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Abstract: This paper considers a non-orthogonal multiple access (NOMA) downlink network,
where a hybrid of NOMA and beamforming designs is developed to enhance the channel capac-
ity. We aim to improve the system performance in terms of rate fairness and power consumption.
Hence, a multi-objective problem with a joint optimization of user equipment pairing, power control,
and quality-of-service requirements is addressed. To efficiently solve the problem, we propose two
low-complexity algorithms based on the inner-approximation method, with the first algorithm using
the relaxation method and the second one using graph theory. Numerical results are provided to
demonstrate the effectiveness of the two proposed algorithms in comparison with the exhaustive
search and existing methods.

Keywords: bipartite graph; inner approximation; non-orthogonal multiple access; power consump-
tion; rate fairness

1. Introduction

Non-orthogonal multiple access (NOMA) can be considered to be a promising multiple
access technology for fifth-generation networks for accommodating the rapid growth of
data traffic [1–4]. Unlike orthogonal multiple access, NOMA allows user equipment (UE)
to share the same time-frequency resource; hence, the spectral efficiency (SE) and energy
efficiency (EE) are improved. The NOMA technique is classified into two main categories:
the power domain [5] and code domain [6]. Herein, we focus power-domain NOMA,
referred to as NOMA for convenience. The key idea of power-domain NOMA is to allocate
a higher power to the UE with poorer channel gain. Meanwhile, a UE with a strong
channel gain is equipped with successive interference cancellation (SIC) to remove the
signal intended to the UE with poorer channel gain before decoding its own signal [5,7].

1.1. Related Works and Motivation

Recently, many new approaches have been proposed for UE grouping/clustering [8–11].
The number of clusters is selected based on the cell size and channel gain in [8], whereas a
clustering strategy based on channel correlation was investigated in [11]. In [9], a tensor
model was proposed to manage UE association, in which clusters of UEs were formed by
different circular zones. Owing to the channel conditions and computational capacity of
UE, SIC is restricted to limited groups/clusters of UE [8,9].

To ease implementationin a small-sized network, UE pairing is essential. In [12],
pairing of one near UE and another far UE was shown to be efficient. A cognitive radio
inspired NOMA system with a single-antenna base station (BS) was also investigated
in [12], where a cell is divided into inner and outer zones, including cognitive UEs (CUs)
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with strong channel gain and primary UEs (PUs) with poor channel gain. A two-zone
scheme assisted by the multiple-antenna technique was studied in [13], in which each pair
comprised one inner-zone UE and the other outer-zone UE. The authors in [14] proposed a
distance-based UE pairing scheme to improve the sum throughput, in which the far UEs
were paired with an available nearest UEs using a distance threshold. Another pairing
scheme based on the vector norms of channel responses was developed for a massive
MIMO-NOMA system in [15]. The effect of UE pairing on the performance of NOMA-
based systems was studied in [16], in which a CR-NOMA and an F-NOMA system were
considered under fixed power allocation.

To fully exploit the advantages of UE pairing, many algorithms have been developed
for pairing two arbitrary UEs without separate zones. In addition to random pairing
scheme used in [17], UE pairing schemes based on channel condition arrangement have
been proposed [17–19]. The typical pre-processing step is to place all UE into an unpaired
set with sorted channel gains (SCG). Under the setting, various strategies have been
proposed to pop and pair two UEs until the SCG is empty or only contains one UE. In [19],
two UEs with the best and worst channel gains were popped and paired consecutively.
In [18], two best-channel conditions were selected, whereas the first and middle UEs in
the SCG were paired together in [17]. Unlike the aforementioned work, a more flexible
approach was proposed [20], where any two users in a cell can be dynamically paired
together to improve the fairness throughput among all UEs.

Most of the aforementioned works investigated NOMA-based systems to improve SE.
In power-domain NOMA, power control is extremely challenging owing to SIC. In addition,
the power consumption or EE has been considered to be one of the immediate concerns
for the upcoming wireless networks, as indicated by the energy for information and
communication technologies, which constitute approximately five percents of the total
world’s energy consumption [21,22]. Therefore, power consumption has been recently
reported in a few studies. The authors in [10] investigated a joint optimization problem
of user assignment and power allocation for a downlink (DL) NOMA network in terms
of EE maximization. Another power allocation strategy was proposed in [23] to evaluate
the EE of a broadcast DL NOMA network. These studies investigated the sub-channels
assignment for UEs; hence, the UE association is still unknown for exploiting the channel
capacity using NOMA. This motivates us to develop algorithms with a joint UE pairing
and beamforming design that accounts for both the SE fairness and power consumption.

1.2. Contributions

In this paper, we consider a cellular DL NOMA network, where a multi-objective
problem for rate fairness among all UEs and power consumption were investigated under
the minimum per-UE rate requirement and signal-to-noise ratio (SNR) constraints for
decoding the message. To further improve the channel capacity, the NOMA technique
can be applied to two UEs in a cell, instead of UE pairing with two near and far groups.
The resulting problem belongs to a mixed-integer non-convex class that is difficult to solve.
Therefore, we devise two low-complexity algorithms, based on inner approximation (IA)
and graph theory. The main contributions of this paper are described as follows:

• First, we investigate a hybrid system comprising NOMA and conventional beamform-
ing to reap their advantages for a unique design. A beamforming design with SIC can
be applied to a pair of UE, or conventional beamforming can be used for certain UE
depending on the number of UEs and channel conditions. Accordingly, the approach
is referred to as dynamic pairing because it enables the pairing of two arbitrary UEs
in a cell.

• To manage the dynamic pairing, we introduce a new binary variable matrix for UE
association. By using the NOMA principle and sorted channel gains, the computa-
tional complexity is reduced with the variables forced into an upper triangular matrix.
Next, we formulate a problem for joint optimization of UE pairing and beamforming
design, thereby enabling the selection of the objective function: the max-min rate
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(MMR) and power consumption. However, a strong coupling of binary and continu-
ous variables under non-convex constraints results in a hard class of mixed-integer
non-convex programs.

• To efficiently solve the resulting problem, we propose two approaches based on the IA
framework as well as the relaxation method and bipartite graph. The first approach
is based on a combination of the relaxation and IA methods; it can transform the
complicated original problem into a more tractable form without integer variables.
Therefore, an iterative algorithm based on the IA framework is derived to obtain a
local optimal solution at the least. To further reduce the time complexity, we develop
an algorithm in which UE pairing and the beamforming design are managed using a
bipartite graph and the IA method. For UE pairing, this approach uses the channel
correlation as the weights of edges on the graph, resulting in a linear bottleneck
assignment problem. Hence, we apply the binary search and augmenting path
algorithm to obtain the UE pair, and then use the solution of the first approach for the
beamforming design based on a specified integer variable value.

1.3. Paper Organization and Notation

The rest of this paper is organized as follows. The system model and problem formula-
tion are described in Sections 2 and 3, respectively. Two proposed solutions based on the IA
framework with the relaxation method and graph theory are detailed in Sections 4 and 5,
respectively. For the benchmark purpose, the optimal solution based on exhaustive search is
also studied in Section 5. Section 6 presents numerical results, whereas Section 7 concludes
the paper.

Notation: Lowercase and uppercase letters in bold indicate vectors and matrices,
respectively. xH is the Hermitian transpose of x. The set of all complex and real numbers
are represented by C and R, respectively. ‖ · ‖ stands for the Euclidean norm. E{·} is the
expectation and <{.} denotes the real part of a complex number.

2. System Model

We consider a DL NOMA cellular system, where a BS is equipped N transmit antennas
to serve K single-antenna UEs. As illustrated in Figure 1, NOMA technique can be applied
to a pair of two arbitrary UEs in a set of UEs, denoted by K , {1, . . . , K}. For simplicity,
we denotes the k-th UE by UEk.

UEK−1

R

UEK

BS

UEℓ
UE3

UEk

UE1

UE2

Figure 1. System model.

2.1. Data Transmission Model

The DL channel from BS to UEk and the corresponding beamforming vector are
denoted as hk ∈ CN×1 and wk ∈ CN×1, respectively. Without loss of generality, the channel
gains of all UEs are sorted as ‖h1‖2 ≥ ‖h2‖2 ≥ · · · ≥ ‖hK‖2. The signal received at UEk
can be written as

yk = ∑
∀`∈K

hH
k w`x` + nk, (1)
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where xk with E{|xk|2} = 1 represents the symbol intended for UEk, and nk represents
the additive white Gaussian noise (AWGN) at UEk. To perform UE pairing, we introduce
binary variables αk,` ∈ {0, 1}, ∀k, ` ∈ K, which are expressed as

αk,` =

{
1, if UEk and UE` are paired with the channel gains satisfying ‖hk‖2 ≥ ‖h`‖2,
0, otherwise.

(2)

By defining α , [αk,`]K×K, it is clear that α is an upper triangle matrix with the
main diagonal of zeros. The signal-to-interference-plus-noise ratio (SINR) at UEk can be
written as

γk(w, α) = min
{

γ0,k(w, α), min
∀`∈K
{γ`,k(w, α)}

}
, (3)

where w , [wk]k∈K. The SINRs for decoding the UEk’s signals at itself and UE` are denoted
by γ0,k(w, α) and γ`,k(w, α), respectively, which can be expressed as

γ0,k(w, α) =
|hH

k wk|2
χk(w, α)

, (4a)

γ`,k(w, α) =
|hH

` wk|2
α`,kΦ`,k(w)

, (4b)

where χk(w, α) and Φ`,k(w, α) are respectively given as

Φk(w, α) = ∑
∀`∈K\{k}

(1− αk,`)|hkw`|2 + σ2
k , (5a)

Θ`,k(w) = ∑
∀k′∈K\{k}

|h`wk′ |2 + σ2
` . (5b)

It is seen that when UEk and UE` are not paired together, i.e., αk,` = α`,k = 0, ∀k, ` ∈ K,
only γ0,k(w, α) is involved in Equation (3), since γ`,k(w, α)→ ∞.

2.2. Power Consumption Model

To measure power-efficiency, we consider the power consumption for transmission
with beamforming, which can be expressed as

PT(w) = ∑
∀k∈K

1
ζPA
‖wk‖2

︸ ︷︷ ︸
radiated power

, (6)

where ζPA is the efficiency of the power amplifier (PA) at the BS. In other words, the power
consumption is the power for data transmission from the BS to all the UE in the form of
electromagnetic wave radiation. It is clear that PT(w) is a function of beamforming vectors.

Remark 1. In addition to the power for beamforming, the power consumption in a wireless
communication system includes the power for signal processing, device activation, and circuit
operation [24,25]. However, these values are constant, and hence can be omitted in the objective
function without affecting the search for the optimal solution. For convenience, we consider only the
power consumption for beamforming in this paper.

3. Problem Formulation

The achievable rate of UEk in nats/s/Hz can be expressed as

R(γk(w, α)) = ln(1 + γk(w, α)), k ∈ K. (7)
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We introduce a parameter υ ∈ {0, 1} for the objective selection between rate fairness
and power consumption optimization. As a result, a multi-objective problem can be
formulated as

max
w,α

υ min
∀k∈K

R(γk(w, α))− (1− υ)PT(w), (8a)

s.t. ∑
k∈K
‖wk‖2 ≤ Pmax

BS , (8b)

αk,` ∈ {0, 1}, ∀k, ` ∈ K, (8c)

αk,` = 0, ∀(k, `) ∈ {K ×K|k ≥ `}, (8d)

∑
k∈K

αk,` ≤ 1, ∀` ∈ K, (8e)

∑
`∈K

αk,` ≤ 1, ∀k ∈ K, (8f)

αk,` + ∑
k′∈K

α`,k′ ≤ 1 ∀(k, `) ∈ {K ×K|k < `}, (8g)

αk,` + ∑
`′∈K

α`′ ,k ≤ 1 ∀(k, `) ∈ {K ×K|k < `}, (8h)

|hH
k wk|2 ≥ ρsnσ2

k , (8i)

R(γk(w, α)) ≥ (1− υ)R̄k, ∀k ∈ K. (8j)

Objective Equation (8a) can be selected for fairness rate maximization (or power
consumption minimization) by setting υ = 1 (or υ = 0). Constraints Equation (8c–h)
correspond to the NOMA criteria for user pairing. Specifically, Equation (8d) ensures that
in a certain pair, UE with the better channel employs SIC to remove the interference from
the remaining UE. Constraints Equation (8e–h) guarantee that each UE can be paired with
at most one other UE. The signal-to-noise ratio (SNR) threshold ρsn in Equation (8i) is
used for detecting the signal at the receivers, whereas constraint Equation (8j) provides
the minimum bit rate, R̄k, such that UEs satisfy the QoS requirement. Owing to a strong
coupling of continuous and binary variables under the non-convex objective function and
constraints, Equation (8) is a mixed-integer non-convex problem, and thus, it is hard to
obtain a globally optimal solution.

Remark 2. Although the proposed dynamic pairing approach can further enhance the system
performance, it leads to a large number of possible pairing cases. To overcome this issue and to
accelerate the application of NOMA technique, the rest of the paper will devise two algorithms
which provide low complexity and fast convergence.

4. Proposed Solution Based on Relaxation Method

To convert Equation (8) to a tractable form, the binary variables in constraint Equation (8c)
are relaxed to continuous ones as 0 ≤ αk,` ≤ 1, ∀k, ` ∈ K. Then, the optimization problem
Equation (8) can be rewritten as

max
w,α,λ,η

υη − (1− υ)PT(w), (9a)

s.t. 0 ≤ αk,` ≤ 1, ∀k, ` ∈ K, (9b)

R(γk(w, α)) ≥ λk, ∀k ∈ K, (9c)

λk ≥ (1− υ)R̄k, ∀k ∈ K, (9d)

η ≥ λk, ∀k ∈ K, (9e)

Equation (8b), Equation (8d–i), (9f)

where η is a new variable representing the minimum rate among all UEs and λ ,
{λ1, λ2, . . . , λK} denotes the rate of each UE. Furthermore, Equation (9d) is the QoS
constraint, which is equivalent to Equation (8j).
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It can be observed that constraints Equations (8i) and (9c) are non-convex and thus
difficult to solve directly. To deal with the issue, we first introduce some useful IA functions
as follows.

• We consider the multiplication function fmul(x, z) = xz. Then an upper bound of
fmul(x, z) is provided in Equation (B.1) in [26]:

fmul(x, z) ≤ x(i)

2z(i)
z2 +

z(i)

2x(i)
x2 = f (i)mul(x, z), x ≥ 0, y ≥ 0. (10)

• The logarithm function R(|x|2/z) = ln(1 + |x|2/z) with x ∈ C, y ∈ R+, has a lower
bound around a feasible point (x(i), z(i)) [27]:

ln(1 +
|x|2

z
) ≥ R(

|x(i)|2
z(i)

)− |x
(i)|2

z(i)
+ 2

R{x(i) ∗ x}
z(i)

− |x(i)|2(|x|2 + z)
(z(i))2(z(i) + |x(i)|2) . (11)

• A lower bound of the quadratic function fqu(x) = |x|2 can be expressed as

fqu(x) ≥ 2R{(x(i)) ∗ x} − |x(i)|2, x ∈ C. (12)

Let us convexify the QoS constraint Equation (8c). By using Equation (12), Equation (8c)
can be approximated as

|hH
k wk|2 ≥ 2R{(hH

k w(i)
k ) ∗ (hH

k wk)} − |hH
k w(i)

k |2, (13)

resulting in an alternative convex constraints:

2R{(hH
k w(i)

k ) ∗ (hH
k wk)} − |hH

k w(i)
k |2 ≥ ρsnσ2

k , ∀k ∈ K. (14)

To convexify constraint Equation (9c), we can split Equation (9c) into two
sub-constraints as {

R(γ0,k(w, α)) ≥ λk, ∀k ∈ K, (15a)

R(γ`,k(w, α)) ≥ λk, ∀k ∈ K. (15b)

Using Equation (11), a lower bound of γ0,k(w, α) around a feasible point (w(i), α(i)) at
iteration (i + 1) is derived as

R(γ0,k(w, α)) ≥ A(i)
0,k +A

(i)
1,k(w)−A(i)

2,k(w, α), (16)

where A(i)
0,k, A(i)

1,k(w), and A(i)
2,k(w, α) are respectively given as

A(i)
0,k = R(γ(i)

0,k)− γ
(i)
0,k,

A(i)
1,k(w) = 2

R{(hH
k w(i)

k ) ∗ (hH
k wk)}

χ
(i)
k

,

A(i)
2,k(w, α) = Θ(i)

k |hH
k wk|2 + Θ(i)

k ∑
`∈K\{k}

(1− αk,`)|hH
k w`|2 + Θ(i)

k σ2
k ,

with γ
(i)
0,k , γ0,k(w(i), α(i)), χ

(i)
k , χk(w(i), α(i)) and Θ(i)

k , (χ
(i)
k )−1 − (χ

(i)
k + |hH

k w(i)
k |2)−1.

Clearly, A(i)
2,k(w, α) is still non-convex; hence, we apply Equation (10) to convexify

A(i)
2,k(w, α) as
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A(i)
2,k(w, α) ≤ Θ(i)

k τk,k + Θ(i)
k ∑

`∈K\{k}
(1− αk,`)τk,` + Θ(i)

k σ2
k

≤ Θ(i)
k τk,k + Θ(i)

k ∑
`∈K\{k}

f (i)mul(1− αk,`, τk,`) + Θ(i)
k σ2

k

, Ã(i)
2,k(w, α, τ),

(17)

where τ = {τk,`}∀k,`∈K is introduced as a new variable satisfying the following second-
order cone (SOC) constraint:

|hH
k w`|2 ≤ τk,`, ∀k, ` ∈ K. (18)

Therefore, the convex approximation for constraint Equation (15a) at iteration (i + 1)
can be written as

A(i)
0,k +A

(i)
1,k(w)− Ã(i)

2,k(w, α, τ) ≥ λk, ∀k ∈ K. (19)

It can be observed that constraints Equation (15a,b) take the same form. Hence, constraint
Equation (15b) at iteration (i + 1) is approximated by the same steps as Equations (16)–(19),
i.e., Equation (15b) is convexified as

B(i)0,`,k + B
(i)
1,`,k(w)− B̃(i)2,`,k(w, α, τ) ≥ λk, ∀`, k ∈ K, (20)

where B(i)0,`,k,B(i)1,`,k(w), and B̂(i)1,`,k(w, α) are respectively defined as

B(i)0,`,k , R(γ(i)
`,k)− γ

(i)
`,k,

B(i)1,`,k(w) , 2
R{(hH

` w(i)
k ) ∗ (`H

k wk)}
α
(i)
`,kΦ(i)

`,k

,

B̃(i)2,`,k(w, α, τ) , Ξ(i)
`,kτ`,k + Ξ(i)

`,k ∑
k′∈K\{k}

f (i)mul(α`,k, τ`,k′) + Ξ(i)
`,kα`,kσ2

` ,

where γ
(i)
`,k , γ`,k(w(i), α(i)), Φ(i)

`,k , Φ`,k(w(i)), and Ξ(i)
`,k , (Φ(i)

`,k)
−1− (Φ(i)

`,k + |hH
` w(i)

k |2)−1.
In summary, a successive convex program at iteration (i+ 1), which provides minorant

maximization for Equation (9), can be formulated as

cc max
w,α,τ,λ,η

υη − (1− υ)PT(w), (21a)

s.t. Equation (8b), Equation (8d–h), Equation (9b), , Equation (9d,e)Equation (14), Equations (18)− (20). (21b)

Clearly, when the iterative algorithm terminates, the value of the relax variable α is
approximately the binary value, and not a solution of Equation (8). To address this point,
the binary values of α for the optimal solution of Equation (8) is recovered by the rounding
function Equation (22), i.e.,

α?k,` = bα
(i)
k,` +

1
2
c, ∀k, ` ∈ K, (22)

where bxc returns the maximum integer that is not larger than x, x ∈ R.
For implementation purposes, it is necessary to find an initial feasible point for

Equation (21). This can be achieved by solving the following sub-problem:

cc max
w,α,τ,λ,ω

ω, (23a)

s.t. λk − R̄k ≥ ω, ∀k ∈ K, (23b)

ω ≤ 0, ∀k ∈ K, (23c)

Equation (8b), Equation (8d–h)Equation (9b), Equation (14), Equations (18)− (20), (23d)
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where ω is a new slack variable. Constraint Equation (23b) guarantees that the ini-
tial feasible point can satisfy the QoS requirement. It can be seen that a starting point
(w(0), α(0), τ(0)) is obtained when ω is approximately zero. The proposed iterative al-
gorithm based on the IA method to solve the problem Equation (8) is summarized in
Algorithm 1. In particular, the solution of continuous variables for the relaxation problem
is found in Phase 1, while Phase 2 is devoted to re-compute the solution for the original
problem with a fixed value of the integer variable α.

Convergence analysis: Our proposed algorithm based on the IA method has the conver-
gence properties as in [28]. Let F (i) be the feasible point set of Equation (21) at iteration i,
then the properties of IA method indicate that the optimal solution X̂ (i) ∈ F (i) obtained at
iteration i satisfies X̂ (i) ∈ F (i+1) as well. In addition, F (i) is a connected set [29]. Therefore,
our proposed algorithm can provide at least a local optimal solution that satisfies the
Karush-Kuhn-Tucker conditions.

Complexity analysis: The approximated problem Equation (21) includes 5K2 + 4K + 1
SOC/linear constraints and 2K2 + NK + 1 variables, which complicates the solving of
Equation (21) in terms of the big-O expressed as O((2K2 + NK + 1)2.5((5K2 + 4K + 1)2 +
2K2 + NK + 1)) [30].

Algorithm 1 Proposed Algorithm for Solving Problem Equation (8) based on IA Method.

Phase 1:

1: Input-1: hk, R̄k (k ∈ K), Pmax
BS , and ρsn.

2: Initialization: Set i := 0.

3: Get an initial point: Execute the sub-problem Equation (23) to obtain an initial point (w(0), α(0), τ(0)) for

Equation (21).

4: repeat

5: Solve the optimization problem Equation (21) to find (w?, α?, τ?) at the i-th iteration.

6: Update (w(i+1), α(i+1), τ(i+1)) := (w?, α?, τ?).

7: Set i := i + 1.

8: until Convergence

9: Use the rounding function Equation (22) to recover α?.

10: Output-1: The optimal solution α? for the binary variable α.

Phase 2:

11: Input-2: hk, R̄k (k ∈ K), Pmax
BS , ρsn, and α∗.

12: Reset i := 0 and repeat steps 1–7 with binary α? to obtain the exact beamforming vector w?.

13: Output-2: The optimal solution (w?, α?).

5. Proposed Solutions Based on Integer-Variable Reduction

This section presents the reduction in the computational complexity using integer-
variable reduction (IVR). Unlike the relaxation method, this approach first determines
the value of α for UE pairing; subsequently, power allocation is computed by solving a
sub-problem with respect to the given α. We investigate two methods to find the UE pairs:
(i) a graph-based IVR method to reduce the complexity; and (ii) an IVR using exhaustive
search for benchmarking.

5.1. Proposed Solution Using Graph-Based IVR

In this subsection, we propose a low-complexity pairing scheme based on channel
vectors. Accordingly, a dynamic pair of UE is determined based on a high channel cor-
relation, to which the SIC technique can be effectively applied. It is observed that when
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the UEs with high channel correlation are paired to each other, the BS has more degree of
freedom for beamforming design to mitigate the inter-pair interference.

To implement this method, we first define a weight matrix C , [ck,`]∀k,`∈K ∈ RK×K,
in which each entry ck,` denoting the channel correlation between the k-th and `-th UEs is
calculated as

ck,` =
| < hk, h` > |
‖hk‖‖h`‖

, (24)

where < x, y > denotes the inner product of two vectors x and y. Subsequently, the UE pairs
can be determined by solving the following linear bottleneck assignment problem (LBAP):

max
α

min
∀k∈K ∑

`∈K
αk,`ck,`, (25a)

s.t. Equation (8c), Equation (8e), Equation (8f). (25b)

It is noteworthy that when ck,` = 0, no edge exists between the k-th and `-th UEs.
To solve problem Equation (25), we use the bipartite graph and binary search methods
as follows.

5.1.1. Bipartite Graph for UE Pairing

We employ a balanced bipartite graph G = (K1,K2;D), where K1 and K2 are the
vertex sets of all UEs with |K1| = |K2| = K, andD is the set of edges, i.e.,D = {{k, `}|k, ` ∈
K and k 6= `}, with the weight of an edge {k, `} being ck,`. UE pairing can be performed
by using the augmenting path algorithm [31]. Some definitions for developing the pairing
algorithm are as follow:

• A matching M is a subset of D without any two edges sharing the same vertex.
For convenience, we define an unmatched set M̄ = D\M. Furthermore, a maximum
matching corresponds to a special case, in whichM is enlarged to the maximum.

• A free vertex is defined as a vertex not contained inM.
• An alternating path P is a path in graph G, such that two arbitrary successive edges

in P are from both setsM and M̄.
• An alternating path P becomes an augmenting path when both the starting and

ending points of P are free vertexes.

We can use the augmenting path algorithm to expandM until a maximum matching
is obtained. In particular, at each iteration of an iterative algorithm, the augmenting path P
is determined for a given matchingM (M = ∅ at the beginning), and then,M is updated
asM = (M\P) ∪ (P\M). The algorithm terminates when no augmenting path is found.
However, a maximum matching with the augmenting path algorithm merely addresses
the maximum pairs of UEs, which is insufficient for obtaining the optimal solution for
problem Equation (25) under a balanced bipartite graph in a polynomial-time complexity.
Hence, the augmenting path algorithm is integrated into a binary search method as will be
described in the following subsection.

5.1.2. Binary Search with Augmenting Path Algorithm

The optimal solution for problem Equation (25) is a maximum matching with channel
correlation fairness among UE pairs. In other words, the pairs of UEs are determined such
that the minimum channel correlation of UE pairs in the achieved maximum matching is
maximized. Moreover, the maximal value for the weight fairness is one of the entries in C.
Therefore, the binary search algorithm [32] is used to find the solution for Equation (25).
The search region is given by an auxiliary vector v , [vi]i∈{1, ..., K2} ∈ R1×K2

, of which
the components involving all entries of matrix C are sorted in the ascending order, i.e.,
v1 ≤ v2 ≤ · · · ≤ vK2 . Let idmin and idmax be the lower and upper indexes for the search
region on vector v, respectively. Clearly, idmin = 1 and idmax = K2 at the initialization.
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The search region is denoted by S(idmin, idmax) , [vidmin , · · · , vidmax ]. At each iteration,
the index of the median in the search region is determined as

idmed =
⌊ idmin + idmax

2

⌋
. (26)

Subsequently, the augmenting path algorithm is executed on sub-graph
G̃ = (K1,K2; D̃) ⊆ G to find the maximum matching M, where D̃ , D\{{k, `}|ck,` <
vidmed

}. The search region is updated as

S(idmin, idmax) =

{
S(idmed, idmax), if |M| = K
S(idmin, idmed), if |M| < K.

(27)

The binary search algorithm terminates when S(idmin, idmax) contains only one el-
ement, i.e., idmed = idmin = idmax, which results in the value of α. After obtaining the
value of α, we solve the optimization problem Equation (21) with the given α to obtain the
solution for Equation (8). The proposed algorithm using graph-based IVR is summarized
in Algorithm 2. By applying binary search and augmenting path methods for the bipartite
graph, a dynamic pairing solution is computed in Phase 1, at which the binary value of
variable α is determined to satisfy the constraints of the original problem. In Phase 2,
a convex approximation program is solved under the binary value of α obtained in Phase 1.

Complexity Analysis: The binary search requires O(log2(K
2)) steps to find the optimal

value cmed, while the augmenting path algorithm takes O(K3) [33]. Therefore, the total
complexity for finding α in problem Equation (25) isO(K3 log2(K

2)). With a given value of
α, a sub-problem derived from problem Equation (21) has K2 + NK + 1 variables and K2 +
3K + bK/2c+ 1 SOC/linear constraints; consequently, the total complexity of Algorithm 2
is O(K3 log2 K2 + (K2 + NK + 1)2.5((K2 + 3K + bK/2c+ 1)2 + K2 + NK + 1)).

Algorithm 2 Proposed Algorithm for Solving Problem Equation (8) using Graph-based IVR.

Phase 1:

1: Input-1: hk, (k ∈ K).
2: Compute the weight matrix C as in Equation (24).

3: Generate an auxiliary vector v which is sorted in an ascending order.

4: Set idmin := 1, idmax := K2.

5: repeat

6: Compute idmed as in Equation (26).

7: Build a sub-graph G̃ using the median vidmed
.

8: Apply augmenting path algorithm to find the maximum matchingM in G̃.

9: if |M| = K then

10: Set idmin := idmed.

11: else

12: Set idmax := idmed.

13: end if

14: until idmin = idmax

15: Create α corresponding to the givenM.

16: Output-1: The pairing solution α? for the binary variable α.

Phase 2:

17: Input-2: hk, R̄k (k ∈ K), Pmax
BS , ρsn, and α∗.

18: Apply Steps 1–7 in Algorithm 1 with the given value of α? to find the beamforming vector w?.

19: Output-2: The optimal solution (w?, α?).
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5.2. Proposed Solution Based on Exhaustive Search

For benchmarking, this section presents the optimal solution using exhaustive search
(ES), where all possible cases of α are considered while satisfying constraints Equation (8c–h).
For each case, a sub-problem is derived from Equation (8) by fixing the value of α. Instead
of only one subproblem, we obtain many sub-problems as in the graph-based method.
Subsequently, we use Equation (21) to find the solutions to the sub-problems. The solution
(w, α) that provides the best performance is selected as the optimal solution. It can be
observed that each sub-problem can be solved with a fast convergence since it only needs
to handle the continuous variables of the beamforming vectors. However, this approach
typical incurs high computational complexity owning to the large number of sub-problems.

Complexity Analysis: The ES method examines ∑
bK/2c
k=1 (K

k)
(2k)!
2kk!

sub-problems as all
possible cases of α. For a given value of α, a sub-problem based on Equation (21) contains
the same numbers of variables and constraints as in Algorithm 2. Therefore, the total com-
plexity of the ES method is determined as
O
((

∑
bK/2c
k=1 (K

k)
(2k)!
2kk!

)
(K2 + NK + 1)2.5((K2 + 3K + bK/2c+ 1)2 + K2 + NK + 1)

)
.

6. Numerical Results
6.1. Parameter and Simulation Settings

We consider a DL cellular system where one BS equipped with N-antennas serves
K single-antenna UEs. The BS is located at the center of the cell, whereas the UEs are
uniformly distributed within radius R from the cell center. To evaluate the performance
of the proposed algorithms, we adopt Monte-Carlo simulations. The channel from the
BS to each UE includes the path loss, PL(dBS,UE) with distance dBS,UE, and small-scale
fading expressed as a Gaussian random variable h ∼ CN (0, PL(dBS,UE)I). The other
simulation parameters are shown in Table 1,in which the realistic parameters of power con-
sumption and PA efficiency are provided by [24]. We compare Algorithm 1 (Algorithm 1),
Algorithm 2 (Algorithm 2) and the ES scheme with the existing schemes. Before UE pair-
ing, we first sort all UEs in descending order of their channel gains. The pairing strategies
are described as follows:

• Greedy pairing with difference fairness for channel gains (GP-DFCG): A pair comprises
the k-th and (K− bK/2c+ k)-th UEs, resulting in αk,K−bK/2c+k = 1, 1 ≤ k ≤ bK/2c.

• Greedy pairing with the strongest-to-weakest channel-gain strategy (GP-SWCG): Con-
sidering all sorted UEs in an unpaired set, a pair is selected by popping the strongest and
weakest channel-gain UEs until the unpaired set is empty or contains one UE, i.e., a pair
including the k-th and (K− k + 1)-th UEs, resulting in αk,K−k+1 = 1, 1 ≤ k ≤ bK/2c.

• Consecutive pairing (CP): As in [19], the (2k− 1)-th and 2k-th UEs are paired together,
resulting in α2k−1,2k = 1, 1 ≤ k ≤ bK/2c.
Furthermore, we also investigate two other typical schemes: (i) Random pairing,

where two UEs in the cell are randomly paired with each other; (ii) Beamforming design,
where conventional beamforming is applied to all UEs, resulting in an all-zero matrix
α. Except for Algorithm 1, the sub-problems, which are derived as the cases of problem
Equation (21) for achieved values of α, are solved for the beamforming vectors.
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Table 1. Simulation Parameters.

Parameter Value

Noise power spectral density −174 dBm/Hz
Radius of the cell, R 100 m
Path loss from BS to UEs, PLBS,UE 128.1 + 37.6log10(dBS,UE) dB
The nearest distance from between UEs and BS 10 m
Power budget at BS, Pmax

BS 18 dBm
Rate threshold, R̄k = R̄` = R̄, ∀k, ` ∈ K 1 bits/s/Hz
Number of UEs, K 6
Number of antennas at BS, N 4
SNR threshold at receivers, ρsn 0 dB
PA efficiency at BS, ζPA 0.3

6.2. Rate Fairness Performance

To evaluate the effectiveness of the proposed algorithms in terms of rate fairness,
the cumulative distribution functions (CDFs) of all schemes are investigated with respect
to the MMR. We use 1000 random channels to estimate the CDFs in Figure 2. In general,
the GP-based and CP-based schemes exhibit better performance than random pairing
and the conventional beamforming design, i.e., gains of 0.4–0.8 bps/Hz at the mid-point.
As expected, the proposed algorithms outperform GP- and CP-based schemes. In particular,
when comparing to the GP-DFCG scheme at the mid-point, the performance gains of
Algorithms 1 and 2 are 0.7 and 0.3 bps/Hz, respectively. Except for beamforming, the other
schemes provide high rate fairness for all UEs, exceeding 3 bps/Hz at the 95-percentile
points. These CDFs spread in a wide range of MMR (approximately 2 bps/Hz from
the 5- to 95-percentile points), adapting to the channel responses. This figure verifies
the importance of the channel-gain disparities as well as the strategies of UE pairing for
NOMA-based systems.

Figure 3 depicts the average MMR of the eight schemes along with the change in the
budget at the BS. For comparison, the conventional beamforming and ES schemes are also
investigated as two baselines. In comparison with the beamforming scheme, the random
pairing scheme provides the least MMR gain, whereas the two proposed algorithms out-
perform the other existing schemes. The performance of Algorithm 1 is approximately
0.5 bps/Hz better than that of Algorithm 2, compensating for the computational complex-
ity of jointly optimizing the mixed-integer variables. Interestingly, the performance of
Algorithm 1 is quite close to that of the ES schemes (approximately 0.3 bps/Hz loss on
average), thereby confirming the effectiveness of the proposed scheme.
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Figure 2. Cumulative distribution function of max-min rate.
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6.3. Power Consumption Minimization

We first examine the minimum rate of all UEs and power-consumption percentage at
the BS with the various values of power budget at the BS, Pmax

BS , as illustrated in Figure 4.
The minimum rates obtained using Algorithms 1 and 2 are only 1 bps/Hz when considering
power consumption minimization (i.e., υ = 0), which is exactly the minimum bit-rate
threshold associated with the QoS requirements. This allows the BS to consume sufficient
power and hence reduce the major part of the power budget. For example, the power-
consumption percentage is lower than 1% of Pmax

BS and inversely proportional to Pmax
BS .

Meanwhile, when the design problem is targeted at the MMR (υ = 1), the minimum
rate and power-consumption percentage obtained by Algorithms 1 and 2 increase along
with Pmax

BS . The minimum rates are equal to MMRs of Algorithms 1 and 2, consistent with
the results in Figure 3. As shown, the power-consumption percentages for the MMR are
much higher than those for power consumption minimization; however, the entire power
budget is not used. Typically, at Pmax

BS = 18 dBm, the power consumption percentages
of Algorithms 1 and 2 are 56.7% and 97.8%, respectively. This supports interference
management for achieving rate fairness among all UEs, resulting in a decrease in the
power-consumed percentages and MMR saturation at high values of Pmax

BS .
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Figure 4. Minimum rate and percentage of power consumption with respect to power budget at BS.

To understand the behavior of the proposed algorithms, Figure 5 depicts the power
consumption as a function of the QoS requirement. It is clear that the power consumption
of all schemes increases with the minimum bit rate. As expected, the proposed algorithms
outperform the others, and satisfy the high level of the minimum bit rate. In particular,
from R̄ = 2 (bps/Hz), the proposed algorithms still yield good solution for satisfying the
QoS requirement constraint, whereas the other existing schemes could not easily yield the
feasible point. Figure 6 demonstrates the power consumption performance versus SNR
thresholds. For convenience, we only examine the GP-SWCG scheme, which provides the
best performance among the three greedy-based schemes. It is observed that the proposed
algorithms provide performance comparable to that of the ES method even at a low SNR
threshold. Compared with random pairing, the proposed schemes use approximately
4 dBm, while GP-SWCG provides more than 1 dBm of power saving. These results confirm
the flexibility of the proposed methods for the UE pairing to enhance the rate fairness and
reduce power consumption.

To further realize the effect of the SNR threshold on system performance, we investi-
gate MMR and power-consumption as a function of SNR threshold, as shown in Figure 7.
For power consumption minimization (υ = 0), the percentage of consumed power is small
and proportional to the SNR threshold, whereas the minimum rate remains almost constant.
In this case, both proposed algorithms maintain sufficient consumed power to satisfy the
QoS requirement, i.e., the minimum rate of 1 bps/Hz. Specifically, for a low SNR threshold,
the power consumption percentage of both Algorithms 1 and 2 are less than 1%, whereas
the percentage of consumed power for the higher SNR threshold increases to satisfy the
requirement for decoding messages, i.e., approximately 15% at ρsn = 25 dB. In addition,
for the MMR problem (υ = 1), the percentage of power consumption differs significantly
from that of the power-minimization case. In particular, more than 90% of power budget
is required for both algorithms at ρsn = 25 dB. Moreover, when ρsn increases, the MMR
performance degrades slightly. This is because the power allocated to each UE is increased
to satisfy the SNR threshold at all UEs, resulting in more interference among the UEs and a
decrease in the minimum rate. However, between ρsn = 0 and ρsn = 25 dB, the minimum
rates obtained by Algorithms 1 and 2 reduces by only approximately 0.2 bps/Hz, indicat-
ing the adaption of the proposed schemes even under a strict received-SNR condition for
NOMA-based beamforming design.
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6.4. Convergence Behaviors

We investigate the convergence behaviors of the proposed algorithms by referencing
to the beamforming design. Figure 8 shows the MMR performance of the three schemes at
Pmax

BS = 18 dBm and ρsn = 0 dB. Because the ES method contains many sub-problems, it is
difficult to show its convergence behavior; hence, the ES method is omitted in this figure.
As previously mentioned, Algorithm 1 includes two phases where the relaxed variable α is
rounded after the first phase, and the optimal solution for the original problem is obtained
in the second phase. Hence, the convergence line of Algorithm 1 in Figure 8 consists of
a bumpy period before reaching the saturation value. Furthermore, the two proposed
algorithms achieve 99% performance with fast convergence. In particular, Algorithm 1
converges almost from iteration 13, whereas Algorithm 2 and beamforming require only
a few iterations for a faster convergence rate (i.e., convergence at the 10-th iteration).
However, it can be concluded that both proposed algorithms provide fast convergence.
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Figure 8. Convergence behaviors of MMR.

7. Conclusions

We studied a hybrid of NOMA and conventional beamforming design, where a dy-
namic pairing technique was investigated with two arbitrary UEs in a cell that can be
paired together. The aim of this paper was to improve the performance in terms of both
fairness rate among all UEs and power consumption. To tackle the resulting mixed-integer
non-convex problem, we proposed two low-complexity algorithms. The first algorithm was
based on a combination of the relaxation and IA methods to jointly optimize UE pairing
and beamforming. In the second algorithm, we used the bipartite graph and binary search
methods to achieve UE pairing before using the IA method to obtain the beamforming
vectors, which can further reduce the computational complexity. Numerical results with re-
alistic parameters demonstrated that the two proposed algorithms outperform the existing
schemes in terms of both MMR and the power consumption.

Besides the advantage of novel dynamic UE pairing, some research gaps would
be investigated for future works. Even when two proposed algorithms provide good
performance and low complexity, an advanced optimization technique for NOMA could
be expected to reduce the rate loss. In addition, the channel estimation is not perfect in
practice; thus, a robust design under the channel uncertainty would be essential for UE
pairing and beamforming in NOMA-based systems. Finally, the effectiveness of dynamic
UE pairing in massive device networks is still unknown, which motivates us to develop a
new method for the upcoming requirement and environment.
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