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Abstract: Most of the traditional PID tuning methods are heuristic in nature. The heuristic approach-
based tuned PID controllers show only nominal performance. In addition, in the case of a digital
redesign approach, mapping of the heuristically-designed continuous-time PID controllers into
discrete-time PID controllers and in case of the direct digital design approach, mapping of the
continuous-time plant (forward converter) into the discrete-time plant, results in frequency distortion
(or warping). Besides this, nonlinear elements such as ADC and DAC, and delay in the digital control
loop deteriorate the control performance. There is a need to tune conventionally-designed digital
controllers to enhance performance. This paper proposes optimized discrete-time PID controllers
for a forward DC–DC converter operating in continuous conduction mode (CCM). The considered
conventional digital PID controllers designed on the basis of the digital redesign and direct digital
approaches are tuned by one of the multivariable unconstrained pattern search methods named
Hooke–Jeeves (H–J) search method to ensure excellent output voltage regulation performance against
the changes in input voltage and load current. Numerical results show that the H–J-based optimized
PID compensated forward converter system shows tremendous improvement in performance com-
pared to its unoptimized counterpart and simulated annealing (SA)-based compensated system, thus
justifying the applicability of the H–J method for enhancing the performance.

Keywords: discrete-time PID controller; Hooke–Jeeves algorithm; isolated forward converter; multi-
variable unconstrained pattern search method; simulated annealing

1. Introduction

Forward converters, which are popular switched-mode power supplies (SMPSs), have
a simple circuit configuration, as they employ a single power transistor referenced to the
primary-side return. Forward converter topologies (especially single-ended), typically used
in off-line applications in the 100 W−300 W region, are extensively used in applications
such as telecom central office equipment, smartphones, systems that use distributed power
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architectures, and DC–DC applications in industrial controls [1]. These low to medium
power conversion applications require a tightly-regulated output voltage.

Better load and line regulations are hard to achieve through an open-loop switching
converter system. Analog compensators suffer from limitations such as low reliability
and flexibility, large size, poor design portability, and so on. Although digital compen-
sators are gaining the attention of control system designers and researchers due to their
programmability, configurability, and ability to realize complex and sophisticated control
approaches, they suffer from nonlinear effects, such as ADC and DAC quantization errors,
sampling and hold effects, loop delay, and so on, which deteriorate the performance by
limiting the loop bandwidth. Digital controller performance can be enhanced by tuning
their coefficients (after ones designed traditionally) using an optimization technique. This
paper proposes the gradient-free Hooke–Jeeves pattern search method for optimizing
discrete-time Proportional–Integral–Derivative (PID) compensators applied to an isolated
forward DC–DC converter.

2. Literature Review

Regarding the literature review, in [2], a dual-loop control strategy, where an analog
PI controller was used for the synthesis of both the internal current control loop and the
external voltage control loop, was proposed for a galvanically isolated forward converter
to ensure better transient response and reduced ripples in the output voltage. For both
the loops, the PI controller was designed based on crossover frequency and phase margin
characteristics. In [3], an output current-differential (OCD) control scheme having a master–
slave structure was proposed for a three forward converters-based input-series–output-
parallel (ISOP) system. The output voltage regulator (OVR) loop designed for a master
module (to provide current references to slave modules) and individual load–current
sharing loops developed for slave modules (to regulate the current in each module equally)
of the OCD control scheme were constructed using the frequency–response characteristics.
In [4], the authors, however, proposed a digital PI controller implemented through Digital
Signal Processor (DSP) for OVR and input voltage sharing (IVS) for a modular ISOP system.
Various analog compensators, including PI, PID, and lead were designed heuristically and
applied to forward converter to ensure better control performance [5]. In [6], regulation of
the most effective DC output voltage of a multiple output high frequency (MOHF) isolated
forward converter mainly designed for power factor correction (PFC) was achieved by
the heuristic Ziegler Nichols method-based tuned PI controller. In [7], for a single-ended
forward circuit, negative feedback for driving MOSFET was accomplished through an
operational amplifier (from Texas Instruments) with high-bandwidth. The control loops
(mostly analog in nature) suggested in all the references mentioned above for switching
converters are designed based on classical control theory. There occurs usually a tradeoff
between robustness and transient response in such types of controllers.

To overcome the limitations, recently other artificial intelligence and nonlinear control
theory-based control techniques have also been reported in the literature. Authors in [8]
suggested a fuzzy-neural sliding-mode controller (FNSMC) comprising a neural controller
and a compensation controller for a PWM-based isolated forward converter to achieve
excellent load and line regulations. Authors in [9] concluded through simulation results
that the fuzzy PID controller displayed better transient and steady-state performance
than did PID and fuzzy controllers when applied to push–pull forward (PPF) DC–DC
converter. In [10], two controllers, called a self-regulating fuzzy logic control (SR-FLC) and
a fuzzy sliding-mode control (SR-FSMC) were proposed for a forward DC–DC converter.
To avoid a time-consuming trial-and-error tuning procedure, fuzzy rules were adjusted
by a gradient-based rule modifier. A fuzzy logic controller (FLC) along with PI was
successfully developed and applied to a modular forward converter-based input-parallel–
output-series (IPOS) system [11] and a forward converter with an active clamp circuit
(ACFC) [12] used in the telecom power supply. In [13], the fuzzy logic-based PI controller
was suggested for a bidirectional dual active bridge converter. In [14], a sliding mode
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controller was applied to a forward converter to achieve regulated output voltage even
against load transients. An adaptive disturbance observer (ADO)-based practical terminal
sliding mode control (TSMC) that required no exact feedback linearization about the plant
dynamics was suggested in [15]. The ADO-TSMC guaranteed high control accuracy and
rapid convergence by adopting a TSMC-type surface. In [16], the adaptive nonsingular
TSMC was integrated with neural networks (NNs) to realize fault-tolerant control for the
simultaneous compensation of model uncertainties and disturbances, as well as actuator
faults. Authors in [17] proposed a robust PID controller with quantitative feedback theory
(QFT) to ensure stability in the presence of model uncertainties and external disturbances.
The control approaches, however, may require a time-consuming trial-and-error tuning
procedure to ensure superior performance.

Owing to rapid advances in digital control technology, researchers have also suggested
digital control loops for isolated DC–DC converters. In [18], for a central-tapped full-bridge
converter to display superior line regulation, the two dedicated control loops were realized
using a digital PID compensator. An FPGA-based on-line tuned PID controller was also
suggested in [19] for a forward converter to attain better control performance without
pin-pointing the procedure of calculating PID parameters. A conventionally designed
analog PID controller for a specific bandwidth (crossover frequency), and phase margin was
digitally implemented by DSP to regulate the output voltage of a full-bridge active-clamp
forward-flyback (FBACFF) converter in [20]. Only a notion of the microcontroller-based
implementation of digital control for a forward converter with a DC electromagnet as a
load of an SMPS designed for electromagnet systems was given in [21] to keep output
voltage regulated against the input voltage sag.

Limited research has been carried out on realizing digital controllers for isolated
switching converters. Digital control loop nonlinearities, warping (or distortion) in digital
frequency response during (approximate) mapping from s-plane into z-plane, and so
on have detrimental effects on digital controller performance. Proper retuning of once
traditionally designed digital PID controllers by optimization techniques may diminish
nonlinear effects to obtain the required transient response. The gradient-free H–J method is
employed here for retuning controller coefficients. The method uses flexible searching steps
to ensure the near-optimal solution and offers characteristics such as simplicity, robustness,
and versatility. This methodical pattern search technique yields an optimum solution for
an effectively-distinct cost (objective) function and handles well, especially for small- and
medium-sized optimization problems. This lays a good foundation for the construction of
this paper.

Additionally, the H–J method is deterministic, as it does not involve randomness
during its progression. It converges to the same end solution on every run for the same
initial point. On the other hand, a metaheuristic optimization method converges to a
different point every time it is executed. The process may sometimes become laborious
for finding the best solution in the case of metaheuristics. Once compared to one of the
metaheuristics, such as simulated annealing (in our case), the H–J method gives promising
results and shows an optimal end solution. This justifies the applicability of the H–J method
to the optimized digital control algorithms applied to the forward converter.

The paper is structured in the following way. Section 2 presents the literature review of
the state-of-the-art. Section 3 describes the dynamics (i.e., the transfer function) of a forward
DC–DC converter required for the design of discrete-time PID controllers. The design of
four types of discrete-time PID controllers based on classical control theory is presented
in Section 4. The H–J search algorithm employed for optimizing digital PID controllers is
described in detail in Section 5. Simulation results are presented in Section 6. Hardware
into the loop implementation is pinpointed in Section 7. Finally, conclusions are drawn in
Section 8.
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3. Description of Forward Converter Dynamics

For the sake of designing the required control loop, the transfer function (dynamics)
of a forward DC–DC converter should be known. A simplified schematic of a forward
DC–DC converter is shown in Figure 1. It consists of a controllable switch Q (MOSFET,
BJT, IGBT, and so on), a three-winding isolation transformer with a demagnetizing (reset)
winding, diodes D1, D2, and D3, an output filter inductor L with its direct current resistance
(DCR) rL, an output filter capacitor C with its equivalent series resistance (ESR) rC, and a
load resistance R. Bifilar transformer winding with ratio 1:1 for Np:Nr is normally used.
The auxiliary (reset) winding helps in resetting the transformer during the switching off
period to avoid core saturation.
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Figure 1. Circuit diagram of a forward DC–DC converter with reset winding.

Consider the converter working in CCM in two modes, as shown in Figure 2. When
transistor Q switches are on, primary current ip rises linearly from zero; diode D2 becomes
reverse-biased; voltage Vin develops across primary winding Np; energy is transferred
from the primary winding to the secondary and then through the forward-biased D1 to
the L-C filter and load R. When transistor Q switches off, the transformer voltage gets
reversed; diode D1 gets reverse-biased, whereas diodes D2 and D3 become forward-biased;
the primary reset winding with D3 provides a path to the transformer magnetizing current
to avoid core saturation; this forces the maximum duty cycle Dmax not to exceed 50%
theoretically for resetting transformer fully.
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The circuit element values taken for the forward converter design example, unless
otherwise specified, are Vin = 36 V, Vout = 12 V, n = Ns/Np = 32/48, Lm = 10 mH, L = 400 µH,
rL = 120 mΩ, C = 100 µF, rC = 33 mΩ, R = 10 Ω, and f s = 60 kHz (Ts = 1.67 × 10−5 s).

Applying the inductor volt-second balance (IVSB) principle while neglecting all the
losses, the DC transfer function of a forward converter can be expressed by

Vout = D
(

Ns

Np
Vin

)
= D(nVin) (1)

where n (= Ns/Np) represents the turn ratio of the transformer, and D is the duty ratio.
The output–input voltage relationship of buck converter Vout = DVin becomes translated
into the forward converter’s Vout = DnVin if we replace Vin by nVin.

Since the forward converter is a buck-derived isolated converter, its transfer function
can be easily derived from the buck converter [22]. The well-established state–space av-
eraging and linearization technique proposed by Middlebrook et al. [23] was employed
to derive the buck converter’s transfer function. The buck converter’s transfer function
can be translated into the forward converter’s just by replacing Vin with nVin, as already
remarked. As a result, the control-to-output (or duty ratio-to-output) small-signal transfer
function in the s-domain of the forward converter is expressed as

Tp(s) = v̂out(s)
d̂(s)

∣∣∣ v̂in(s) = 0
îout(s) = 0

=

(
Ns
Np Vin

)
(1+ rL

R )

[
(rCCs+1)

LC
(

R+rC
R+rL

)
s2+

(
L

R+rL
+C
(

RrL
R+rL

)
+rCC

)
s+1

]

=

(
Ns
Np Vin

)
(1+ rL

R )

(
s

ωESR
+1

s2
ω0

2 +
s

Qω0
+1

) (2)

where
ωESR =

1
rCC

(3)

ω0 =
1
τ
=

1√
LC R+rC

R+rL

=
1√
LC

√
R + rL
R + rC

(4)

Q =
1

2ζ
=

1

ω0

(
L

R+rL
+ C

(
RrL

R+rL

)
+ rCC

) (5)

Here ωESR, ω0 = 1/τ, and Q = 1/2ζ signify the capacitor zero frequency, the filter
resonance frequency, and the filter quality factor, respectively. From Tp(s), it is observed
that due to the presence of capacitor ESR, a zero frequency is introduced at 1/rCC [24].

A pair of complex conjugate poles at ω0 causes phase reduction, thus resulting in a
low phase margin. For the component values mentioned above, the open-loop forward
converter offers only a phase margin of 8.01◦ at 2.5 × 104 rad/s (see Figure 3). The low
phase margin needs to be raised to achieve better transient and steady-state characteristics.
This is accomplished by introducing a compensator into the loop, which introduces phase
at the required crossover frequency to meet the required specifications.



Energies 2021, 14, 77 6 of 23

Energies 2021, 14, x FOR PEER REVIEW 6 of 25 
 

 





  





0

1 1 1 L

CC

L

R r

R rR r LC
LC

R r

 
(4) 




 
  

       
0

1 1

2
L

C
L L

Q
RrL

C r C
R r R r

 
(5) 

Here ESR ,  0 1 , and  1 2Q  signify the capacitor zero frequency, the filter 

resonance frequency, and the filter quality factor, respectively. From ( )pT s , it is observed 

that due to the presence of capacitor ESR, a zero frequency is introduced at 1 Cr C  [24]. 

A pair of complex conjugate poles at 0  causes phase reduction, thus resulting in a 

low phase margin. For the component values mentioned above, the open-loop forward 

converter offers only a phase margin of 8.01° at 2.5 × 104 rad/s (see Figure 3). The low phase 

margin needs to be raised to achieve better transient and steady-state characteristics. This 

is accomplished by introducing a compensator into the loop, which introduces phase at 

the required crossover frequency to meet the required specifications. 

 

Figure 3. Bode plot of the open-loop forward converter. 

For the digital compensated system, the analog plant has to be discretized. The con-

tinuous-time forward DC–DC converter ( )pT s  (plant) is discretized using zero-order-

hold (ZOH) with Ts = 1/(60 × 103) s. That is to say, 

 



     

     
      

1
( )1

( ) . ( ) 1 .
ssT

p

p p

T se
T z Z T s z Z

s s
 (6) 

Using the values of the components mentioned above, the discretized plant by ZOH, 

numerically, can be expressed by 
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For the digital compensated system, the analog plant has to be discretized. The
continuous-time forward DC–DC converter Tp(s) (plant) is discretized using zero-order-
hold (ZOH) with Ts = 1/(60 × 103) s. That is to say,

Tp(z) = Z
{

1− e−sTs

s
.Tp(s)

}
=
(

1− z−1
)

.Z
{

Tp(s)
s

}
(6)

Using the values of the components mentioned above, the discretized plant by ZOH,
numerically, can be expressed by

Tp(z) =
0.1149z + 0.04927

z2 − 1.97z + 0.9773
(7)

or
Tp(z) =

0.1149z + 0.04927
z2 − 2ζdwdz + wd

2 (8)

with

ωd = e−ζω0Ts , ζd = cos
(

ω0Ts

√
1− ζ2

)
(9)

4. Conventional Digital Controller Design

Both the digital redesign or emulation and direct digital approaches are adopted in
the paper to construct digital PID controllers. The first three PID controllers considered in
the paper are first designed in s-plane for a specific phase margin and crossover frequency
(frequency–domain characteristics). The analog PID controllers are then mapped into the
digital PID controllers using different transformation techniques. The fourth PID controller
is directly constructed in the z-plane for the discretized plant. In the case of switching
converters, usually a compensator designed for a phase margin (PM) of 60◦ and 0-dB
crossover frequency (ωx) of one-tenth the converter switching frequency (fs) guarantees
acceptable rise and settling times, overshoots, and null steady-state error [14]. Unless
otherwise specified, all considered PID compensators are designed for PM ≥ 60 ◦ and
ωx = ωs/10.
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It is worth mentioning that we employed four digital controllers to a forward converter.
However, other approaches such as the PID-like coefficient diagram method (CDM) [25],
one-degree-of-freedom (1DOF) [26] and 2DOF [27] PID, PID with derivative on output
(DOO) [24], deadbeat control [28], and so on can also be utilized to realize controllers.

The digital closed-loop forward converter system is shown in Figure 4. The voltage
error signal sampled by ADC is processed by a digital PID controller whose output (digital
control signal), after its conversion into analog form, is fed to an analog forward converter.
Conventionally-designed digital PID controllers are optimized by the H–J method. To
facilitate the controller design, ADC, DAC, and delay gains are set to unity initially.

Energies 2021, 14, x FOR PEER REVIEW 7 of 25 
 

 




 2

0.1149 0.04927
( )

1.97 0.9773
p

z
T z

z z
 (7) 

or 






 2 2

0.1149 0.04927
( )

2
p

d d d

z
T z

z w z w
 (8) 

with 

 
   


  0 2

0, cos 1sT
d d se T  (9) 

4. Conventional Digital Controller Design 

Both the digital redesign or emulation and direct digital approaches are adopted in 

the paper to construct digital PID controllers. The first three PID controllers considered in 

the paper are first designed in s-plane for a specific phase margin and crossover frequency 

(frequency–domain characteristics). The analog PID controllers are then mapped into the 

digital PID controllers using different transformation techniques. The fourth PID control-

ler is directly constructed in the z-plane for the discretized plant. In the case of switching 

converters, usually a compensator designed for a phase margin (PM) of 60° and 0-dB 

crossover frequency (ωx) of one-tenth the converter switching frequency (fs) guarantees 

acceptable rise and settling times, overshoots, and null steady-state error [14]. Unless oth-

erwise specified, all considered PID compensators are designed for PM ≥60° and ωx = 

ωs/10. 

It is worth mentioning that we employed four digital controllers to a forward con-

verter. However, other approaches such as the PID-like coefficient diagram method 

(CDM) [25], one-degree-of-freedom (1DOF) [26] and 2DOF [27] PID, PID with derivative 

on output (DOO) [24], deadbeat control [28], and so on can also be utilized to realize con-

trollers. 

The digital closed-loop forward converter system is shown in Figure 4. The voltage 

error signal sampled by ADC is processed by a digital PID controller whose output (dig-

ital control signal), after its conversion into analog form, is fed to an analog forward con-

verter. Conventionally-designed digital PID controllers are optimized by the H–J method. 

To facilitate the controller design, ADC, DAC, and delay gains are set to unity initially. 

DAC

Forward 

Converter

Tp(s)

Vref Vout
ADC

Sensor Gain

H(s)=1

e(t)

2

2 1 0

2

2 1 0

( )c

a z a z a
G z

b z b z b

 


 

Digital PID Controller

2

0

ISE: ( )J e t dt



 
Optimization 

Method

Optimized Coefficients

a2, a1, a0, b2, b1, b0

 

Figure 4. Forward converter digital control loop. 

  

Figure 4. Forward converter digital control loop.

4.1. PID Controller with Complex Zeros

Open-loop complex poles of the forward DC–DC converter emerging due to an output
LC filter should be damped as they cause phase reduction. The two complex poles can
be compensated by two complex zeros of the compensator. The transfer function of the
compensator in s-plane having two complex zeros ωz at the LC resonant frequency ω0 (i.e.,
ωz = ω0) to provide the necessary phase lead and an integrator to reduce steady-state
error is expressed by

Gc(s) = Kc

(
s2

ωz2 +
s

QCωz
+ 1
)

s
(10)

Using s = jω, the magnitude and phase of Gc(s) can be written as

|Gc(jω)| = Kc

√
(1−ω2/ωz2)

2

ω2 +
(

1
QCωz

)2

∠Gc(jω) =

 − tan−1
(

QC
−ω2+ωz

2

ωωz

)
, ω ≤ ωz

tan−1
(

QC
ω2−ωz

2

ωωz

)
, ω > ωz

(11)

For the complex conjugate zeros, the controller transfer function in (10) can also
equivalently be written as

Gc(s) = Kc
ωz2

(
s2+ ωzs

QC
+ωz

2
)

s

= Kc
sωz2 (s + α + jβ)(s + α− jβ)

(12)
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where the pair of compensator complex zeros occurs at s = −α± jβ. The parameters α and
β in terms of ωz and QC can be written as

α = ωz
2QC

= π fz
QC

β = ωz

√
1− 1

4QC
2 = 2π fz

√
1− 1

4QC
2 with QC > 0.5

(13)

The compensator quality factor QC is set almost equal to the forward converter Q at
maximum output current. The required DC gain Kc representing the PID integral gain is
computed for the required ωx = ωs/10 by assuming that the control loop is compensated
so the gain plot crosses 0 dB at a–1 slope, i.e.,

Tp(s)
∣∣
s=sx

. Gc(s)|s=sx
= 1

⇒ Kc =
s(

s2
ωz2 +

s
QCωz +1

)
∣∣∣∣∣
s=sx

. 1
Tp(s)|s=sx

(14)

As all the parameters α, β, Kc, QC, etc. are known now, the transfer function of the
analog controller numerically is calculated to be

Gc(s) = 6.2557× 10−5
(

s2 + 1379s + 2.522× 107

s

)
(15)

The above compensator is essentially a single-pole, two-zero compensator.
Various transformation techniques can be employed to map the analog PID compen-

sator into its equivalent digital counterpart. We start with the simple mapping z = esTs .
The digital PID controller in its velocity form, one of the z-domain counterparts of the
s-domain PID controllers, is generally given by

GMAP(z) =
U(z)
E(z)

= Kcz
z2 + k1z + k2

z(z− 1)
(16)

Or equivalently, in discrete-time difference equation, the controller can be written as

u[n] = u[n− 1] + Kcz(e[n] + k1e[n− 1] + k2e[n− 2]) (17)

where Kcz is the gain of the discrete compensator.
The s-plane zeros s1 and s2 can be mapped to the corresponding z-plane locations

z1 and z2 through z1 = es1Ts and z2 = es2Ts , respectively [29]. If the complex zeros
z1 = e−αTs+jβTs and z2 = e−αTs−jβTs (assuming that both the zeros lie in the same position)
are the roots of the polynomial, then

(z− z1)(z− z2) = 0⇒ z2 − (z1 + z2)z + z1z2 = 0

⇒ z2 − 2e−αTs

(
ejβTs + e−jβTs

2

)
︸ ︷︷ ︸

cos (βTs)

z + e−2αTs = 0

⇒ z2 − 2r cos θz + r2 = 0

where r = e−
π fzTs

QC ; θ = 2π fzTs

√
1− 1

4QC
2 ;

∴ z2 + k1z + k2 = 0

(18)

with
k1 = −2r cos θ
k2 = r2 (19)
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The other unknown parameter, the gain Kcz of the discrete-time PID compensator, can
be computed by meeting the condition that Gc(s) and GMAP(z) have the same magnitude
at the desired loop crossover frequency fx. That is to say,

GMAP(z)|z=zx=ej2π fx Ts = Gc(s)|s=sx=j2π fx

⇒ Kcz =
z(z−1)

z2+k1z+k2
. Gc(s)|s=sx

(20)

Performing some algebraic manipulations gives the digital controller as

GMAP(z) = 3.862 z2−1.97z+0.977
z2−z

= 3.862z2−7.610z+3.774
z2−z

(21)

From the step response and Bode plot shown in Figure 5, it can be noticed that
the performance of the digital controller deteriorates slightly compared to its analog
counterpart.
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4.2. PID Controller with Real Zeros

The effect of converter complex poles causing phase reduction can also be nullified
using compensator real zeros. For such a case, the analog PID controller with real zeros
can be written as

Gc(s) = Kc

(
s

ωz1
+ 1
)(

s
ωz2

+ 1
)

s
(22)

Here one of the real zeros is placed at ω0 and the other slightly below ω0 to provide
the necessary phase lead. Keeping in view the converter power stage parameters, their
position, however, can be adjusted differently in the vicinity of ω0.

The DC gain Kc is computed to achieve the desired fx by meeting the following
condition:

Kc =
s(

s
ωz1

+ 1
)(

s
ωz2

+ 1
)
∣∣∣∣∣∣
s=sx

.
1

Tp(s)
∣∣
s=sx

(23)

This gives the following analog controller as

Gc(s) = 6.0608× 10−5 (s + 5022)(s + 4017)
s

(24)
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The compensator in (22) is of type interacting or series where the parameters Kc,
ωz1, and ωz2 are independent of one another. Equivalently, the PID controller having a
noninteracting or parallel form with independent gains is given by

GPID(s) = Kp +
Ki
s
+ Kds (25)

The parameters of the noninteracting form can be derived from that of the interacting
form and are related by the following expression:

Kp = Kc

(
1

ωz1
+ 1

ωz2

)
Ki = Kc
Kd = Kc

ωz1ωz2

(26)

The backward Euler transformation method with sampling time Ts is employed to
map the parallel form of analog PID into its digital counterpart. This is accomplished by

GEULER(z) =
(

Kp +
Ki
s
+ Kds

)∣∣∣∣
s= z−1

zTs

The above expression leads to the following discrete-time PID compensator.

GEULER(z) =

(
Kd + KpTs + KiT2

s
)
z2 −

(
2Kd + KpTs

)
z + Kd

(z2 − z)Ts
(27)

Knowing all the compensator gains and sampling time, the discrete-time PID compen-
sator is given by

Gc(z) =
13.77z2 − 25.75z + 12.29

z2 − 0.8488z− 0.1512
(28)

Just like the case of complex zeros, the s-plane real zeros s1 and s2 of an analog PID
controller can also be mapped into the corresponding z-domain zeros using z1 = e−ωz1Ts

and z2 = e−ωz2Ts , respectively. This implies

z2 −
(
e−ωz1Ts + e−ωz2Ts

)
z + e−(ωz1+ωz2)Ts = 0

⇒ z2 − (r1 + r2)z + r1r2 = 0
where r1 = e−ωz1Ts ; r2 = e−ωz2Ts ;
∴ z2 + k1z + k2 = 0

(29)

With
k1 = −(r1 + r2)
k2 = r1r2

(30)

The discrete-time PID compensator and its discrete-time difference equation can now
be expressed as:

GMAP(z) = Kcz
z2 + k1z + k2

z(z− 1)
= Kcz

z2 − (r1 + r2)z + r1r2

z(z− 1)
(31)

u[n] = u[n− 1] + Kcz(e[n]− (r1 + r2)e[n− 1] + r1r2e[n− 2]) (32)

For a crossover frequency fx, the only unknown parameter Kcz of the digital PID is
calculated from the following condition:

Kcz =
z(z− 1)

z2 − (r1 + r2)z + r1r2
. Gc(s)|s=sx

(33)
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As a result, the digital PID controller, numerically, is expressed by

GMAP(z) =
3.984z2 − 7.391z + 3.427

z2 − z
(34)

4.3. PID Controller with Derivative Filter

The continuous-time PID controller with a (first-order) derivative filter in parallel
form is given by

Gc(s) =
[
Kp +

Ki
s + Kds

1+s/ωp

]
=
[
Kp +

Ki
s + Kds

1+Tf s

]
=

(Kp+Kdωp)s2+(Kpωp+Ki)s+Kiωp

s(s+ωp)

(35)

where Kp, Ki, and Kd are controller parameters; Tf is a filter time constant. The low pass
filter 1/(1 + Tf s) appended with derivative term Kds filters out the high-frequency noise
entering the differentiator.

For computing the coefficients of the PID controller, a frequency response-based
PID algorithm developed and patented by MathWorks [30] is used to achieve a good
balance between performance (reference tracking and disturbance rejection, and so on) and
robustness. The algorithm computes PID coefficients for a specific crossover frequency
(loop bandwidth) based on the plant dynamics (usually one-tenth the switching frequency
in case of switching converters), and a phase margin of 60◦.

A brief theoretical description of the algorithm is outlined here. Once user-specified
crossover frequency ωx and phase margin θm are specified, the controller in the analog
domain is expressed by [30]

Gc(s) =
ωx

s

(
sin ϕzs + ωx cos ϕz

ωx

)(
sin βs + ωx cos β

sin αs + ωx cos α

)
(36)

where the angles ϕz, α, and β lie in the range from 0◦ and 90◦. The total phase shift ∆φ, a
function of these angles, introduced by the PID at ωx is given by

∆φ = ϕz + β− α (37)

In the three-term product controller described in Equation (36), the first term refers
to the integral action; the second term signifies the phase lead contributed by the Kp and
Ki terms; the third term captures the phase lead introduced additionally by the Kd and Tf
terms if 0◦ < α < β < 90◦ and phase lag if β < α. On the satisfaction of certain conditions or
assumptions, the angles α and β that are the free parameters can be selected.

Running the MATLAB routine implementing the said algorithm, the PID controller in
Equation (35) comes with the following coefficients:

Kp = 0.608, Ki = 1.41× 103, Kd = 5.82× 10−5, and Tf = 7.27× 10−6.

Using these parameter values in Equation (35) and performing some algebraic manip-
ulations, we obtain the following PID controller in a continuous domain.

Gc(s) =
8.608s2 + 8.494× 104s + 1.941× 108

s2 + 1.375× 105s
(38)

The discrete-time PID controller obtained through the discretization of the continuous-
time PID controller using Tustin transformation with Ts is then given by

GTUSTIN(z) =
4.35z2 − 8.014z + 3.689
z2 − 0.9319z− 0.0682

(39)
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4.4. PID Controller with Derivative Filter—Direct Digital Design Approach

A discrete-time PID compensator with a filter can also be designed using a direct
digital design (DDD) approach. In the DDD approach, a discrete-time compensator is
directly constructed in the z-plane for a discretized plant. Like other cases, the considered
DDD compensator is designed for Φm ≥ 60 and ωx = ωx/10.

Inspired by the work of [31], the DDD approach-based digital PIDF controller, in
general form, is given by

GDDD(z) =
K̃i

(z− wd/βd)
×
(
z2 − 2ζdwdz + wd

2)
(z− 1)

(40)

The two complex poles of the discretized forward converter (plant) are compensated
by the two complex zeros of the digital compensator by placing them exactly at a position
where the converter poles exist. In order to meet the requirement of steady-state error, a
pole at z = 1 is placed. This gives G̃DDD(z) as

G̃DDD(z) =
(

z2−1.97z+0.9773
z−1

)(
0.1149z+0.04927
z2−1.97z+0.9773

)
= 0.1149z+0.04927

z−1

(41)

The gain Mg and the phase ϕg (to satisfy Φm) the controller needs to introduce at ωx

can be calculated from the complex value of G̃DDD(z) at z = ejωxTs from G̃DDD(ejωxTs) =
0.2548ej1.4416, Mg = 1/0.2548 = 3.9246, and ϕg = Φm + 180 + 82.6.

The remaining unknown parameters K̃i and βd of GDDD(z) can be determined by the
following equations [31]:

βd =
ωd

sin(ωxTs)

tan(ϕg)
+ cos(ωxTs)

(42)

K̃i = −Mg sin(ωxTs) sin
(

ϕg
)(

1 +
1

tan2
(

ϕg
)) (43)

Using ωx, ϕg (in radians), and Mg in the above equations gives βd = 24.5349 and
K̃i = 3.7979. On knowing all the parameters, GDDD(z) takes the following form:

GDDD(z) =
3.798z2 − 7.483z + 3.712

z2 − 1.04z + 0.04029
(44)

This completes the digital controller design by the DDD approach.
The traditionally determined s-plane poles and zeros (or coefficients) of all the con-

ventionally designed analog PID controllers are mapped approximately into z-plane poles
and zeros (or coefficients) of digital PID controllers. Direct digital design approach-based
controllers also require a discretized plant. This mapping from s-plane to z-plane thereby
causes further distortions in frequency. The digital controllers only show limited perfor-
mance, which can be enhanced by retuning the coefficients using the H–J pattern search
method.

5. Digital Controller Optimization by the Hooke–Jeeves Method

Optimization of the discrete-time controllers is a multivariable unconstrained op-
timization problem, as no bounds are imposed on the PID controller coefficients. The
Hooke–Jeeves (H–J) pattern search algorithm is employed to tune the coefficients (six in
number) of conventionally designed digital controllers. The idea is to minimize the voltage
error signal e(t) = Vout − Vref of the compensated forward converter system (in our case) as
quickly as possible to ensure better reference tracking. This is accomplished by minimizing



Energies 2021, 14, 77 13 of 23

the cost (error signal) in the form of the integral of the squared error (ISE). The cost function,
in an n-multidimensional space, to be minimized thus takes the following form:

ISE : J =
∞∫

0

e2(t)dt =
∞∫

0

(
Vout(t)−Vre f (t)

)2
dt (45)

The gradient-free H–J pattern search method [32], which uses a combination of ex-
ploratory moves and heuristic pattern moves iteratively, is proposed here to minimize
J over <n without any constraints. The algorithm performs an exploratory move in the
vicinity of the current point systematically to find the best point in the n-dimensional search
space. Thereafter, n such points are used to make a pattern move. The steps involved in
the H–J algorithm (in the form of Algorithm 1) are outlined below.

Algorithm 1. Hooke–Jeeves Pattern Search Algorithm.

Step 1: Set an initial guess (initial point or starting point) x(0) = (x(0)1 , x(0)2 , . . . , x(0)n ) ∈ <n, initial
variable stepsizes ∆i > 0 (i = 1, 2, . . . , n), a step reduction parameter α > 1, permissible error
(termination parameter) ε > 0, and the maximum iterations kmax. Set an iteration counter k = 0
and x

(k+1)

p = x(0).

Step 2: Execute an exploratory move with the base point x(0). Let the outcome of the exploratory
move be x. If the exploratory move is a success, set x(k+1) = x and carry out Step 4; otherwise,
carry out Step 3.

Step 3: Check the stopping (termination) criteria, i.e., if ‖∆i‖ < ε or k ≥ kmax, terminate;
otherwise, set ∆i = ∆i/α for i = 1, 2, . . . , n and carry out Step 2.

Step 4: Set k = k + 1 and execute the pattern move:
x
(k+1)

p = x(k) + (x(k) − x(k−1)) = 2x(k) − x(k−1).

Step 5: Execute another exploratory move using the base point x
(k+1)

p . Let the result be x(k+1).

Step 6: If f (x(k+1)) < f (x(k)), carry out Step 4;
otherwise, carry out Step 3.

The algorithm takes the gains/coefficients (six in number for each case) of convention-
ally designed discrete-time controllers (initial guess) as the input. It comes with updated
coefficients as the output, resulting in better performance and robustness. No constraint is
imposed on the bounds of the design variables. The parameters of the H–J algorithm set
for tuning all the controllers are summarized in Table 1.

Table 1. H–J pattern search method parameters.

H–J Method Parameters Value

No. of variables N 6
Initial step sizes ∆ (0.1, 0.1, 0.1, 0.1, 0.1, 0.1)T

Reduction factor α 2
Termination parameter ε 1 × 10−6

Iteration counter k (initial value) 0
Fitness function (to be minimized) type ISE

Maximum number of iterations 1000

The H–J algorithm, at the end of its execution, gives optimized discrete-time con-
trollers with much improved transient response and steady-state error characteristics (see
simulation results in the next section). Optimally-tuned and traditionally-tuned digital
PID controller coefficients are detailed in Table 2. The number of iterations taken, and the
objective function value attained finally by the optimized digital controllers are detailed
in Table 3. It can be observed that the H–J method takes a different number of iterations
to converge for different optimized digital controllers to achieve the same value of the
objective function.
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Table 2. Digital controller (traditional and optimized) coefficients.

No. Digital
Controller

Digital Controller Coefficients

a2 a1 a0 b2 b1 b0

1
GMAP(z) 3.8620 −7.6100 3.7740 1 −1 0

GMAP-OPT(z) 3.8876 −7.6598 3.7991 0.5057 −0.3263 −0.1794

2

GEULER(z) 4.205 −7.821 3.6360 1 −1 0
GEULER-OPT(z) 3.9413 −7.7655 3.8515 0.5129 −0.3312 −0.1816

GMAP(z) 3.9840 −7.3910 3.4270 1 −1 0
GMAP-OPT(z) 3.7290 −7.3473 3.6441 0.4855 −0.3135 −0.1720

3
GTUSTIN(z) 4.3500 −8.0140 3.6890 1 −0.9319 −0.0682

GTUSTIN-OPT(z) 4.0156 −7.9121 3.9243 0.5225 −0.3372 −0.1854

4
GDDD(z) 3.798 −7.483 3.712 1 −1.04 0.04029

GDDD-OPT(z) 3.8255 −7.5373 3.7383 0.4979 −0.3214 −0.1765

Table 3. The number of iterations taken, and the objective function value attained by the optimized
controllers.

No. Digital
Controller

Resultant Objective
Function Value

Iterations Taken
for Convergence

1 GMAP-OPT(z) 9.5637 × 10−6 75

2
GEULER-OPT(z) 9.5637 × 10−6 102
GMAP-OPT(z) 9.5637 × 10−6 71

3 GTUSTIN-OPT(z) 9.5637 × 10−6 92
4 GDDD-OPT(z) 9.5637 × 10−6 94

6. Simulation Results and Discussion

All the simulations were performed using the MATLAB/Simulink environment. The
solver of type “fixed” was used to carry out all the simulations. As already mentioned,
the forward converter system is designed to convert an input voltage Vin of 36 V to an
output voltage Vout of 12 V. The H–J pattern search algorithm is used to optimize digital
controllers. The performance of digital controllers, unoptimized and optimized, for a
fixed load (10 Ω) is presented in Figure 6, for all three cases. Inspection of output voltage
response reveals that the optimized digital controllers offered better transient response
characteristics than their unoptimized counterparts. A detailed comparison of transient
response characteristics extracted from voltage responses is given in Table 4.

Table 4. The performance offered by digital PID controllers.

No.
Digital

Controller

Transient Response Characteristics

Rise Time tr
(s)

Settling Time ts
(s)

Overshoot Mr
(%)

Peak Value hpeak
-

Peak Time tpeak
(s)

1
GMAP(z) 3.1607 × 10−5 8.1243 × 10−5 4.4132 12.5296 6.6667 × 10−5

GMAP-OPT(z) 1.6429 × 10−5 4.1968 × 10−5 5.1647 12.6198 3.3333 × 10−5

2

GEULER(z) 2.6836 × 10−5 7.5744 × 10−5 21.5128 14.5815 6.6667 × 10−5

GEULER-OPT(z) 1.6459 × 10−5 4.1984 × 10−5 5.1910 12.6229 3.3333 × 10−5

GMAP(z) 2.7852 × 10−5 7.4965 × 10−5 21.9312 14.6317 6.6667 × 10−5

GMAP-OPT(z) 1.6496 × 10−5 4.1988 × 10−5 5.1748 12.6210 3.3333 × 10−5

3
GTUSTIN(z) 2.6829 × 10−5 6.7370 × 10−5 21.3563 14.5628 6.6667 × 10−5

GTUSTIN-OPT(z) 1.6452 × 10−5 4.1979 × 10−5 5.1564 12.6188 3.3333 × 10−5

4
GDDD(z) 3.0780 × 10−5 8.6204 × 10−5 6.1813 12.7418 6.6667 × 10−5

GDDD-OPT(z) 1.6472 × 10−5 4.1983 × 10−5 5.1679 12.6202 3.3333 × 10−5
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To compare the results of the deterministic H–J method with other stochastic opti-
mization methods, a simulated annealing (SA) algorithm that mimics the thermodynamic
process of metal annealing was considered. Both H–J and SA are gradient-free algo-
rithms and solve unconstrained optimization problems well. Both the algorithms take the
traditionally-tuned discrete PID controllers’ coefficients as the initial point or guess.

For simulation purposes, the most commonly used (standard) values of SA parameters
were considered, which are summarized in Table 5.

Table 5. Simulated annealing (SA) parameters taken for simulations.

SA Parameter Value

Cost function f ISE

Initial temperature T0 100

Annealing function Fast annealing

Initial acceptance probability 1

Acceptance probability function p p(∆, T) =
[
1 + exp

(
∆

max(T)

)]−1
∈ [0, 0.5]

where ∆ = fnew − fold

Temperature update function T T = T0 × 0.95k

where k signifies the annealing parameter.

Reannealing interval 100

Function tolerance (termination criteria) 1 × 10−6

Maximum function evaluations 18,000
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Considering case 2, the output voltage response offered by SA showed somewhat
increased overshoot and steady-state error than that of the H–J method (see Figure 7).
This justifies the applicability of the H–J method to digital controllers. It can be further
deduced that an unconstrained optimization problem involving fewer decision variables
can be handled well by a deterministic optimization algorithm compared to a stochastic
optimization algorithm.
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All additional simulations were carried out using the digital PID controllers, unopti-
mized and optimized (by the H–J method), of case 3 to save space. The error signal became
minimized more quickly in the case of the optimized compensated system (see Figure 8).
This ensured better reference tracking and transient response characteristics. To gain insight
into the H–J optimization method further, the cost function representing the integral of
the squared error (ISE) was plotted against the iteration, as shown in Figure 9. As can
be observed, with the progression of iteration, the cost function decreased monotonically
and finally converged to a value of 9.5637 × 10−6 after meeting the stopping criteria. The
algorithm took 513.252875 s for 92 iterations when run on a personal computer with a Core
i7 (2.10 GHz) processor and 8 GB of RAM. This minimization of cost function resulted in
better convergence of the output (voltage) to the set point. Figure 10 shows that optimized
digital controllers follow the changes in reference voltage from 12 V to 18 V and 18 V to
12 V more quickly compared to their unoptimized counterparts. This justifies the claim of
superiority of the performance of optimized controllers over unoptimized ones.
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For the real compensated forward converter system, nonlinear effects due to ADC
and DAC, and delay in the digital control loop should be taken into consideration as they
impose adverse effects on performance [33]. For the design example, ripples in output
voltage ∆V were considered 1% of Vout and Vref 80% of Vmax. The detail of the digital
control loop nonlinearities with numeric values is summarized in Table 6.
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Table 6. Detail of the digital control loop nonlinearities.

Term Formula Value

ADC resolution nADC nADC ≥ int
[
log2

(
Vmax
Vre f
· Vout

∆Vout

)]
7

DAC resolution nDAC nDAC ≥ int
[
nADC + log2

(
Vre f

Vmax·D

)]
' nADC + 1 8

ADC gain KADC KADC = 2nADC 128

DAC gain KDAC KDAC = 1/(2nDAC − 1) 0.0039

Loop delay td
td = tADC + tDAC︸ ︷︷ ︸

ADC/DAC Conversion

+ tP︸︷︷︸
Processing

+ tGD︸︷︷︸
Gate Driver

0.5Ts

Delay transfer function Gd(s) Gd(s) = e−std ' 1/(1 + std) -

Using the PID algorithm developed by MathWorks (Case 3), the digital controller
transformed through Tustin for the modified plant Tp(s)

∣∣
modf = e−std KADCKDACTp(s)

now is computed to be

GTUSTIN(z) =
15.87z2 − 29.68z + 13.87

z2 − 0.0542z− 0.9458
(46)

Furthermore, optimization of the above newly-designed digital PID controller through
the H–J method gives optimized digital PID controller as

GTUSTIN−OPT(z) =
20.1581z2 − 34.4638z + 14.3793

z2 − 0.4230z− 0.5763
(47)

To justify that the optimized PID controller offers excellent load regulation compared
to the unoptimized one, a change in load resistance was made from 10 Ω to 5 Ω and 5 Ω to
10 Ω. From the transient load response shown in Figure 11, it is clear that the optimized PID
controller offered a reduced voltage spike and recovery time at the instant of load transient
compared to the unoptimized compensator. Similarly, despite the changes in the input
voltage from 36 V (nominal) to 48 V and then from 48 V to 36 V, the controllers maintained
a constant output voltage of 12 V (see Figure 12). However, in the instant of a change in
the input voltage, the optimized controller showed less deviation in the output voltage
value and settled the output voltage to its steady-state value more quickly compared to its
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unoptimized counterpart. The optimized controller, thus, exhibited excellent load and line
regulation.
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The tuning of all considered digital PID controllers with and without nonlinearities
by the H–J search method always resulted in better control performance. This justifies the
applicability and workability of the once scorned but now respectable H–J pattern search
method.

7. Hardware-into-the-Loop Implementation

For the sake of rapid prototyping, a Xilinx System Generator (XSG), a DSP design tool
from Xilinx [34], is used for implementing the discrete-time PID controller on FPGA that
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can be easily interfaced with Simulink through the XSG environment. Once integrated with
Simulink, XSG automatically produces low-level, executable, synthesizable, and vendor-
neutral VHDL code (for the control algorithm) from the Simulink model-based generated
high-level abstractions. This way, sophisticated and complex digital control algorithms
are realized rapidly on FPGA compared to conventional resistor–transistor logic (RTL)
development times by control design engineers without having expertise in developing
VHDL code. This reduces design and testing time.

The netlist and cores are generated automatically through the Core Generator and
ChipScope generator invoked by XSG. Consequently, the generated bitstream—the co-
simulation FPGA configuration file for the JTAG hardware co-simulation platform—is
loaded into the target device (FPGA XC7A35T-1CPG236C on Basys 3 Artix-7 FPGA board,
in our case), thus implementing the digital controller on FPGA.

The optimized controller in Equation (47) is considered for the hardware into the loop
(HiL) implementation and is re-written as

GTUSTIN−OPT(z) =
U(z)
E(z)

=
20.1581− 34.4638z−1 + 14.3793z−2

1− 0.4230z−1 − 0.5763z−2 (48)

Furthermore, in the difference equation form, the above controller takes the form

u(k) = 20.1581e(k)− 34.4638e(k− 1) + 14.3793e(k− 2) + 0.4230u(k− 1)
+0.5763u(k− 2)

(49)

For realizing the above digital controller, hardware-realizable adders/subtractors,
multipliers, and delay blocks from the XSG library are used (see Figure 13). The 32-bit
floating-point arithmetic (FP) is employed to realize the controller coefficients. The rela-
tively fast FP arithmetic ensures certain accuracy for realizing coefficients. Rather than
using direct programming (DP), standard programming (SP) is employed here to realize
the controller. SP uses only n delay elements, whereas DP uses m + n, where m and n
denote the number of zeros and poles, respectively, such that m ≤ n [35].

A synthesizable VHDL block representing the hardware co-simulation library is
then generated automatically and is loaded into the Artix-7 board (see Figure 13). For
downloading the bitstream, JTAG communication between Simulink (on PC) and hardware
platform (Artix-7 FPGA board) for a supported board is performed. This way, hardware–
software co-simulation through JTAG is accomplished to close the digital control loop.

After introducing hardware into the control loop, it has been observed that the XSG-
based compensated system displays almost the same output voltage response as that of
the Simulink-based compensated system, as shown in Figure 14, thus validating the HiL
implementation. This is quite understandable, as the floating-point data format for digital
controller coefficients has been used just like the "double" type data of Simulink.
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8. Conclusions

In this paper, the Hooke Jeeves search algorithm was successfully applied to tune the
coefficients of discrete-time PID controllers to enhance the performance of the compensated
forward DC–DC converter. Three types of PID controllers were designed on the basis of
frequency response characteristics (crossover frequency and phase margin) in the s-plane,
which were then mapped into the z-plane using transformation techniques such as Tustin,
backward Euler, and (simple) mapping. The digital redesign approach based designed
digital PID controllers show only nominal performance, which further gets deteriorated
due to frequency distortions during mapping and nonlinearities such as ADC and DAC,
sampling and hold effects, loop delay, and so on. Based on our findings, we observe that
when the H–J pattern search method is applied to these conventionally-designed digital
controllers (with and without nonlinear elements) exhibiting limited performance, it fine-
tunes the controller coefficients intelligently by minimizing the cost function rapidly, thus
ensuring the near-optimal solution. For all the considered cases, better control performance
is achieved. This clearly indicates that the H–J method employs pattern search efficiently
to make the iterative process fast-convergent. Hardware-into-the-loop implementation is
also carried out for rapid prototyping.
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