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Abstract: The highly varying character of district heating (DH) demand results in low capacity
utilization of the DH plants, as well as increased use of fossil fuels during peak demand. The aim
of this study is to present an overview and a comprehensive classification of measures intended to
manage these load variations. A systematic literature review was conducted based on previously
defined search strings as well as inclusion and exclusion criteria. Two scientific databases were used as
data sources. Based on 96 detected publications, the measures were categorized as (1) complementing
DH production in heat-only boilers (HOBs), or geothermal or booster heat pumps (HPs) (usually
controlled by the DH company), (2) thermal energy (TE) storage in storage units or in the network
(controlled by the company), and (3) demand side measures, which can be strategic demand increase,
direct demand response (DR), or indirect DR. While the company has control over direct DR (e.g.,
thermal storage in the thermal mass of the buildings), indirect DR is based on communication between
the customer and the company, where the customer has complete control. The multi-disciplinary
nature of this topic requires an interdisciplinary approach.

Keywords: district heating; load management; demand side measures; demand response

1. Introduction

Utilization of demand side measures and load management measures has historically
(since the 1980s) been associated with the electricity sector [1]. The measures have mostly
focused on achieving desired changes in the load shape that would result in improved
energy utilization and system economic performance. Interest in the subject has increased
even more over the last two decades due to the interest in increasing the proportion of
intermittent electricity production (wind and solar power); this is associated with several
challenges including the uncertainties regarding wind forecasts and cloud movements.
This challenge moved the focus from energy- to power-related problems, i.e., matching
electricity demand with production at any given time. Two possible strategies to overcome
this challenge are: to build a reserve capacity into the electricity grid or to develop flex-
ibility on the demand side of the system [2,3]. Historically, the interest in demand side
management (DSM) and load management has not been as high for district heating (DH) as
for the electricity sector, because optimization of DH systems (DHSs) has usually focused
on the issues associated with the production and distribution sides of the system.

DH technology has a strong potential for becoming a vital part of the future energy
systems [4–8]. The fundamental idea of DH is to use local fuels and heat resources,
which otherwise would be wasted (e.g., excess heat from industrial processes, waste
incineration, thermal power stations, and electricity users) [9]. When considering the large
share of the heat losses in the existing energy systems (e.g., approximately two-thirds of
the total primary energy used in the European Union (EU) [10]), it can be concluded that
DH has a potential to contribute to a substantial reduction of the global primary energy
use. Besides the benefits that are directly related to this fundamental idea (e.g., security of
supply, flexibility, and economy of scope), two other benefits of DH technology are economy
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of size (some technologies have lower costs and/or higher energy efficiency at higher
production volumes) [9], and possibility to contribute to the sustainable development of
other sectors [5,7,8]. The DH sector can support the development of the future sustainable
energy system by reducing fossil fuel consumption (1) in the industry sector by conversion
of industrial processes from fossil fuels to DH use [11–13], (2) in the transport sector by
integrating renewable transport fuels production in DHSs (e.g., biogas, ethanol, Fischer–
Tropsch diesel) [14,15], and (3) in the power sector by producing electricity in biomass-
or waste-fueled combined heat and power (CHP) plants [16–18]. The DH sector can
also enable an increased share of intermittent electricity sources in the power sector by
serving as a flexible electricity producer (CHP) and user (heat pumps (HPs) and electric
boilers) [19,20]. Even though many researchers pointed out these potentials and benefits,
the global awareness of them is still low [4]. The DH implementation globally is low, and it
varies from country to country, as well as the commitment to the fundamental idea of
DH [4].

However, in order to utilize the full potential of DH it is necessary to adapt the existing
DHSs to buildings with low heat demands [21,22], and to the renewable energy sources.
Possibility to use the renewable energy sources for the DH production (solar collectors,
geothermal heat resources and biofuels) is associated to local conditions. Furthermore,
the renewable energy sources are usually related to other challenges as well. The solar
DH is still in the development stage. Using solar collectors for DH production requires
large areas and investments in seasonal thermal energy (TE) storages [9]. Although the
biofuel-based DH production is a well-developed technology, and the biofuels are suitable
within the traditional DH production infrastructure established for utilization of fossil
fuels, the biofuel is still a limited resource, so it cannot substitute all current fossil fuel
use [4].

Another challenge related to the existing DHSs is the highly varying character of
DH demand, which results in low capacity-utilization of the existing DH plants and,
consequently, to a lower interest to invest in DH plants that are characterized by high
investment costs, such as biomass- or waste-fueled CHP plants and heat-only boilers (HOB).
Therefore, biomass- or waste-fueled CHP plants usually serve only base DH production,
while the rest of the DH is usually produced by biomass-fueled HOB. The HOB used during
peak demands are usually fossil-fuel HOB, which are characterized by high operating costs
such as oil-fired HOB in Sweden [23] and natural gas-fired boilers in Germany [24]. Thus,
peak demands are not only associated with higher DH production costs, but also with
increased greenhouse gas emissions.

Another disadvantage of DH peak demands is the lower technical performance of
the system. If the DH load control is based on mass flow variation (explained later in
Section 2.2), peak demands result in high pumping costs, an increased risk of failure
due to the increased mass flow through the existing bottlenecks, and the occurrence of
new bottlenecks [25]. Namely, all pipes in a DH network are dimensioned for a certain
flow. When the DH demand increase, the mass flow through the network increase as well
(explained in Section 2.2). If the flow through a DH pipe increase above the flow value for
which the pipe is dimensioned, this may cause too high pressure loss, and consequently
insufficient differential pressure in the DH area attached to the pipe. This in turn leads
to a problem to sufficiently deliver heat to the DH customers located in this DH area [26].
In this paper, the term bottleneck is used to refer to the DH pipe which have too small
dimension to enable a sufficient DH delivery to the DH area attached to it. Besides during
the DH peak demands, the problems with bottlenecks may occur when expanding the DH
network (the pipe’s dimension can become too small when connecting more DH customers)
and when reducing the DH supply temperature. Historically, the bottleneck problems have
often been addressed by increasing the DH supply temperature before an expected demand
increase in the attached DH area (explained more in Section 2.2), by exchanging the pipe
with a pipe with a larger dimension, by installing an extra pipe, by raising the differential
pressure in the attached DH area with extra pumps, and by installing decentralized DH



Energies 2021, 14, 3 3 of 27

production plants in the affected DH area. Some relatively new strategies for dealing
with the bottleneck problems are DSM and investments in thermal energy storage (TES)
units [26].

The above mentioned problems have increased the interest to manage DH load vari-
ations in more efficient, environmental friendly, and profitable ways. One example of
the possible strategies is increasing flexibility on the demand side of the DHS. Increased
flexibility on the demand side of the DHS would be beneficial for managing the peak
demands while also facilitating increased capacity and renewable energy utilization [27].
This would enable connection of new DH customers without modification of the existing
pipelines [28], and would decrease the mass flow rate through the network bottlenecks [26].
Increased flexibility on the demand side of the DHS would also enable better interaction
between the electricity and DH sectors by increasing the CHP electricity production in
DHS [29–31].

1.1. Aim

The aim of this study is to provide an overview of the existing measures for man-
aging DH load variations by categorizing them depending on (1) the part of the system
to which the measures are applied; (2) the driving stakeholders; (3) the timeframe in
which the measures contribute to reduction of the DH load variation (optimized schedule,
temporary or permanent); and (4) the type of variations that are affected (seasonal or
daily). Furthermore, the measures are discussed from energy efficiency, economic, and
environmental viewpoints.

This paper is structured as follows. Section 1 describes the problem and aim; Section 2
presents the theoretical background of the study; Section 3 describes the systematic liter-
ature review that was conducted; Section 4 presents the results; and Section 5 includes
interpretation of the results and a discussion on the study’s limitations, as well as recom-
mendations for future research. Section 6 presents the conclusion.

2. Theoretical Background
2.1. Characteristic of Heat Loads in a DHS

An aggregate heat load in a DHS usually consists of different types of heat loads (e.g.,
heat loads related to space heating, hot-tap water preparation, DH-driven absorption cool-
ing and heat use in industrial processes), and as a result is characterized by different types
of variation: seasonal (consequences of variations in outdoor temperature), daily (mostly
originating in the customer’s behavior), and variations due to weather dependence [9].
The connected customers can have different DH load patterns depending on control strat-
egy, season, customer category (e.g., multi-dwelling buildings, administration building),
and indoor activities [32]. The customer’s behavior causes daily DH peak demands mostly
in the morning and evening due to hot-tap water use. To even out these daily variations,
heat storage units with small capacities are sufficient. On the other hand, the seasonal DH
variations can be 30% compared to the annual average DH load demand, and therefore
require large-scaled TES [33].

2.2. Managing a DHS

Managing a DHS requires good insight in the diversity of individual DH load patterns
in the network, design heat load (i.e., the capacity demand which must be fulfilled),
challenges related to the DH network (e.g., existing of bottlenecks), and capacity utilization.
Capacity utilization (also called capacity factor, load factor, or utilization time) is the
degree to which the installed capacity can be utilized for heat supply, and depends on
the aggregate heat load variation in the DHS. High capacity utilization results in lower
production costs [9].

The DH control system consists of four independent systems. Two are operated by
the heat provider (supply temperature control and differential pressure control), one is
located within the customers’ heating systems (heat demand control), and one is located in
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the DH substations (control of the flow through the pipes on the primary sides of the heat
exchangers in the DH substations) [9]. The heat demand control consists of manual taps and
radiator thermostatic valves (mechanical self-acting or motorized valves, which regulate
the flow rate through the radiator). The way in which the flow in the substation is controlled
may differ. A DH substation may be owned by the DH customer (e.g., building owner),
by the DH provider, or the ownership may be shared. Since international standardizations
related to the DH substations are progressing slowly, traditional practices at the national
level play a significant role for the technical, and organizational aspects. The flow control in
the DH substation usually consists of two valves (located on the primary sides of the heat
exchangers in the DH substations), one for the radiator system and one for the domestic
hot-tap water [9].

When the DH demand increases, the DH providers usually respond by increasing
the supply temperature. However, this change in the network propagates slowly. It takes
approximately 1.5 h for this change to reach a DH substation that is located 10 km from the
DH production plant. If the increased supply temperature does not reach the substation in
time to cover the increased DH demand, the flow control in the substation will increase
the mass flow through the pipes. This change can be transferred at about one kilometer
per second, and may result in the increased mass flow through the network’s bottlenecks
between the DH production plants and the customer [26] (the concept of bottlenecks
is explained in Section 1), as well as in a higher return temperature and, consequently,
in higher heat losses in the network, as well as a lower energy efficiency of the DH
production plants [9]. This undesirable situation can be prevented if the DH providers
increase the supply temperature manually in advance. In order to do this, it is important
to provide short-term heat load forecasting, and therefore it is necessary to have good
insight in daily heat load variations. This challenge has been addressed in a number of
studies [32,34–41]. Short-term heat load forecasting is also important for CHP electricity
generation forecasts, because in order to balance supply, the electricity generation must be
reported the day before the electricity is delivered into the electricity network.

Another issue which must be considered when managing a DHS is that most DH
customers are able to accommodate more heat than their design heat power. The reason
is that when installing the components in the customer’s heating system and substation,
a component size one dimension greater than that necessary for the design heat power is
always chosen. For example, the radiators are often oversized [42,43]. Moreover, as previ-
ously explained, the customer can influence the heat transfer in the substation and the heat
demand (e.g., the radiator thermostatic valves). Consequently, when there is a deficit in the
DH supply, the heat deliveries cannot be shared equally to all customers in the DHS. The
customers located near the supply units will draw all the heat that they need to meet their
demand, while the system’s entire heat deficit will be distributed to the customers at the
periphery of the network [9].

This can be avoided by providing the DH providers with the option of direct load
control in the substations. By taking control over the substations, the DH providers will
get an opportunity to more equally allocate the supply deficiency. This can be achieved
by installing flow limiters in the substations (a local solution that would also reduce the
return temperature in the DHS [44]) or by installing a central load management unit
capable of communicating with all substations in the system (similar to that described by
Wernstedt [45]).

3. Methods

The method used in this paper is a systematic review, in combination with two
types of traditional reviews (scoping and conceptual). The main differences between
a traditional review and a systematic review is in the design and the methodological
approach. The systematic review is a structured method based on a protocol which must
be presented in detail (e.g., the search strings, the applied inclusion and exclusion criteria)
for transparency, so that the results can be reproduced if the research is repeated under the
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same conditions. This helps to reduce bias, i.e., the author’s preconceptions. This makes
the systematic review a particularly useful method for development of policy measures.
In general, a systematic review usually aims to locate relevant studies based on a prior
formulated research question, to evaluate and synthesize their respective contributions,
to provide an historical perspective of interest for the topic, and to identify the knowledge
gap in order to highlight subjects which require more attention [46].

Traditional reviews are comprehensive reviews that allow a certain flexibility and open
the possibility to explore ideas. According to Jesson et al. [47], depending on the purpose
of the review, there are five types of traditional reviews: critical, conceptual, state-of-art,
expert, and scoping reviews. Two types of traditional review are included in this study:
a conceptual and a scoping review.

A scoping review usually aims to gain a broad understanding of an issue, and it is
therefore appropriate when wishing to point the way to future research by refining the
research questions, concepts and theories. It is usually used as the first step when conduct-
ing a systematic review [47]. According to Arksey and O’Malley [48], a key strength of the
scoping review is that it can conduct mapping of areas of research, summarize research
findings, and identify the knowledge gaps in a shorter time than a systematic review.

The aim of a conceptual review is to gain a deeper and more complex understanding
(conceptual knowledge) of an issue, i.e., to understand principles, theories, conceptual
relationships, patterns, classifications, and possibilities for generalization. Therefore, con-
ducting a conceptual review can be an engaging and challenging process. In practice,
achieving a conceptual understanding will enable transfer of an idea and its application in
other contexts and across domains [46,48].

Conducting the Systematic Review

The systematic review was conducted using six phases as described by Jesson et al. [46].

Phase 1: the scoping review was conducted to determine the current state of knowledge on
the topic, and to set the scene for the systematic review. This was achieved by refining the
research question, compiling the search strings, and defining the inclusion and exclusion
criteria that were to be applied during the systematic review. The search strings and
inclusion and exclusion criteria applied for the systematic review are presented in Table 1.
Phase 2: when conducting a systematic review, Jesson et al. [46] recommends limiting
the search only to peer-reviewed scientific journal articles. However, the aim of this
research is to detect more potential strategies for dealing with DH load variation. Therefore,
conference proceedings were also included in the search. After searching through the
scientific databases and excluding any duplicates, each title and abstract was screened,
and for some articles, the full text was scanned.
Phase 3: all articles were screened and assessed for quality. This is recommended in a
systematic review, even though the assessment involves a degree of subjectivity [46]. An
additional quality assessment of the conference papers was performed. This assessment
was based not only on the relevance and quality of the article, but also on the author’s
competence by examining the author’s previous publications in this area of research. While
assessing the articles, additional scientific studies were detected through manual screening
of cross-references.
Phases 4 and 5: in order to prepare the interpretative framework for data extraction
and synthesis, a conceptual review was conducted. The conceptual review aimed to
gain knowledge on concepts and principles related to the strategies for dealing with
electricity load variations, but above all, on possible ways to categorize these strategies.
This conceptual knowledge was used as a starting point for formatting the interpretative
framework for processing, analyzing, and categorizing the strategies for dealing with the
DH load variations.

The conceptual review was conducted by searching through the Web of Science
database, using search string: (‘classification’ OR ‘categorization’ OR ‘categorisation’)
AND (‘demand side management’ OR ‘demand-side management’ OR ‘demand man-
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agement’ OR ‘load management’) AND (‘power system’ OR ‘electricity system’). One
of the challenges when preparing the interpretative framework was that the articles de-
tected during the conceptual review used a confusing range of terminologies. Terms that
were commonly used sometimes had different meanings, and a lack of common classi-
fication of the strategies was detected. This presented a problem when comparing the
classifications proposed in these articles, and when establishing relationships between
several terms. The interpretative framework that was proposed based on the acquired
conceptual knowledge (Figure 1) allowed identification of characteristics and patterns of
information, and to establish relationships between them, which was also useful in creating
research statements.

Table 1. The search strings and inclusion and exclusion criteria applied for the systematic review.

Systematic Review

Search Database Online Scientific Databases Web of Science and Scopus

Search string

(‘demand side management’ OR ‘demand-side management’ OR ‘demand management’
OR ‘load management’ OR ‘demand-shifting’ OR ‘load-shifting’ OR ‘peak load reduction’

OR ‘peak-load reduction’ OR ‘peak shaving’ OR ‘peak-shaving’ OR ‘seasonal demand
variation’ OR ‘seasonal DH demand variation’ OR ‘seasonal district heating demand
variation’ OR ‘seasonal load variation’ OR ‘seasonal DH load variation’ OR ‘seasonal

district heating load variation’ OR ‘seasonal variation’)
AND

(‘district heating’)

Search domains for the search string TOPIC, ABSTRACT, TITLE/ABSTRACT/KEYWORDS

Document type Original and review journal articles and peer-reviewed conference papers

Language English

Availability Available online as full text

Timespan 1975–July 2020Energies 2021, 14, x FOR PEER REVIEW 7 of 29 
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Phase 6: finally, the strategies were gathered in different categories using a comparative
style, and the results were summarized in a meaningful way.

4. Results

The results from the scoping review, performed to determine the current state of
knowledge on the topic and to set the scene for the systematic review, revealed a lack of
general descriptions of load management and DSM, as well as a lack of classification of the
strategies. On the other hand, several articles that dealt with these issues relating to the
electricity sector have been found. This finding was used as a starting point for developing
the aim of this study (see Section 1.1).

After conducting the comprehensive search and quality assessment of the articles,
and inclusion of the cross-references, 96 articles were detected as relevant for this study
(Figure 2). A large proportion of the detected articles were published during the last five
years, which shows that interest in the demand side and load management related to
the DH sector is increasing, especially for short-term heat storage in the thermal mass of
buildings (Table 2). Furthermore, a majority of the detected studies are case studies limited
to presenting one or two types of measures.

One of the classification criteria applied in this study is based on the part of the system
to which the measure is applied (Figure 1). Basically, the load management measures
related to the DH sector can be applied to the supply (production) side or to the demand
side of the system. However, one of the strategies detected during the literature review,
TES, was difficult to classify in any category; this will be discussed in the following text.
A general categorization proposed in this study is presented in Figure 3.

Table 2. A list of the publications per measure. Some of the studies include more than one measure.

Time Period 2016–2020 2011–2015 2006–2010 2001–2005 1990s and 1980s References

Complementing district heating (DH) Production

Centrally located
peak-shaving

(peak-load) boilers
1 1 [49,50]

Distributed Peak-Shaving Sources Connected to the Primary or Secondary Network

Peak-shaving boilers 3 1 [50–53]
Peak-shaving geothermal

heat pumps (HPs) 1 [54]

Peak-shaving booster HPs 7 [55–61]

Strategic Demand Increase

Increasing the base DH
load demand 1 1 [11,12]

Valley-filling 1 3 5 [12,13,62–68]

Demand Response (DR)

Direct 30 2 1 [25,27,30,31,39,54,69–95]
Indirect 8 1 1 [27,30,76,83,96–101]

Thermal Energy (TE) Storage

Long-term Thermal
Energy Storage (TES) 13 3 [102–117]

Short-Term TE Storage

Centralized short-term TES 10 1 3 [31,102–104,106,117–125]
Decentralized (distributed)

short-term TES 9 5 1 [9,26,31,123–134]
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According to Fang et al. [49], there are two strategies that can be used on the DH
production side to deal with DH load variation: (1) discarding heat by using cooling
towers, or (2) heat production in complementing heat production sources (which is a
strategy corresponding to ‘complementing generation’, one of the functionality-based
categories of electric load management described by Göransson and Johnsson [135]). The
complementing heat production sources that manage the DH peak loads are called ‘peak-
shaving’ or ‘peak load’ DH sources. In combination with an automatic control system, and
if capable of changing their production mode quickly enough, these ‘peak-shaving’ sources
can serve as typical ‘spinning reserves’ for DHSs (comparable to the ‘spinning reserves’ for
dealing with electricity load variation described by Palensky and Dietrich [136]).
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In addition to discarding heat and utilizing complementing heat production sources,
TE storage is one of the major solutions for load management in DHSs. Utilization of TES
systems enables optimization of DH production schedules by increasing DH production
when DH demand is low (i.e., when marginal DH production is characterized by low
operational costs), and by reducing DH production in peak-load plants with high opera-
tional costs when DH demand is high. Shifting the DH demand to the periods when the
marginal DH production is in the CHP plants, can lead to additional economic benefits
due to increased income from the sale of electricity [29]. This measure can also lead to
significant primary energy savings (from a global perspective) if the alternative to the CHP
production is the separate production of heat in HOBs and power in a thermal power
plants [29]. Other purposes of TES are to provide rapid heat reserves to avoid losses that are
associated with quick starts and stops of the DH plants, or to provide heat reserves during
periods when the network cannot deliver enough heat due to the existing bottlenecks
between the production plants and the customers. As previously mentioned, it is difficult
to categorize this strategy in the category for measures applied on the supply (production)
side or on the demand side of the system. The reason is that the heat can be stored in
centralized short-term TESs located close to CHP plants; incorporated in CHP installations;
in small buffer tanks located close to end users; in the DH network; or even in the thermal
mass of the buildings connected to the network. Thus, TES is proposed as a separate
category which partly overlaps with the demand side category (Figure 3) because storing
heat in the thermal mass of the connected buildings can clearly be categorized as a demand
side measure.

Measures applied to the demand side of the system are called DSM measures. Fattahi
Meyabadi and Deihimi [1], Lampropoulos et al. [137], and Palensky and Dietrich [136],
highlighted the topics of the DSM and load variation management from the electricity sys-
tem operator’s viewpoint, and proposed a comprehensive classification of these measures.
According to them, DSM is broader in scope than load management. The reason is that
DSM includes all measures that are applied to the demand side of a system, including
energy conservation measures. However, energy conservation measures are not included
in this study as the study focuses on the measures for dealing with load variation in DHSs.
Furthermore, since these measures can be applied to both the demand and supply side
of the DHSs, DSM is only one category in the proposed categorization of load variation
management (Figure 3). This categorization is more similar to that presented by Görnsson
and Johnsson [135], who included ‘complementing generation’ as a category for electricity



Energies 2021, 14, 3 10 of 27

load variation management, and to Benetti et al. [138], who focused only on DSM that
changes the load profile in the system.

The categorization presented by Lampropoulos et al. [137] was adapted for further
categorization of the load management related demand side. Accordingly, the proposed
categorization (Figure 3), for DSM includes (1) strategic demand increase which implies
finding new ways for DH utilization, and (2) demand response (DR) measures which are
applied to the existing DH demand. Both types of measures focus on achieving desirable
changes of the DH load profile to optimize the entire system, i.e., on increasing the load
factor of the DHS (DR by peak-clipping, strategic conservation, and load shifting, with
strategic demand increase by increasing the base load and valley filling). The load variation
management categories presented in Figure 3 are further divided into sub-categories and
presented in the following sections.

4.1. Complementing DH Production and ‘Peak Shaving’ DH Sources

A categorization of the complementing DH production sources is presented in Figure 4.
The type of ‘peak-shaving’ DH plants in DHSs differs from country-to-country, mostly due
to the fuel market conditions. For example, while the common ‘peak-shaving’ plants in
China are coal-fired boilers [50], in Sweden ‘peak-shaving’ plants are oil-fired, and in Ger-
many gas-fired boilers are utilized for this purpose [139]. The ‘peak-shaving’ (‘peak load’)
heat boilers are usually characterized by low investment costs and flexible adjustment,
but by high operation costs. Additionally, one of the ways to deal with the DH demand
variation is for DH producers to refrain from a part of CHP electricity production in order
to produce more DH in their CHP plants when the demand increases.

Energies 2021, 14, x FOR PEER REVIEW 11 of 29 
 

 

variation management (Figure 3). This categorization is more similar to that presented by 
Görnsson and Johnsson [135], who included ‘complementing generation’ as a category for 
electricity load variation management, and to Benetti et al. [138], who focused only on 
DSM that changes the load profile in the system. 

The categorization presented by Lampropoulos et al. [137] was adapted for further 
categorization of the load management related demand side. Accordingly, the proposed 
categorization (Figure 3), for DSM includes (1) strategic demand increase which implies 
finding new ways for DH utilization, and (2) demand response (DR) measures which are 
applied to the existing DH demand. Both types of measures focus on achieving desirable 
changes of the DH load profile to optimize the entire system, i.e., on increasing the load 
factor of the DHS (DR by peak-clipping, strategic conservation, and load shifting, with 
strategic demand increase by increasing the base load and valley filling). The load varia-
tion management categories presented in Figure 3 are further divided into sub-categories 
and presented in the following sections. 

4.1. Complementing DH Production and ‘Peak Shaving’ DH Sources 
A categorization of the complementing DH production sources is presented in Figure 

4. The type of ‘peak-shaving’ DH plants in DHSs differs from country-to-country, mostly 
due to the fuel market conditions. For example, while the common ‘peak-shaving’ plants 
in China are coal-fired boilers [50], in Sweden ‘peak-shaving’ plants are oil-fired, and in 
Germany gas-fired boilers are utilized for this purpose [139]. The ‘peak-shaving’ (‘peak 
load’) heat boilers are usually characterized by low investment costs and flexible adjust-
ment, but by high operation costs. Additionally, one of the ways to deal with the DH de-
mand variation is for DH producers to refrain from a part of CHP electricity production 
in order to produce more DH in their CHP plants when the demand increases. 

 
Figure 4. Proposed categorization of the complementing DH production sources that manage DH 
load variations. 
Figure 4. Proposed categorization of the complementing DH production sources that manage DH
load variations.

The ‘peak-shaving’ sources can be centralized (usually one heat source connected
to the primary network, i.e., the network on the primary sides of the heat exchangers in
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the thermal substations) or decentralized, i.e., distributed (several DH sources connected
in series or in parallel to the primary or secondary DH network) [50,53,61]). While some
researchers, who studied DHSs where industrial waste heat or coal-fired CHP plants serve
as base-load DH sources, recommended gas-fired boilers as ‘peak-shaving’ sources in these
DHSs [49–52], other researchers proposed utilization of HPs as an alternative [54,60,61].

Utilization of decentralized (distributed) gas-fired boilers in a coal-fired CHP-based
DHS would result in increased system energy efficiency, as well as providing environmental
and economic benefits, compared to coal heating alone [52]. For instance, the gas-fired
‘peak-shaving’ boilers located in DH substations can provide approximately 50% of the
DH load on the coldest days in North China [51]. These small boilers can be adjusted more
quickly than a conventional centralized ‘peak-shaving’ boiler, and specifically according to
the end users connected to the substation; e.g., special temperature requirements can be
met for hospitals and nursing homes, or heat production by the boilers can be suspended
for schools during holidays [51]. However, in order to have the option to adjust DH
production specifically according to the end users, a management system mode that
enables DH producers to apply this strategy is required [51]. The only situation in which it
is advantageous to build the ‘peak-shaving’ boilers centrally (compared to decentralized
boilers) is when there is a possibility for ‘self-use’ of the electricity produced in the system’s
CHP plant. In this case, the ‘peak-shaving’ boiler should be located at the CHP plant [50].

An alternative to the ‘peak-shaving’ boilers are booster HPs which can be used to
increase the DH supply temperature when there is a deficit in the DH supply. These booster
HPs are usually located at the periphery of the network. Utilization of booster HPs to
increase the DH supply temperature when and where it is required is also viewed as a tech-
nology that would enable the option of applying ultra-low temperatures in DHSs [55–59].
From an economic viewpoint, depending on electricity price variations, these booster HPs
could compete with gas boilers [57]. Furthermore, if used in combination with hot water
storage tanks for hot tap water production, booster HPs can reduce DH morning peaks and
provide energy cost-saving for end users [60]. The economic and energy efficiency benefits
of using the distributed booster HPs to adjust heat in secondary networks during peak
loads are even higher if the main DH production plants include CHP production and flue
gas recovery systems [61]. The reason is that utilization of the HPs would simultaneously
result in lower return-water temperatures, which would not only reduce the heat losses in
the network, but also enable recycling of more waste heat from the turbine exhaust steam
and from the flue gas during peak shaving. Thereby, the utilization of distributed HPs as a
‘peak-shaving’ strategy would result not only in energy and economic savings, but also in
environmental benefits [61].

Another way to reduce the use of oil-fired peak boilers is by integrating distributed
geothermal HPs in DH substations. However, due to the high investment costs, such a
strategy would increase DH production costs; notwithstanding, it would also reduce CO2
emissions [54].

4.2. Demand Side Management (DSM)

A more detailed categorization of demand side measures that are part of DH load
variation management is presented in Figure 5.

4.2.1. Strategic Demand Increase

The ‘strategic demand increase’ implies a demand increase that makes desirable
changes to the DH load curve, i.e., increases the capacity utilization of the DHS. Examples
of these desirable changes include increasing the base DH load demand (including demands
that are more evenly distributed during a year, e.g., less dependent on outdoor temperature)
and valley filling (increasing the DH demand during the periods with low DH demand,
i.e., ‘valley periods’).
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One of the possible strategies to achieve a less outdoor temperature-dependent and
more evenly distributed DH demand in DHSs is to increase the utilization of DH in
industrial processes [11]. This type of heating demand is less dependent on outdoor
temperature than the space heating demand, which is the major component of the aggregate
heat load in most DHSs. However, this strategy requires consideration of heat loads for the
industrial processes according to time dependency and the required temperature levels [11].
The highest potential for increasing the annual operating time of base-load DH plants can
be found in drying processes (in the manufacture of wood, machinery and equipment, and
food production), which are characterized by very constant demand curves, regardless
of the work hours. The potential can also be found in heating processes (e.g., preheating
water for dishwashing during food production and for washing clothes in the manufacture
of textiles) and cooling processes (e.g., DH-driven absorption cooling in the manufacture
of chemicals and chemical products; basic pharmaceutical products and pharmaceutical
preparations; and rubber and plastic products) [12].
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The most desirable demand increase when considering changes to the DH load curve
is ‘valley filling’. A well-known strategy to achieve this change is integration of DH-driven
absorption cooling for comfort purposes within DHSs, since comfort-cooling demand is
at its peak during the summer when the DH demand is lowest [59,62,66]. The cooling
demand can be found in both domestic and industrial sectors. In fact, comfort cooling is the
industrial support process with the highest potential to reduce a DH load variation when
converting to DH-driven absorption cooling [12,67]. The economic and environmental ben-
efits of this strategy are even higher when the comfort cooling converts from compression
to absorption cooling that is integrated within a CHP-based DHS. Firstly, in this case the
increased DH production during the summer would increase income from CHP electricity
production. Secondly, and equally important, the electricity used for compression cooling
(which is probably produced in fossil fuel-based condensing power plants) would be
replaced with biomass- or waste-based CHP electricity production [13,63,64,66].

Equally relevant as a strategy for ‘valley filling’ is a theoretical possibility to increase
DH production during the summer by converting heat to other types of energy, which
can be stored for later consumption. This strategy (converting one type of energy to
another for storage purposes) was recognized by Görnsson and Johnsson [135] as one of
the functionality-based categories of load variation management strategies related to the
electricity sector, where it is called ‘absorbing’. In regard to the electricity sector, ‘absorbing’
is a strategy where the electricity is converted to another type of energy during the periods
with low electricity demand and price (e.g., power-to-gas and power-to-heat) in order to
be stored with reduced costs. A corresponding strategy related to DHS is, for example, the
integration of pellet production with CHP production, where the drying process for pellet
production is maximized during periods with low DH demand in the DHS [65,68]. The
pellets produced during these periods can be stored for later consumption.

4.2.2. Demand Response (DR)

DR strategies rely on demand side flexibility and are focused on achieving desirable
changes to the load profile to optimize the entire system. These strategies require control
and communication systems between DH companies and customers.

Various studies distinguished between different categories of DR strategies related to
electricity systems. The most usual classification of DR strategies related to the electricity
system is based on motivators for the customers: (1) price-based motivator and (2) incentive-
based motivator [140–143]. The incentive-based DR were described differently in the
various studies. Some of the categories of incentive-based DR are direct load control,
interruptible service, and emergency DR [1,140–142]. Ahmad et al. [142] also suggested
DR classifications based on control information (centralized or distributed).

A more general classification of the DR measures would be indirect and direct
DR [1,144]. Indirect DR is based on the communication between the customer and the op-
erator, but the customer has complete control. Direct DR is more contractual and includes
obligations. Direct DR requires special equipment with advanced technologies, which
enables the company/operator to schedule supply to the customer. The decision is taken
at the system level and the goal is to enhance the efficiency of the entire system [1]. After
reviewing the articles on DR strategies related to DHSs, the above-mentioned classifications
of DR strategies were put in DHS concepts, and a classification of DR measures related to
the DHSs was proposed (Figure 5).

Direct DR

Using heat stored in the buildings connected to DH networks to reduce the DH
demand peaks (i.e., using the buildings for so-called ‘virtual’ storage) is one of the strategies
that has attracted increasing attention during the last years, especially in Italy [25,69–74] and
in Nordic countries, such as Finland [30,75–77], Denmark [78–85], and Sweden [54,86,87].
These countries are characterized by well-developed DH sectors and a large proportion
of buildings with high thermal inertia. The strategy implies peak shaving by turning off
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heat delivery (usually for space heating purposes) for chosen customers during the peak
demand hours. The duration of the shutdown periods can be a few hours, or even longer,
without compromising indoor comfort. This strategy is usually mainly focused on morning
hours peak shaving as the morning DH demand peak is one of the major concerns of DH
companies. In addition to peak shaving, use of the buildings for virtual storage can benefit
the electricity sector by enabling better interaction between electricity and DH sectors (i.e.,
increasing CHP electricity production) [30,31].

Even though preheating is not necessary [78–80], it is usually favorable and highly
effective at increasing DH delivery before the shutdown periods [82]. In combination with
preheating, the impact of shutdown on indoor temperature is lower, so the shutdown
period can last longer [78,79]. However, preheating does not have the same effect on all
buildings [79]. In addition to preheating, the duration of a shutdown period during which
the indoor thermal comfort would still be acceptable depends on the outside temperature,
the passive solar gains, and the building’s characteristics [79,88].

A building’s potential to be used for virtual storage can be presented using several
indicators: the thermal capacity of the building (the amount of the heat which can be stored
in the building); the thermal autonomy potential; the DH saving potential (depends on
the building’s heat demand); and the economic savings potential. The building’s thermal
capacity and autonomy potential mostly depend on the building’s thermal mass and
the insulation level. Two values that are usually used to describe the building’s thermal
properties are time constants and degree hours. While the time constant describes how
fast a building will be affected by heat delivery changes, the degree hours can be used as a
measurement of TE storage capacity [79,87,88]. Due to lower insulation standards, older
buildings usually have higher DH demands and therefore higher switchable DH loads, but
also shorter thermal autonomy potential. For these buildings, the outside temperature has
a dominant impact on the thermal autonomy potential [88]. The most recent builds with a
well-insulated envelope can maintain a longer shutdown period without compromising
indoor thermal comfort (e.g., 6 h and longer) [79].

This strategy where buildings are used for virtual storage may also cause undesirable
effects on the DHS. The strategy can result in new peaks during the preheating periods and
directly after the DH delivery shutdown [79,89]. The magnitude of the peaks that follow the
shutdown depends on the maximum capacity of the building’s heating system. The reason
is that, due to the sudden drop in the indoor temperature after shutdown, the capacity
of the heating system would probably be fully utilized [79]. Older buildings have higher
peaks after shutdown because, even if a building has undergone energy refurbishment, the
maximum capacity of its heating system will remain the same as that dimensioned for the
original construction phase of the building [79]. Furthermore, although the primary energy
use can be reduced [54], this is not always the case. In some cases, an even higher energy
use may occur [76,82,83], e.g., if the control is price-based, the increased energy use will
probably occur when the DH price is low [81,82].

The control strategy must be planned individually for each specific DHS, taking into
account the overall efficiency of the system [27], and not only the present conditions,
but also the possible changes in the customers’ DH demand profiles [76]. The choice of
controlling strategy for a building should also be based on the service provided by the
building [88]. Related to this, several studies were performed to propose controlling strate-
gies for residential apartment buildings [54,77,78,80,82,88,90], residential single-family
houses [79,88,91], and offices [30,75–77,89].

To overcome the challenges related to the utilization of buildings for virtual storage,
it is important to enable deployment of a cost-effective monitoring and communication
infrastructure [89]. This multi-agent based control system should consist of two parts: one
which focusses on the system (aims: to collect temperature data from the buildings, to
calculate the total DH load, and to distribute the control strategies to the buildings), and
one which focusses on the entity (aims: to adjust the building temperature, to calculate the
new room temperature, and to send it to the main controller) [39]. The most fundamental
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components of such a controlling system are smart meters, which measure DH flows and
exchange information on DH consumption, and the status of the DH network between DH
companies and customers [92].

The strategy can be applied (1) at building level by remotely controlling the heat flux
provided to the customers from individual substations [93], or (2) at room level by remotely
controlling individual digital thermostatic radiator valves [30,75,78,80,89,94], or (3) by
remotely controlling an entire area or building clusters (i.e., the buildings clustered into
different groups based on similar characteristics) [39,72,86,95]. When applying the strategy
at room level, the modulation should not be similar in all rooms. The set-point temperature
for each room should be individually adjusted depending on the room’s function and on
the occupants’ heat perception [31,75]. While the clustering approach allows a larger peak
reduction [72], applying the strategy at room level enables the utilization of the building’s
ability to contribute with demand flexibility to its full potential [75].

The control actions can be applied based on weather forecasts [81], DH price fore-
casts [30], marginal heat production costs [82], or real price signals [81]. They can be
based on a day-ahead hourly schedule [30,94] or selected even more frequently, such as
once every 15 min (real-time control) [95]. However, if the control action is based on the
status of the entire DH network (e.g., real price signal), a synchronized response of the DH
customers can be expected, which may cause the total peaks to shift instead of reducing
them [81,84].

Indirect DR

Indirect DR is based on communication between the customer and the operator and the
customer has complete control. Depending on the implementation method, distinction can
be made between indirect DR related to the electricity systems: (1) contractual-based (bid-
based), (2) voluntary-based, and (3) price-based DR [1]. Contractual-based DR implies that
the customer has responsibility to reduce consumption during peak load hours according
to a previously signed contract. If the customer responds in critical times, he/she receives
an incentive (e.g., discount on the bill, bill credit, or incentive payments distinct from
the bill), but if the customer neglects to fulfil their contractual obligations he/she will be
penalized. In contrast, voluntary-based DR implies that customers who respond in critical
times receive an incentive but, if they do not respond, the only penalty would be rejection
from the DR program [1]. Price-based DR has been recognized as a highly effective measure
for the electricity sector [145]. Categorization of price-based DR related to the electricity
sector differs from study to study, but generally, distinction can be made between static
pricing (e.g., ‘time of use‘ tariffs and so called ‘flat-tiered’ prices) and dynamic pricing (e.g.,
critical peak pricing and real-time pricing) [137,142,143]. However, due to the monopolistic
nature of DH, it is difficult to apply the same price models to DH.

Since DSM is based on an idea that the overall efficiency of the DHS is more important
than the quality of service for individual customers, there is a need for customers to act
responsibly [27]. As a result, the customers’ role will likely become more significant in the
future [76]. Moreover, a demand measure is more attractive if the demand side stakeholders
(including the customers) have control over its application (i.e., indirect DR measures),
despite the fact that this requires a more complex system for interaction between the supply
and demand sides of the DHS [96].

Unfortunately, using residential buildings to manage the DHS’s flexibility is usually
not compatible with the households’ DH consumption patterns [83]. For this reason, to be
able to make the customers’ DH consumption more flexible, the demand side measures
must be based on understanding the customers’ everyday practices [97], and it must
include incentives for the customers that acknowledges their willingness to enact energy-
and cost-savings [76].

However, the customer’s economic benefit does not necessarily imply economic
benefit for the DH company [76]. In order to make a measure sufficiently economically
sustainable and attractive to be implemented on a large scale, economic benefits generated
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by the measure should be shared, not only between the DH companies and the DH
customers [30,76], but also between all involved stakeholders [96]. Moreover, successful
implementation of the measure relies on clearly defined and communicated operating
rules related to the responsibilities of the stakeholders, and on establishing collaborative
governance in the DHS [96].

The willingness on the part of the customers to participate in a DR program can be
created by economic or environmental incentives. Even though no examples of voluntary-
based DR strategies related to DH have been found in the literature review, this category is
proposed in this study as one of the indirect DR categories. The voluntary-based DR would,
above all, rely on disseminating the information, and on education of the demand-side
stakeholders (on potential environmental benefits, for example).

Applying indirect DR in DHS usually involves overcoming several technical, market,
and organizational challenges [98]. One organizational challenge is that a regulated market
does not allow DH companies to adjust their DH prices [99]. One of the market barriers is
group metering and billing of DH use, which is sometime practiced. Since the attractiveness
of indirect DR relies on providing incentives to the end-users, group metering and billing
reduces the effectiveness of the measure by splitting the incentives between the customers
connected to a group meter [98].

Since the price-based DR implies customers’ modulation of DH use, these price signals
should be generated by considering the customers’ consumption profiles [100]. However,
if the same price signal is sent to all customers in the DHS, the aggregated DR to a price
signal may result in formation of new and even larger peaks during the hours when the
DH price is low [101]. In order to avoid creating new peaks, the DH companies could
send different signals to different areas of the DH network [98], or could apply additional
constraints that guarantee a more evenly distributed DR, even though these constraints
may reduce the potential to shift DH consumption out of peak hours [101].

DH pricing models may play a decisive role for the sustainable development of
DHSs [99]. A DH price model is usually composed of few components. For example,
in Nordic countries the components used in DH price models are energy demand, load
demand, flow demand, and a fixed component.

The Energy Demand Component (EDC) is a variable component which is used to
cover the operation and maintenance costs of DH companies, but also aims to encourages
energy savings during periods with higher DH demand (i.e., higher DH prices), and in
some cases to make the DH competitive with alternative heat production methods (e.g.,
heat production by HPs during the summer when the electricity price is lower). The EDC
usually varies seasonally; however, if smart heat metering systems are included, the EDC
can even be presented by real-time DH prices (based on the marginal DH production
costs). While a seasonal price variation increases the DH customer’s interest in reducing
their seasonal variation of DH demand (i.e., DH use for space heating), the real-time price
variation would encourage them to reduce their daily demand peaks, e.g., by adapting
their behavior and reducing hot-tap water use [99,100].

The Load Demand Component (LDC) is usually based on the customer’s measured
peak load demand during the few coldest days of the year. This component aims to cover
the companies’ investment costs in the capacity reserved for that specific customer and,
because of this, the charge is calculated by multiplying the customer’s peak load demand
(kW) by a price for a unit of load demand (€/kW). A pricing model that includes an LDC is
an effective way to reduce the DH peak load, because it encourages the customers to change
their consumption pattern to reduce their energy costs [100]. An LDC based on a daily
resolution motivates the customers to reduce their peak demand at the same resolution,
e.g., by using the building’s thermal mass as short term heat storage or by applying energy
efficiency measures that would give a lower space-heating demand (e.g., better house
insulation) [100].

The Fixed Component (FXC) is also based on the customer’s estimated/measured
peak load demand. However, in this case, the charge is not calculated by multiplying the
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customer’s peak load demand (kW) by a price for a unit of load demand (€/kW). It is
instead based on a level in which the customer’s peak load demand is staged [100]. The
customers are grouped based on the level in which their peak load demands are staged
(e.g., under 50 kW, between 50 kW and 100 kW, between 100 kW and 250 kW), and all
customers with the peak demand within the same level are paying the same charge. Since
the levels can have wide intervals, it can be problematic for a customer to reduce the peak
load demand sufficiently to change the price level. Therefore, this component is not equally
effective in encouraging customers to reduce their DH consumption patterns.

The Flow Demand Component (FDC) is based on the volume of hot water needed
to deliver the heat energy to the customer. It covers the pumping costs and heat losses in
the network [100]. The DH flow is directly affected by efficiency of all heat exchangers in
the DH substation and in the customer’s internal distribution network [9]. Therefore, this
price component aims to encourage the customers to improve the efficiency of the heat
exchangers over which they have control (e.g., to invest in more efficient radiators and, if
they have control, to invest in more efficient heat exchangers in their DH substation) [100].

4.3. Thermal Energy Storage

The volume of literature published on TES systems is considerable. Classification
of TESs can be based on several criteria [102–104,106,115]. Alva et al. [104] classified TES
depending on (1) storage duration (seasonal and short-term TES), (2) temperature (cold,
low, medium and high temperature; within a range from −40 ◦C to 600 ◦C), (3) type of
storage materials (sensible, phase change, and thermochemical heat storage materials), (4)
need for pumping to circulate the hot water during operation (active and passive TES),
and (5) how the heat is stored and delivered (centralized, building end, and mobile TES).
Guo et al. [106], on the other hand, presented a different classification of TES systems in
terms of (1) main technical characteristics (capacity, storage time, storage density, charg-
ing/discharging limits, efficiency), (2) temperature, (3) position in the heating networks,
and (4) storage materials (direct—sensible hot water tank, and indirect—latent using Phase
Charge Material or Borehole thermal storage in soil). Zhang et al. [103] provided a compre-
hensive review of TES systems based on design, technology, type of storage materials, and
heat carrier. The criteria relevant for classification in this study reflect the timeframe within
which the DH load is affected (hours, days, months). Accordingly, TESs are classified as
long-term and short-term TESs (Figure 6).

4.3.1. Long-Term TES

The purpose of seasonal and weekly TESs is to store heat for long periods of time.
Seasonal TESs are characterized by large capacity (large-scale TES), cheap building materi-
als, low operating temperatures (the temperature range of 20 ◦C–80 ◦C), and long storage
duration (long-term TES) [104]. Besides (1) increasing the capacity utilization of the existing
DH plants and (2) avoiding DH production in natural gas or oil-fired peak-load plants
with high operation costs during the winter [105], the large-scale TESs are crucial for (3)
exploiting solar collectors in solar DHSs at their best [106–111], (4) increasing annual uti-
lization of industrial excess heat delivered to the DHS [112–114], (5) avoiding heat wastage
from waste incineration plants, which still have to treat waste during the summer when
the DH demand is low [115], and (6) improving the performance of integrated heating and
cooling systems [116,117]. Xu et al. [108] reviewed and compared all three available tech-
nologies for large-scale TES (sensible, latent and chemical TES) in terms of development
and energy storage densities. The results showed that while the sensible TES is a mature
technology that has been demonstrated in many large-scale DH plants, latent and chemical
TES technologies are still developmental. However, both technologies are characterized by
much higher energy storage densities compared to sensible technologies and are therefore
interesting for further development.
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4.3.2. Short-Term TES

Short-term TES can provide peak-shaving and load-shifting in DHSs over a time
period from an hour to up to a few days, and hence enable a flexible load shape in
the system. The short-term TESs can be used to reduce the mass flow rate through the
bottlenecks in the DHS [26], as well as to improve economic performance of CHP plants
and HPs by enabling their flexible utilization depending on the electricity price variation.
These TESs can be centralized or decentralized. The location is usually related to the
function performed by the TES.

Centralized Short-Term TES

Centralized TESs usually provide load-shaping of the whole (aggregated) heat load
of the DHS, and hence decrease the total DH production costs in the system. The most
common TES configuration is centralized short-term TESs located close to the CHP plant or
incorporated in CHP installation. These TESs aim to provide load flexibility and thereby to
increase the operating time of the CHP plant [118–121]. As a result of the improved perfor-
mance of the CHP plant, there is potential to reduce global greenhouse gas emission [119],
and to improve the economics of the CHP plant [122], in particular if the daily variation in
the electricity price is considerable [119,120]. Centralized short-term TESs can also be used
to improve energy and economic performance of integrated heating and cooling systems
which are supplied by HPs and use DHSs as backup. This strategy requires an advanced
control system, and the possible savings achieved is highly dependent on the electricity
and DH price variations [117].

Decentralized (Distributed) Short-Term TES

Decentralized TES can be a collection of individual storage units located close to the
individual dwellings (e.g., small buffer tanks) or in the individual dwellings (e.g., floor
thermal storage systems [126]. A decentralized TES system can have a significant capacity
available for heat storage. There is a wide variety of TES technologies that can be combined
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with buildings. This implies a challenge when choosing the most suitable TES technology
depending on the building type [127], as well as when choosing the load shifting control
strategy depending on the TES technology [128].

In addition to the TES units, the capacity to shift DH production over time can be
found in the thermal inertia of the DH network itself. By raising the supply temperature of
the DH water when the DH demand is low, a limited amount of heat can be temporarily
stored in the DH network (i.e., the network can be pre-loaded/pre-charged) until the time
when heat demand peaks [9]. This strategy can also be used to decrease DH load variation
to mitigate the problem of limited variability of base load plants in the system [129];
to decrease the mass flow rate through the network bottlenecks during peak demand
periods [26]; and to enable CHP production that would coordinate the operation of an
electric power system with a high share of intermittent renewable electricity production
(wind power production) [130,134]. However, because this frequent cycling of DH water
between higher and lower temperatures increases material fatigue (especially for steel
pipes), and because it can only be achieved using an advanced control strategy, it is not
applied systematically by DH network operators, even though pre-loading the DH network
is a well-known strategy for achieving flexibility in DHSs [9,129,131]. Another problem
are the uncertainties related to modeling transient behavior of a DH network as it is not
feasible to include all substations and network sections when building a model of the DH
network for operational optimization [132]. The potential for peak load reduction using
this strategy varies in different case studies.

Another way to pre-charge the DH network is to increase the flow rate through the
pipes while maintaining a constant DH supply temperature [133]. However, to enable the
desired change in the mass flow rate, it may be necessary to install new bypass pipes in the
DH network. The potential for using a DH network as TES by applying flow rate variations
depends on several factors, such as the duration of the flow adjustment, average velocity of
the heat carrier fluid, the DH demand patter, and the network topology. In addition to the
network pipes, the thermal mass of the buildings can be used as decentralized short-term
heat storage units as well. This strategy was presented in Direct DR.

Comparison between Different TES Solutions

Theoretical potentials of a centralized TES (e.g., a water tank) and a decentralized
TES system (e.g., multiple smaller storage tanks located in the individual dwellings) to
create flexibility in CHP production in a DHS differ significantly. If the centralized TES
and the decentralized TES system have the same storing capacities, the centrally located
heat storage enables much higher flexibility in the DHS compared to the decentralized TES
system. The reason is that every decentralized buffer meets only the DH demand of the
respective individual dwelling, so every time the capacity of one of the buffers is too low the
CHP must engage, which affects the available flexibility [123]. Moreover, compared to TES
in the thermal mass of buildings, centralized TES with a similar maximum storage capacity
can store more than twice as much heat annually. The reason is that the full storage capacity
of the thermal mass of buildings is not always available for charging/discharging since the
capacity depends on the heat transfer between the building core and its indoor air. The
central TES can also provide load-shifting over a longer time period [124]. However, the
potential to increase network flexibility and the profit from the CHP is highly dependent
on the TES capacity; this can give the opposite result if the centralized TES has a lower
capacity than the decentralized TES system [31].

Compared to utilization of DH networks as TES, centralized TES units can store up
to ten times more heat annually, especially in the case of small networks which have
insufficient heat storage capacity. Furthermore, network storage can usually be used only
for a few hours for load-shifting. Other problems related to storing heat in DH networks
include uncertain storage capacity, increased stresses on the physical components in the
network, and increased heat losses due to the increased return temperature. However,
using a DH network as TES is still an attractive TES solution because there are no additional
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costs [125], particularly in combination with the TE storage in the thermal mass of the
building [134]. When applied separately, these two TES solutions have different potentials,
benefits, and disadvantages. TE storage in the thermal mass of the buildings would provide
much higher flexibility of DH production in the system, compared to using a DH network
as TES [134]; however, this strategy requires investments in more complicated control and
communication systems between DH companies and customers.

5. Discussion

Complementing DH production is DH production in DH sources that are connected
to a primary or secondary DH network and are usually invested in and controlled by a DH
company. Some of the complementing DH sources can even be invested in and controlled
by the DH customers. However, in this case there is no guarantee that these DH sources
would be used in a manner that the DH load variation is reduced, because the customers’
decisions on how to run the DH sources may be based on incentives from another system.
An example is the use of private geothermal HPs as a complement to a DH. The customers
would probably rather run the HPs during the summer, when the electricity price is low,
than during the winter. This will have consequences as an even lower capacity utilization
in the local DHS. In order to avoid this problem, the DH producers must consider not
only the variation in marginal DH production costs during the year, but also the electricity
price variation, when deciding the seasonally varied energy demand component of the DH
price model.

TE can be stored in TES units included as complementing parts of the DHS, or even in
the DH network’s pipes and thermal mass of the buildings connected to the DHSs. Usually
the DH company is responsible for controlling TE storage. Use of the DH network to store
the heat is a strategy which is usually integrated in the operating schedule. Increasing
the supply temperature in the network before a peak demand occurs, avoids an increased
mass flow through the network’s bottlenecks during the peaks. However, this strategy, as
well as storing the heat in the thermal mass of the building before the peaks, requires good
insight in daily heat load variation as well as short-term heat load forecasting.

The DSM measures in the DHSs can be categorized as (1) a group of measures applied
on the existing demand side (so called ‘demand response’ measures), and (2) ‘strategic
demand increases’ which make desirable changes to the DH load curve. The strategic
demand increases are commonly initiated by DH producers, while the DR measures can be
further categorized as (a) direct DR measures which are controlled by the DH company,
and (b) indirect DR measures that are based on communication between the DH company
and the customer, but are completely controlled by the DH customer.

Both types of DR measures require an advanced monitoring and communication
system, which would, for example, monitor the temperature data from the buildings,
calculate the aggregate DH load, and distribute the information and control signals. The
system should focus not only on the conditions of the whole system, but also on the
conditions of the individual customers (e.g., DH load demand variations, potential for heat
storage in a building, special temperature requirements). However, above all, these types
of measures rely on cooperation between the DH company and consumers.

Moreover, the possible benefits of the DH load management measures expand the
DHS boundaries because these measures may also benefit the electricity system (1) by
increasing the electricity production in biomass-fired CHP plants, and (2) by enabling an
increased share of intermittent power sources (by running the heat storage units, CHP
electricity production and electricity-based DH production depending on the electricity
production in the intermittent sources). However, this cooperation would require not
only a more complicated monitoring and communication infrastructure (between the DH
companies, electricity companies and DH customers), but also energy policies that support
this cooperation. This implies that in addition to the DH companies and consumers, other
stakeholders that should be interested in possible DH load management measures are
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electricity producers, local governments, policymakers, etc. Therefore, this subject requires
a more interdisciplinary approach.

Limitations of the Study

Although a large number of search strings were used during the systematic literature
review, one limitation is the use of only two databases (‘Web of Science’ and ‘Scopus’). This
limitation was reduced by including many cross-references.

The quality of the reviewed publications differed from study to study. A further
weakness is that most of the included publications are case studies. Consequently, the
results presented in these publications are based on local conditions related to the analyzed
DHSs (climate conditions, characteristics of the building sector, availability of the local
resources, characteristics of the electricity sector, etc.).

Moreover, in order to detect as many measures as possible, the geographic area in
which the publications originated was not limited. Although this enabled inclusion of
more publications in the study, it also presented challenges during the data extraction and
synthesis process because of the different terminologies and trends in certain geographical
areas. For instance, while in some countries utilization of natural gas-fired HOB during
peak demand is considered a problem that should be solved (e.g., in the EU), in the
countries where the largest proportion of DH is produced by coal, DH production in the
natural gas-fired HOB during peak demand is seen as a solution to the problem (e.g.,
China). Therefore, different terms are also used when referring to the natural gas HOBs
(‘peak-load HOB’ in EU and ‘peak-shaving HOB’ in China).

Furthermore, the multi-disciplinary nature of this topic requires an interdisciplinary
approach in order to provide a comprehensive picture of the possibilities, challenges, and
potential trade-offs associated with a DH load management measure. However, only a few
publications detected during the literature review covered social and political aspects.

6. Conclusions

DH load management measures can be categorized into three main categories: com-
plementing DH production; TE storage; and DSM measures.

Measures that can be applied to manage the seasonal variation are investment in
long-term TESs and complementing DH production (HOB or HP), as well as demand side
measures, such as strategic demand increase (base-load increase and valley-filling), and
indirect DR measures which encourage the customers to reduce their DH demand during
the winter. Investing in better housing insulation and lowering the indoor temperature are
two ways to reduce DH use for space heating during the winter. This can be encouraged
not only by an energy demand component, but also by a load demand component in the
DH price model. A load demand component based on a daily resolution and a charge
calculated per unit of load demand (kW) may also motivate the customers to reduce their
daily DH load variation. The fixed (load) component, where the charge is not based on
a unit (kW), but instead on a level in which the customer’s peak load demand is staged
cannot motivate the reduction of the daily DH load variation. The stage intervals for the
load demand on which charging is based are wide therefore, to reduce the charge for the
fixed (load) component, the customers would probably need to invest in larger insulation
projects that would result in a reduction of the seasonal, rather than the daily, DH demand
variation. DH production during the winter can also be reduced by investing in more
efficient heating systems (i.e., larger radiators); this is usually encouraged by the flow
demand component of the DH price model.

The investments by the DH producer (e.g., in complementing DH production) or by
the DH customer, as well as strategic demand increase (e.g., absorption cooling or DH
utilization in industrial processes), have permanent effects on the DHS. These measures
usually manage the seasonal load variation but can also manage the daily DH load vari-
ations (e.g., investments in more efficient elements in the hot-tap water supply system).
This is in contrast to the changes in the DH customers’ behavior, which mostly affects the
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daily DH load variations. In addition to the energy demand component of the DH price
model, measures that motivate changes in the customers’ behavior are voluntary-based
and contractual-based (bid-based) indirect DR.

Other measures that can be used to manage the daily DH load variations are short-
term heat storage in centralized and decentralized TES units; refraining from part of CHP
electricity production in order to produce more DH during peak demand; heat storage in
the DH network and in the thermal mass of the buildings connected to the network; DH
production in distributed peak-shaving HOB; and geothermal and booster HPs. While
the voluntary-based indirect DR is a measure that may only reduce the daily DH load
variation temporarily (i.e., there is no guarantee that the customers will respond every
time a peak load occurs), all other mentioned measures can be integrated in an optimized
DH production schedule. However, in order to develop such a DH production schedule,
reliable short-term DH load demand forecasting is necessary.
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Abbreviations
The following abbreviations are used in this manuscript:
CHP combined heat and power
DR demand response
DSM demand side management
DH district heating
DHS district heating system
EDC Energy Demand (DH price) Component
FDC Flow Demand (DH price) Component
FXC Fixed (DH price) Component
HP heat pump
HOB heat-only boiler
LDC Load Demand (DH price) Component
TE thermal energy
TES thermal energy storage (this abbreviation refers to storage units)
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