MIP. The demand profile corresponds to the exogenous profile. Endogenous
demand from electricity storage or use of electricity-to-heat units in GB is negligible in the stud-
ied scenario.

5.2.4. Electricity Prices

Figure 8 shows the influence of the UC approach in the cumulative probability curves
for the electricity prices in each year, for one of the modelled regions of Denmark, i.e. DK1.
The influence of the optimisation approach decreases towards 2050, which is explained
with the decrease of thermal power capacity and use towards 2050, since they are the ones
that are affected by the different UC approaches. UC-MIP leads to overall higher prices
in all price-range due to forcing discrete block sizes to be on/off for thermal units. The
number of hours with very low prices (where VRE curtailment sets the price) are higher
with UC-RMIP, and especially with UC-MIP. These low prices generally correspond to
those hours where it is cheaper (or the only feasible way) in order to increase the use of
more expensive generation units, rather than starting/shutting them. In the mid-range
prices, the prices for UC-RMIP tend to be the lowest, which can be explained in a similar
way to VRE curtailment, but, instead, what it is being “curtailed” is the next available
cheaper generator. On the high-range prices, NO-UC underestimates high prices, which
can be explained with the non-consideration of restrictive constraints, like minimum-on/off
time, minimum production, and ramping. The order of magnitude of the prices is highly
influenced by the CO2 tax assumption development (Section 4).
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Figure 8. Probability distribution function of the hourly electricity price in DK1(one of the modelled
regions of Denmark), for each year and UC modelling approach.

5.2.5. Curtailment

The influence of the UC approach on curtailment for different technology types in
the countries in focus per year are shown in Table 3. Not considering UC costs leads to
less curtailment. Wind offshore is curtailed more often than onshore due to operation
costs assumptions, i.e., variable costs for offshore are more expensive than for onshore.
The impact of not considering UC costs on curtailment increases towards 2050, when there
is higher VRE penetration.

Table 3. Influence of UC approach in aggregated yearly curtailment per technology type in the
countries in focus. The difference with respect to UC-MIP approach (TWh).

Technology Type
NO-UC UC-RMIP

2020 2030 2050 2020 2030 2050

Wind offshore −0.9 −4.3 −13.9 0 0 0

Wind onshore −0.3 0 −0.1 0 0 0

Total −1.2 −4.3 −14 0 0 0

5.2.6. Average Revenue of Wind and Solar Pv Units

Figure 9 shows the influence of the UC approach on the variability of the average
revenue per energy unit sold in each region and year from the operation in the DA market
for wind and solar PV units. The results show a decrease in the variability of the average
revenue across countries towards 2050, mainly due to grid expansion. This highlights the
importance of large-scale energy system analysis. Solar PV’s average revenue is higher in
2020 and 2030 than wind unit’s, but it is slightly smaller in 2050. With a UC-MIP approach,
the average revenues are slightly higher for both technologies. The yearly levels of average
revenue are directly linked to the DA price development.
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Figure 9. Regional variability of the average revenue per energy unit sold of wind and solar PV units in DA market towards
2050. Influence of UC modelling approach.

5.2.7. Electricity-Only Thermal Plant Operation

Table 4 shows the influence of the UC approach in the utilization factor of electricity-
only thermal generation units using natural gas or nuclear fuels. The installed capacity of
these units is also shown. The results show a decrease in utilization for all of the considered
units towards 2050. Units burning natural gas half their capacity factor with respect to 2020
in 2030 and stay almost constant by 2050. Nuclear power capacity factor also decreases
considerably towards 2050. The UC approach impacts the utilization of nuclear power by
2050, overestimating its flexibility when using NO-UC. These results are influenced by the
decrease of nuclear power in the system towards 2050, and the increasing penetration of
VRE. This result challenges the profitability of these thermal units towards 2050.

Table 4. Influence of UC modelling approach and year in annual capacity factor of electricity-only thermal generation units
for different fuels.

NATGAS NUCLEAR

Annual Capacity
Factor (%)

Installed
Capacity (GW)

Annual Capacity
Factor (%)

Installed
Capacity (GW)

Modelling Approach 2020 2030 2050 2020 2030 2050 2020 2030 2050 2020 2030 2050

NO-UC 17.1 7.6 7.6

64.7 63.7 50.7

95.2 85.5 55.1

23.5 10.7 3.2UC-RMIP 18.0 8.6 7.7 93.5 87.0 61.5

UC-MIP 19.7 9.2 8.0 94.8 87.4 62.6

The impact of the UC modelling approach on hourly nuclear operation, which is
highly affected by UC constraints, is shown in Figure 10, which shows the hourly operation
of nuclear power plants for four consecutive days in Great Britain. The figure depicts
that, towards 2050, with higher VRE penetration, unless the UC costs and constraints are
considered, nuclear units start up and shut down with high frequency. This operation
of nuclear plants might be extremely challenging, and perhaps unrealistic. These results
strengthen the importance of multiple scenario year analysis as well as the UC modelling
approach used.
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Figure 10. Hourly capacity factor of nuclear power in four consecutive days in Great Britain in different scenario years.
The installed capacity in Great Britain of nuclear power is 8.9, 10.2 and 3.2 GW in 2020, 2030, and 2050, respectively. The
impact of the UC modelling approach.

5.2.8. Computational Time

Table 5 shows the influence of the UC modelling approach on the computational
time of the DA optimisation of each full year. The computational time that is required to
solve the UC-MIP case is much higher than the others. The computational time decreases
significantly towards 2050, since the number of thermal power plants is considerably
reduced in this scenario. Using UC-RMIP leads to closer computational times to NO-UC
than to UC-MIP.

Table 5. Influence of year and UC modelling approach on the sum of computational time of all
day-ahead (DA) optimisations (seconds).

Modelling Approach 2020 2030 2050 Average

NO-UC 1263 1656 1168 1361

UC-RMIP 11,026 18,579 16,220 15,273

UC-MIP 106,976 96,435 55,514 86,308

5.3. Limitations of the Study

The simplifications undertaken to reduce the complexity of the problem limit the
findings of this study.

The flexibility of technologies for which UC constraints were not applied could have
been overestimated, especially for hydro power units.

Further work should include adequacy analysis and/or ancillary services require-
ments in the simulations. Both of these aspects can be highly relevant for the correct
operation of the system, especially towards 2050, with more VRE penetration. Furthermore,
future research should also include stronger sector coupling, since it can considerably
influence the generation of VRE technologies and the need for flexibility ([23,26,33]).

The full-year foresight assumed for the planned maintenance and storage optimi-
sation can be unrealistic, due to the high uncertainty on, e.g., weather. Performing the
analysis with several weather years and/or performing stochastic optimisation would
help to understand the role of uncertainty in the results. In this paper, for simplification, a
unique weather year was used (2012), and stochastic features are mainly modelled through
unplanned outages.
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6. Conclusions

This paper proposes a mathematical model to simulate Day-ahead markets of large-
scale multi-energy systems with a high penetration of renewable energy towards 2050.
Furthermore, it analyses the influence of UC modelling on the results. The results highlight
the importance of analysing multiple scenario years with long time series, including several
sectors, as well as the value of not restricting the analysis to the small scale.

The results for the studied case of the North Sea region show how the penetration
of VRE towards 2050 challenges thermal units’ traditional operation in the electricity and
district heating sectors towards 2050. Furthermore, the high penetration of wind and solar
is likely to challenge the need for balancing in the system and, hence, flexibility will be
very important towards 2050.

The influence of the UC approach is found to be dependent on the scenario year.
Generally, including UC constraints with integer variables leads to more realistic behaviour
of the units, at the cost of considerably increasing the computational time. Relaxing
integer variables significantly reduces the computational time, but medium-level prices
are underestimated. Not including UC constraints leads to an underestimation of costs,
VRE curtailment, VRE’s average revenue per energy unit sold, as well as price volatility. It
also overestimates the flexibility of the thermal units. Hence, depending on the purpose
of the analysis, it is recommended to think carefully on which UC modelling approach to
use and acknowledge the limitations. When the focus is on prices and revenues, using UC
constraints with integer variables is preferable; otherwise, relaxing the integer variables is
encouraged.

Even though the study case is performed on the North Sea region, the findings of this
paper are valid to other regions of the world, where high VRE penetration is expected.

The proposed model, together with the insights that were obtained from the study
case, can be specially useful for system operators, who can use this model to perform
operational planning studies towards 2050.
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Nomenclature
Acronyms
VRE Variable Renewable Energy
VRE Variable Renewable Energy
CHP Combined Heat and Power
P2H Power-to-Heat
DA Day Ahead
UC Unit Commitment
MIP Mixed Integer Linear Programming
RMIP Relaxed Mixed Integer Linear Programming
Sets
g ∈ GGG Generation and pure storage units
y ∈ Y Years
s ∈ S Seasons
t ∈ T Time steps
a ∈ A Areas
r ∈ R Regions
ar ∈ AR Areas in regions
Subsets
STO ⊂ GGG Pure storage units
PTOH ⊂ GGG Electricity to heat generation units
EL ⊂ GGG Technologies delivering electricity to consumers
HEAT ⊂ GGG Technologies delivering heat to consumers
Parameters
FCg,a,y Installed input fuel consumption capacity [MW]
xloss Transmission loss [-]
USgen

g,a,y,s,t Unit size of input fuel capacity of a generation unit [MW/unit]
C f om Fixed annual cost [e]
MMTg Minimum maintenance time [days]
Del

y,r,s,t Exogenous gross electricity consumption rate [MW]
Dh

a,y,s,t Exogenous gross heat consumption rate [MW]
ηg,s,t Unit efficiency [-]
Positive decision variables
pel

g,a,y,s,t Net delivered electricity [MW]
ph

g,a,y,s,t Net delivered heat [MW]
stolg,a,y,s,t Storage loading rate [MW]
xr,r′ ,y,s,t Transmission flow [MW]
nav,on

g,a,y,s,t Units available for generation on [-]
nnav,pm

g,a,y,s,t Units not available for generation on planned maintenance [-]
nnav,pm,su

g,a,y,s,t Units not available for generation starting up planned maintenance [-]

nnav,pm,sd
g,a,y,s,t Units not available for generation shutting down planned maintenance [-]

cvom
g,a,y Variable operational and maintenance annual cost [e]

cCO2
g,a,y Carbon dioxide tax annual cost [e]
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