
energies

Article

Dynamics of Heaving Buoy Wave Energy Converters
with a Stiffness Reactive Controller

Ahmed H. Sakr † , Sayed M. Metwalli and Yasser H. Anis *

����������
�������

Citation: Sakr, A.; Metwalli, S.; Anis,

Y. Dynamics of Heaving Buoy Wave

Energy Converters with a Stiffness Re-

active Controller. Energies 2021, 14,

44. https://dx.doi.org/10.3390/en

14010044

Received: 12 November 2020

Accepted: 17 December 2020

Published: 23 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

Mechanical Design and Production Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt;
ahmed-1.sakr@polymtl.ca (A.H.S.); Metwallis@cu.edu.eg (S.M.M.)
* Correspondence: anis@cu.edu.eg; Tel.: +20-127-1062555
† Current address: Department of Mathematical and Industrial Engineering, Polytechnique Montreal,

Montreal, QC H3T1J4, Canada.

Abstract: Heaving buoy wave energy converters (WEC) are floating oscillators, commonly modeled
as single-degree-of-freedom vibrating systems. As the wave frequencies change according to the sea
state, these devices must be controlled to maximize energy absorption. A new short-term reactive
loading control technique is proposed that maximizes power absorption. The control is realized
through tuning the effective stiffness of the vibrating system; thus, adjusting its natural frequency
to meet the incident waves energy frequency achieving near-to-resonance operation and maximum
power absorption. This stiffness is adjusted using an external stiffness, whose value is varied by a
continuously variable transmission (CVT) mechanism connected to the buoy. The system equations
were derived then solved analytically to calculate the controller bandwidth. Experiments demon-
strated promising results for near-resonance tuning at different input frequencies. Results show
that an optimized damping value exists at which power absorption can be significantly increased.
The WEC equipped with the proposed reactive controller can provide faster tuning actions than
long-term techniques. It also works on longer time intervals than phase-control methods; hence,
reducing the continuous demands from the PTO system.

Keywords: point absorber; reactive control; wave energy; power-take-off damping; irregular waves

1. Introduction

Heaving buoy point absorbers are oscillating bodies that move with the motion of sea
waves, relative to a frame of reference. This relative motion drives the power take-off system
(PTO), which absorbs the energy produced by the waves. PTO systems can take many
forms, including air turbines, hydraulic converters, hydro turbines, and direct mechanical
or electrical drive Systems [1]. Point absorbers are advantaged by their simplicity in design
and modeling, in addition to being omni-directional with the ability to absorb energy from
any direction of the incident waves [2,3]. As the wave frequencies change according to
the sea state, these devices must be controlled to maximize energy absorption. Control of
these devices is desirable for their narrow-band frequency response and short resonant
periods. Many control methods exist, including resistive control, phase control by latching
and clutching, and complex conjugate control [4–6]. Many studies have also considered
model predictive control (MPC) for WECs [7,8].

Control techniques are commonly categorized according to the time taken to adjust
or tune the system; namely, long term control, short term control, and wave-by-wave
control [9]. Both long and short term control techniques include reactive control, which is
a theoretical optimum strategy that involves adjusting the system dynamic parameters,
such as the inertia, stiffness, and damping, to maximize the power absorption for a specific
bandwidth.

Inertial reactive control involves changing the effective inertia of the system to tune
the natural frequency of the oscillating body to meet the incident waves energy frequency.

Energies 2021, 14, 44. https://dx.doi.org/10.3390/en14010044 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-7882-8420
https://orcid.org/0000-0002-6096-6996
https://orcid.org/0000-0001-9516-489X
https://www.mdpi.com/1996-1073/14/1/44?type=check_update&version=1
https://dx.doi.org/10.3390/en14010044
https://dx.doi.org/10.3390/en14010044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/en14010044
https://www.mdpi.com/journal/energies


Energies 2021, 14, 44 2 of 12

Inertial control methods are considered short or long-term and may include the rearrange-
ment of the buoy ballast weight distribution [10], the addition of a fully submerged mass
that modifies the device heave natural frequency [11], the regulation of the position of a
sliding mass [12], or filling water into some compartment of the point absorber device [13].
Stiffness reactive control is also used to achieve the resonance state and maximum power
absorption by tuning the effective stiffness of the PTO system [14]. Shek et al. used it for
heaving buoys with direct drive PTO [15], while Schoen et al. adopted Genetic Algorithms
for PTO damping and stiffness tuning [16]. Despite the feasibleness of these approaches,
they are disadvantaged by their high PTO reactive power demands.

In addition to stiffness reactive control through PTO systems, other approaches exist
that depend on structural advantages [17]. Such approaches aim to broaden the effective
harvesting frequencies of energy harvesters. Li et al. proposed a tunable broadband
structure that can shift the harvesting frequency peak [18]. This can act as a dynamic
amplifier for other harvesters; however, such harvesters work more effectively at higher
frequency ranges than low excitation frequencies, experienced in the case of sea waves.

Wave-by-wave control techniques includes control strategies that operate on short-
term basis up to 20 s. These include system tuning by means of phase control, such as
latching control and declutching control [19,20]. Both methods can lead to power absorp-
tion increases; however, they often require perfect foreknowledge of the incident wave,
in addition to a more complex PTO mechanism, compared to systems with long and
short-term control techniques.

In this work, we propose a new reactive loading short-term control strategy for heaving
buoy wave energy converter (WEC) systems, which tunes the WEC natural frequency to
meet that of the incident waves, providing near-resonance operation; hence, maximum
power absorption. The tuning of the natural frequency of the system is performed by
changing the effective stiffness of the system through the introduction of a variable external
stiffness that is connected parallel to the buoy stiffness. As a proof of concept, we use a
continuous variable transmission (CVT) system to change the effect of the external stiffness
on the oscillating system. The proposed control strategy is advantaged to others for its
fast speed of tuning with minimal PTO reactive power demand. Preliminary results of this
work were reported in [21].

2. Modelling
2.1. Governing Equations

Heaving buoy WECs are commonly modeled as single-degree-of-freedom (SDOF)
vibrating systems, which oscillate in a harmonic motion. This motion is restricted to
the heave mode only. Figure 1 shows a schematic of the heaving buoy SDOF system.
The equation of motion for a heaving buoy of oscillating mass mb is:

me f f z̈(t) = fd(t) + fe(t) + fs(t) + fr(t, ω), (1)

where z defines the heave motion displacement from the equilibrium state, me f f is the total
oscillating mass (me f f = mb when no additional masses are added), fd = −be f f ż(t) is the
damping force, including that applied by the PTO system, fr is the radiation force due
to the reaction of the fluid to the waves created by the oscillations of the body, and fe is
the heaving excitation force of the waves. The force fs = −ke f f z(t) represents the system
restoring force. When the buoyancy is the only source for the restoring force, the effective
stiffness ke f f equals the buoyancy stiffness kb = ρgAb, where Ab is the cross-sectional area
of the cylindrical buoy, and ρ is the water density.
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Figure 1. Schematic of the SDOF heaving buoy WEC.

The radiation force fr consists of an added mass inertia force and a hydrodynamic
damping force [22], both are functions of the buoy frequency of oscillation ω. The force fr
can be represented using complex amplitudes as:

f̂r =
[
−ω2mr(ω) + iωbr(ω)

]
ẑ (2)

where ẑ is the complex amplitude of z(t), mr is the added mass and br is the hydrodynamic
damping. The hydrodynamic coefficients mr and br are derived as in [23] from the solution
of the hydrodynamic boundary value problem. Considering the buoy is cylindrical with a
radius Rb, floating with a draft d in water of finite depth h, the coefficients mr and br can be
calculated from:

mr + ibrω−1

πR2
b(h− d)ρ

= {1
3
+

1
8
(

Rb
h− d

)2 +
Np

∑
j=0

γ0jL0sj

+
4
π
(

h− d
Rb

)
Nn

∑
n=1

(−1)n I1(`nRb)

nI0(`nRb)
{

Np

∑
j=0

γ0jLnsj −
(−1)n

n2π2 }},

(3)

where L0sj ,Lnsj , and γ0j are functions in h, d, ω, and Rb, as defined in Appendix A. I0 and
I1 are modified Bessel functions of the first kind of order 0 and 1, respectively, and `n =
nπ(h − d)−1. For Np and Nn, a value of 20 gives an acceptable convergence for the
summation results [23].

The excitation force, fe can be represented by:

fe = Real{ f̂ee−iωt}, (4)

where f̂e is the complex amplitude of the heave excitation force. Considering low frequency
waves (up to 2 rad/s), F̂e can be approximated to [24,25]:

f̂e = −2πiρωRb
√

2/π
∫ ∞

0
P0(ξ)

I1(ξRb)

ξ I0(ξRb)
dξ, (5)

where ξ is a separation constant, and P0(ξ) is:

P0(ξ) =−
gY
ω

i
√

2/π{J0(s0Rb)

− J
′
0(s0Rb)

H(1)
0 (s0Rb)

H(1)′
0 (s0Rb)

} e−s0ds0

ξ2 + s2
0

,
(6)
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where Y is the incident wave heave motion amplitude, J0 is the Bessel function of the first
kind of order zero, J

′
0 is its first derivative, H(1)

0 is the Hankel function of first kind of order

zero, and H(1)′
0 is its first derivative. The wave number s0 is calculated by the dispersion

equation in [21], which can be simplified for low frequencies (up to 2 rad/s) and water
deeper than 10 m to s0 = ω2/g.

Equation (1) can therefore be rewritten using complex amplitudes as:

{−ω2[me f f + mr(ω)] + iω[be f f + br(ω)] + ke f f }ẑ = f̂e. (7)

Taking the inverse Fourier transform, the equation of motion in the time-domain can
be represented as:

[me f f + mr(∞)]z̈(t) +
∫ t

−∞
ψr(t− τ)ż(τ)dτ + be f f ż(t) + ke f f z(t) = fe(t), (8)

where ψr is the radiation impulse response function. The hydrodynamic interaction is
represented by the convolution integral in Equation (8), which can be approximated by a
state-space description of the linear sub-system as:

Ẋp(t) = ApXp(t) + Bp ż(t) (9)

∫ t

−∞
ψr(t− τ)ż(τ)dτ ≈ CpXp(t). (10)

where Xp(t) is the state vector of the sub-system, and Ap, Bp and, Cp are the state-space
companion-form realization matrices (see Appendix B) [21,26].

From Equation (8), the state-space description of the heaving system can be used to
derive the heave motion displacement z(t), as:

z(t) = CsXs(t), (11)

where Xs(t) =
[
Xp(t)T z(t) ż(t)

]T is the system state vector, calculated from the state equation:

Ẋs(t) = AsXs(t) + Bs fe(t), (12)

and As, Bs, and Cs are the system state space model matrices, represented as:

As =


Ap

0
...
0

Bp

0 · · · 0 0 1
−Cp

me f f +mr(∞)

−ke f f
me f f +mr(∞)

−be f f
me f f +mr(∞)

, (13)

Bs =
[

0 · · · 0 1
me f f +mr(∞)

]T
, (14)

Cs =
[

0 · · · 0 1 0
]
. (15)

2.2. Energy Frequency

The wave energy frequency ωe can be calculated from the Pierson-Moskowiz spectrum
which is an empirical relationship that defines the distribution of energy versus frequency,
where the spectrum input is the wind speed. The spectrum formula is as follows [27,28]:

S(ω) =
αg2

ω5 exp(−β(
g

Uω
)

4
), (16)
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where S(ω) is the power spectral density, ω is the frequency, U is the wind speed measured
at 19.5 m above the sea surface, and α and β take the values of 0.0081 and 0.74, respectively.
Spectrum calculations provide the energy frequency ωe as:

ωe = 1.1025
g
U

(17)

In the case of irregular waves, the incident wave function y(t) can be calculated by
the linear superposition of regular waves responses [29], each represented by a single
sinusoidal wave using (5) as:

y(t) =
√

2
N

∑
0

√
S(ωi)− S(ωi−1) cos(ωit + φi) (18)

where φi is the random phase, and S(ωi) is the Pierson-Moskowitz power spectral density
at the ith frequency ωi, represented in Equation (16). The spectrum is divided into N
equally spaced frequency divisions (here, N = 100).

2.3. Available and Absorbed Power

The available power per unit width of incident waves Pavl (kW/m) is represented as a
function in both ωe and the significant wave height Hs as:

Pavl = π
H2

s
ωe

, (19)

where

Hs = 4
√

M0 , (20)

M0 is the spectrum zeroth moment (M0 = αg2/4B(2π)4), and B is a constant, represented
by B = 0.7401( g

2πU )4.
The average absorbed power Pb in the PTO damping is represented as [30]:

Pb = 0.5b|ż|2 (21)

where |ż| is the velocity amplitude of the buoy, calculated using Equations (5), (11)–(16)
and (18) at every frequency ωi along the spectrum.

The capture width of the heaving buoy (λ) is defined as the ratio between the power
per unit width of the incident waves (Pavl) and the absorbed power (Pb), as:

λ = Pavl/Pb. (22)

3. Stiffness Reactive Controller

The proposed reactive loading controller varies the system effective stiffness ke f f using
an external variable stiffness that increases the system restoring force fs. This controller
also results in an increase in the system’s inertia and damping; hence, ke f f , be f f , and me f f
in (7) become:

ke f f = ρgAb + kc, be f f = b + bc, me f f = mb + mc + mr (23)

where kc, bc, and mc are the increase in the oscillating system stiffness, damping, and inertia
due to the controller’s moving components. With the proposed controller, the magni-
tude of kc is controlled and varied dynamically according to the incident waves energy
frequency so as to provide near-to-resonance operation for the heaving buoy WEC sys-
tem. This maximizes oscillation amplitudes; hence, maximizes the power absorption in
the system.
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3.1. CVT Controller

As a proof of concept, we present a controller that includes a continuously variable
transmission (CVT) system connected to the heaving buoy at one side and to an external
stiffness kext at the other side, as shown in Figure 2. This controller tunes to the incident
wave energy frequency that changes according to the sea state. The CVT system is a stepless
drive that can provide wide continuous ranges of operating speed ratios ∆. The speed
ratio ∆ is varied such as the effect of the external stiffness (kext) on the heaving buoy
system is changed. The required speed ratio ∆ is calculated from the effective stiffness
ke f f = kc + ρgAb, necessary to achieve near-to-resonance operation. The controller stiffness
kc is related to kext through:

kc = kext/∆2. (24)

Here, we used a V-belt drive CVT system that included two pulleys, connected to
both the heaving buoy and the external stiffness by means of rack and pinion assemblies,
as shown in Figure 2. The external stiffness is mounted onto a fixed foundation. The pulley
system includes fixed and movable sheaves. The running radii Rpb and Rps are changed
through the axial positioning of the movable sheaves with respect to the fixed sheaves [21].
The speed ratio ∆ is changed by varying the Rpb : Rps ratio.

𝑧 𝑡

Buoy

𝑚𝑏

External 

stiffness (𝑘𝑒𝑥𝑡)

V-belt drive

PTO 

damping (b)
2𝑅𝑝𝑐

2𝑅𝑝𝑏

𝑟

CVT 

system

Figure 2. Schematic of the CVT reactive stiffness controller.

3.2. Inertia Effect of Cvt Mechanism

To tune the natural frequency of the system (ωn), the effect of the CVT mechanism
inertia mc must be included. The inertia mc varies with the change in the speed ratio ∆;
hence, ωn can be expressed as:

ωn =

√
ke f f

me f f
=

√
kext/∆2 + kb

mb + mc(∆) + mr
. (25)

For the pulley-based CVT, mc corresponds to the inertia of the controller’s moving
components and is calculated as:

mc =
Ip

r2 +
Ip

∆2r2 , (26)

where Ip is the moment of inertia of the pulleys, and r is the pinion radius, shown in
Figure 2. The added mass mr is negligible compared to mb and mc, thus, it is ignored.
Equation (25) calculates the required speed ratio ∆ for a given excitation frequency ω as:

∆(ω) =

√
kext − Ipr−2ω2

ω2(mb + Ipr−2)− kb
. (27)

3.3. Controller Operating Bandwidth

Equations (25) and (27) indicate that the controller design parameters, including the
range of values for the speed ratio ∆ and the external stiffness kext, depend on parameters
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that include the buoy physical dimensions and mass mb, in addition to the range of
excitation frequencies ω for typical wind speeds. Here, we investigate the effects of
the operation controller bandwidth on the calculated ∆ and ke f f using the system test
parameters in Table 1:

Table 1. CVT system simulation parameters.

Parameters mb Rb Kext IP r
[kg] [m] [kN/m] [kg.m2] [mm]

Value 8000 0.4 8 2.63 75

Equations (24) and (27) were used to calculate ∆ and ke f f at different excitation
frequencies ω, as presented in Figure 3. The controller bandwidth is represented by the
frequency ratio φω, defined as the ratio between the incident wave energy frequency ω
and the natural frequency of the buoy without the controller ωn−NC, i.e., φω = ω/ωn−NC.
Similarly, the stiffness ratio φk is defined as the ratio between the effective stiffness ke f f and
the buoyancy stiffness kb = ρgAb, i.e., φk = ke f f /kb.
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Figure 3. Controller bandwidth: ∆ and ke f f at different excitation frequencies ω.

Equation (23) indicates that the minimum possible effective stiffness for the system
equals the buoyancy stiffness, i.e. ke f f−min = kb, which only occurs when the external stiff-
ness is decoupled from the CVT controller (kc = 0). This corresponds to the minimum op-
eration frequency ratio (φω−min = 1; thus, the controller cannot provide near-to-resonance
operation at wave energy frequencies ω smaller than ωn−NC. Because of this limitation,
the system should be designed so that ωn−NC is the minimum required operation fre-
quency according to the sea state where the system is to be deployed (ωn−NC = ωmin).
The maximum operation frequency ωmax is selected such as to correspond to the minimum
operation wind speed [21]. At this speed, the maximum external stiffness the controller
can provide is achieved, which also corresponds to the minimum achievable speed ratio ∆.

3.4. PTO Damping

Achieving near-to-resonance operation maximizes the undamped oscillation am-
plitudes; however, the PTO damping b needs to be carefully selected such that power
absorption is maximized. Figure 4 shows the average absorbed power Pb, and the capture
width λ at different values for PTO damping b. Both Pb and λ are defined by Equations (21)
and (22), respectively. The results are presented in a root mean square form (RMS) at
selected wind speeds U = 7, 10, and 12 m/s. Figure 4a,b shows that there is an optimal PTO
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damping value bopt where both the power absorption and the capture width are maximum.
Here, bopt was approximately 1.2 kN.s/m.
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Figure 4. Effect of the PTO damping b in irregular waves on (a) the average absorbed power Pb in
RMS, (b) the capture width λ in RMS.

3.5. Experimental Validation

Experiments were conducted to investigate the effect of varying the controller speed
ratio ∆ on the proposed system’s frequency response. As a proof of concept, the system
was simplified into a SDOF model, subjected to a displacement y(t) generated using a
simple crank-slider exciting mechanism that simulates the incident wave heave excitation.
Figure 5a shows a schematic of the experimental setup. The exciting mechanism consists
of an AC motor (A) that displaces an oscillating mass mb (B) through a simple crank-slider
mechanism (C). The mass is supported by exciting springs of stiffness kes (D), which sim-
ulates the effect of the buoyancy stiffness kb. This excitation is then transmitted to the
controller mechanism through a rack (E), which in turn drives the CVT input sheaves
(F) using a rack-pinion mechanism (G). The CVT output sheave (H) drives another rack-
pinion mechanism (J), transmitting this motion to the external stiffness kext (K). The setup
parameters included the following, as in Table 2:

Table 2. Experimental validation parameters.

Parameters mb kes kext IP r
[kg] [N/m] [N/m] [kg.m2] [mm]

Value 4.75 200 330 0.0019 20
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Exciting mechanism

The exciting mechanism consists of an AC motor (B) that displaces an oscillating mass mb (B) through a simple crank-
slider mechanism (C). The mass is supported by exciting springs (D) kes, which simulates the effect of the buoyancy 
stiffness kb. The excitation is then transmitted to the controller mechanism through a rack (E). In the controller
mechanism, rack (E) drives the CVT input sheaves (F) via a rack-pinion mechanism (G) . The CVT output sheave (H) drives 
another rack-pinion mechanism (J), transmitting this motion to the external stiffness (K), kext.

(C)
(D) (B) (D)

(A)
(J)

(H)(K)

Controller mechanism(G)
(F)(E)

(a)

(F)
(H)

(J)

(K)

(b)

Figure 5. The experimental setup: (a) 3D schematic showing the exciting and controller mechanism,
(b) photograph of the controller mechanism (aligned vertically), showing the CVT.

The system’s frequency response is represented by the displacement amplitude ra-
tio (Z/Y). Experiments were conducted at two CVT settings, Setting 1 and Setting 2,
with speed ratios ∆ of 2.0 and 1.0, respectively. Using Equation (27), the system natural
frequencies ωn corresponding to these speed ratios are calculated as 6.23 and 7.06 rad/s,
respectively.

At each setting, experiments were conducted at ω ranging between 2.5 rad/s to
15 rad/s, at 2.5 rad/s increments, to cover both the amplification and the isolation zones;
hence, passing by the resonance frequency ωn. An inverter was used to control the
frequency of the power supplied to the AC motor (A); thus, control the frequency of the
excitation. The input excitation amplitude Y was set at 100 mm. This corresponds to the
stroke of the exciter’s crank-slider mechanism (C). The CVT was selected to have high
mechanical friction (bc) such that the effective damping (be f f = bc) emulates that of a
system integrated with a PTO system, causing a decrease in the displacement amplitude
amplification ratio.

Figure 6 shows that the systems with Settings 1 and 2 were found to achieve their peak
frequencies ωp at 6.16 and 6.83 rad/s, respectively. These frequencies show good agreement
with those calculated using (27) with a maximum error less than 4%. This validates the
relation between the speed ratio ∆ and the system natural frequency, proving that changing
∆, a non-resonating system can be tuned to operate at near-resonance state.
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Figure 6. Displacement amplitude ratio Z/Y at different input excitation frequencies.

4. Discussion and Conclusions

This paper presents a short-term reactive loading control technique for heaving buoy
WEC. The control is realized through the tuning of the system effective stiffness according to
the incident waves energy frequency to achieve near-resonance operation; thus, maximum
power absorption. The effective stiffness is changed by connecting the heaving buoy to an
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external stiffness kext, whose effect is continuously varied according to the energy frequency
of the waves using a CVT controller mechanism. An analytical model was developed that
calculates the CVT controller’s speed ratio ∆ needed to tune the non-resonating system to
the sea wave frequencies, and operate at near-resonance state.

Experiments were performed, where the resulting system frequencies were found to
be in good agreement with those calculated analytically, with the maximum error less than
4%. This validates the proposed concept. The analytical model reveals that both ∆ and kext
can be calculated for most heaving buoy WECs provided that the following are known:
the buoy’s dimensions, buoy mass, in addition to the range of frequencies for typical wind
speeds. This new control technique is considered a quick reactive loading control and has
the advantage of working over longer time periods without continuous demands from the
PTO as in phase control techniques.

The effects of the PTO damping on the buoy displacement amplitude and absorption
efficiency were investigated analytically. Results indicated that an optimum PTO damping
bopt should be selected based on both the power absorption Pav, and the displacement
amplification ratio AR. Both low and high damping values of b are not preferred because
of the decreased power absorption efficiency; low b values cause the PTO system to absorb
little energy from the oscillations, while high b values decrease the amplitudes of the
system. As the system is tuned to operate at near-resonance, care must be taken such that
the amplitudes do not increase to levels at which the vibrating system may not structurally
withstand. In such cases, it is not preferable for such WEC systems to operate at the
optimum value of the PTO damping bopt, at which the oscillation and velocity amplitudes,
z and ż, are very high. Values around the optimum should be more appropriate values for
both reaching good power absorption, and avoid excessive amplitudes.
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Appendix A

The variable Lnsj in Equation (3) is calculated as:

Lnsj =
(−1)nN−0.5

sj
(h− d)sj sin(sj(h− d))

(h− d)2s2
j − n2π2

, n = 0, 1, 2, ..., , (A1)
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where Nsj and the wave numbers sj are calculated from:

Nsj =
1
2
(1 +

sin(2sjh)
2sjh

), ω2 = −gsj tan(sjh) , j = 0, 1, 2, ..., . (A2)

The variable γ0j is calculated from:

γ0j = [
h

h− d
g0jδsjsl + 2

Nn

∑
n=1

G0nLnsl Lnsj]
−1[−

R2
b

2(h− d)2 L0sl

+
Nn

∑
n=1

2(−1)n

n2π2 G0nLnsl ], l = 0, 1, . . . Np

(A3)

The Kronecker delta function, δsjsl = 1 for sj = sl , and δsjsl = 0 for sj 6= sl . The vari-
ables g00 and g0j, and G0n are:

g0j =
sjRb ḱ0(sjRb)

k0(sjRb)
, g00 =

s0Rb
´

H(1)
0 (s0Rb)

H(1)
0 (s0Rb)

, (A4)

G0n = − `nRb Í0(`nRb)

I0(`nRb)
, (A5)

where k0 is modified Bessel function of the second kind of order 0, and ḱ0 is its first
derivative. Í0 is the first derivative of the modified Bessel function of the first kind of
order 0.

Appendix B

The companion-form realization, which is one of many possible realizations for this
state-space model, is used with the matrices Ap, Bp and, Cp defined as [26]:

Ap =



0 0 0 0 0 −a1
1 0 0 0 0 −a2
0 1 0 0 0 −a3
...

...
. . .

...
...

...
0 0 0 1 0 −an−1
0 0 0 0 1 −an


, (A6)

Bp =
[

b1 b2 b3 · · · bn−1 bn
]T , (A7)

Cp =
[

0 0 0 · · · 0 1
]
, (A8)

where an and bn can be calculated for minimizing the following target function [26]:

Q =
m

∑
k=1

G(tk)[ψr(tk)− CpeAptk Bp]
2, (A9)

where G(tk) is a weight function to be chosen, and ψr(tk) is the value of the impulse
response function at chosen instants tk. The target function Q is minimized by the pattern-
search minimization method. A reasonably good approximation is obtained even if n is a
rather small integer. The selected value for calculation is n = 3.
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