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Abstract: An abundance of research has been performed to understand the physics of latent thermal
energy storage with phase change material. Some analytical and numerical findings have been
validated by experiments, but there are few free and open-source models available to the general
public for use in systems simulation and analysis. The Modelica programming language is a good
avenue to make such models available, because it is object-oriented, equation-based, declarative,
and acausal. These characteristics have enabling the creation of component model libraries that
can be used to build larger system simulations for design analysis. The authors have previously
developed a numerical framework to model phase change thermal storage and have validated model
predictions with experiments. The objectives of this paper are to describe the transfer of the numerical
framework to an implementation in a Modelica component model and to validate the Modelica
model with data from the experiment and the original numerical framework.

Keywords: thermal energy storage; phase change material; Modelica; latent heat transfer; HVAC

1. Introduction

Numerous research investigations have been conducted over the past four decades
to understand the physics of latent thermal energy storage (TES) [1–20]. Many are either
strictly analytical and numerical or analytical and experimental [1–8]. Some combine com-
putational research techniques with lab testing by using experimental data from the litera-
ture [9–11]. While these studies are valuable, they are subject to unintentional discrepancies
between physical devices and the models that aim to represent them. Other researchers
have in-house experimental data available with which to validate detailed numerical
models [12–20]. In order to have confidence in physically representative thermal storage
models, experimental tests should be performed whenever possible to validate compu-
tational model predictions. A key aspect that stands out from these studies is that there
are few to no thermal storage models available to the general public, particularly heating,
ventilation, and air conditioning (HVAC) designers, for system simulation and analysis [4].
This dearth makes the creation and dissemination of easy-to-use, physically accurate mod-
els of phase change material (PCM) heat exchangers for latent thermal energy storage
particularly important.

The Modelica programming language is a good avenue to make such models available
because it is object-oriented, equation-based, declarative, and acausal [21]. These charac-
teristics have enabled the creation of component model libraries that can be used to build
larger system simulations for design analysis. One such library that has gained traction
in the building industry is called the Modelica Buildings Library and is made available
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free and open source [22]. The Modelica Buildings Library offers flexible modeling and
dynamic simulation of building envelopes, HVAC equipment, and more. It was created,
in part, to design and analyze non-conventional energy systems and develop and deploy
energy-minimizing controls. Such functionality is ideal for rapid prototyping of innova-
tive building energy solutions, including those that achieve load shifting with thermal
storage systems.

In previous works, we established a dimensionless first-principles framework to
model transient heat transfer in a TES device, similar to effectiveness–NTU analysis meth-
ods for compact heat exchangers. We began by deriving a non-dimensional framework in
order to analyze thermal energy storage and characterize its performance [23]. During that
examination, we found that we would need to focus our efforts on quantifying the space-
and time-varying conductance inherent in the transient melting and freezing processes of
latent thermal storage. Similar to steady-state effectiveness–NTU predictions, we found
that the effectiveness of high performance devices is not sensitive to variations in conduc-
tance [24]. Those findings justified the use of a space—and time—averaged conductance,
which we determined from a simple thermal resistance network as a function of the phase
change material melt fraction [25]. In tandem, the TES device was examined in the context
of a larger subsystem, consisting of external heat exchangers used to transfer energy to
and from the storage. This problem was mathematically challenging by introducing spa-
tially varying initial conditions (due to the nature of cyclic melting and freezing processes),
as well as a transient boundary condition (for the varying working fluid temperature from
the heat exchangers) [26]. The culmination of previous work provided a great basis for
comparison with experimental testing of a TES device and validation of our first-principle
numerical framework [27].

Since then, we have been working to develop new models of thermal energy storage
in Modelica. The objectives of this paper are to describe the transfer of the numerical
framework to an implementation in a Modelica component model that will be made
available free and open source and to validate the Modelica model with data from the
experiment and the original numerical framework. This modeling effort is one piece
of a so-called “hybrid” HVAC project that is integrating thermal storage, heat pump,
and evaporative cooling components to shift thermal loads and enable the decarbonization
of space and water heating. The benefits of integrating PCM TES in HVAC systems are
numerous, providing opportunities to use smaller heat pumps, avoid electric resistance
backup heating, reduce the spatial footprint for domestic hot water storage, improve heat
pump performance, “store cold” from overnight evaporative cooling, and recover waste
heat. By pairing this technology with on-site renewable generation (e.g., photovoltaics),
PCM TES could be charged when energy is available and later discharged when needed.
To support the implementation of TES for load shifting applications, we have developed
PCM heat exchanger models that others will be able to incorporate in simulation of system
designs. It is important to note that most load shifting applications are highly dependent on
weather and climate and thus require annual simulations to evaluate system performance
in different seasons. Computational time must remain manageable, giving further support
to the use of Modelica over more complex computational fluid dynamics (CFD) approaches.

The structure of this paper is as follows: In Section 2, we provide a literature review
of Modelica-based implementations of PCM heat exchangers. In Section 3, we describe
the experimental setup for a TES prototype. In Section 4, we summarize the first-principle
modeling approach developed in previous work. In Section 5, we describe the Modelica
implementation. In Section 6, we compare results and discuss. In Section 7, we conclude.

2. Literature Review

Early into its inception, De Coninck et al. used the Modelica Buildings Library to
model the sensible thermal energy storage of a hot water tank for a residential building
equipped with photovoltaic panels [28]. The system used an air-to-water heat pump to
transfer energy into and out of the tank for six weeks in winter. To simulate the system,
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the authors created a Modelica model based on an early hydronic heating example from the
Buildings Library [29]. The finite volume model of the storage tank includes conduction
between layers of water in the tank as well as losses from the metal walls to the surround-
ings. The paper describes and analyzes three control strategies: optimizing the heat pump
heating curve only, daytime use priority to maximize solar energy input, and grid load
based on minimizing power peaks. The authors recommend aligning the heat pump with
PV while looking carefully at how storage impacts heat pump power consumption over
the entire year. Meanwhile, similar research using Modelica was conducted at the E.ON
Energy Research Center in Aachen, Germany. In contrast to De Coninck’s work, people at
E.ON wanted to model latent thermal energy storage using phase change material (PCM).
While water is readily available, PCM offers a greater storage density and lower heat losses,
making it a viable alternative. However, heat transfer in PCM is challenging to model
for three major reasons: conductance changes with distance from the heat flux boundary,
natural convection may occur, and freezing is often different from melting.

At E.ON, Leonhardt and Müller created and analyzed a model of a latent storage
system [30]. Their Modelica model of the phase change material heat exchanger includes
pipes to transfer energy into or out of slabs of PCM. In their model, heat is transferred into
the pipe via convection from the working fluid and conduction through a thin massless
wall into a finite volume of storage material. The PCM slab consists of four cardinal
heat conduction blocks and one central capacitor. The conductivity is calculated based
on the liquid fraction in each discrete element. The central capacitor is implemented as
a modification to the thermal capacitance component model of the Modelica Standard
Library [31].The modified basic capacitor block is a very valuable feature of this model.
The authors note that this initial latent heat storage component model could be improved
by adding mass and conduction to the plate walls that separate the working fluid from
the PCM.

Using their internal Modelica Library from the Institute for Energy Efficient Buildings
and Indoor Climate, Leonhardt and Müller modified their fairly simple model consisting
of two fluid volumes, sandwiching a PCM block (described above) to include conduction
through the steel frame of the storage container. The authors also expanded beyond the
cold storage studied in their previous work to evaluate the combination of hot storage,
a heat pump, and solar thermal for residential buildings [32]. The PCM heat exchanger
model employs the assumption that the working fluid is evenly distributed around all
slabs, though there may be preferential paths in reality. Additionally, the model uses a fixed
melt temperature for heating and cooling. To validate the model, the researchers developed
a test bench to measure the behavior of a storage prototype. The experimental test bench
measures water flow rates and heat exchanger inlet and exit temperatures. They tested two
phase change materials: a salt hydrate with a melt temperature of 29 ◦C and a paraffin with
a melt temperature at 35 ◦C. The validation shows that the mean relative deviation in fluid
temperature prediction is about 3% for the salt hydrate PCM and 4% for the paraffin PCM.
However, this model validation relies on several free parameters: amount of bypass flow,
melt temperature value, width of the specific heat capacity range, and baseline specific heat
capacity value. As such, the model is tuned to achieve the lowest mean relative deviation
of 3–4% reported here.

In the decade since that work was conducted, simulation technology and software de-
velopment companies have become increasingly interested in using Modelica to model dy-
namic systems. TLK-Thermo GmbH developed an internal library, the TIL Suite, with add-
ons for PCM heat exchangers. Researchers at SINTEF used this commercial library to
conduct a study of a cold storage installation at the University College of Bergen in Nor-
way. Jokiel created a detailed model to represent the cold storage tanks and validated
this model with measurement data from the the plant [33]. The installation consists of
four PCM cold storage tanks with a 10 ◦C transition point integrated into a chilled water
distribution loop to reduce the capacity of the chiller by ∼50%. Jokiel uses the TIL Suite
to represent the thermal components in the chilled water system and investigate storage
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charging and discharging dynamics. Inside the cylindrical tanks, PCM slabs are stacked
to occupy as much of the volume as possible. Jokiel represents this configuration as a
rectangular finned-tube heat exchanger in Modelica. The heat exchanger model consists of
working fluid, channel wall, and PCM sections, neglecting the steel wall of the tank. It is
discretized in both the axial flow and perpendicular directions. The model transfers heat
via forced convection with the working fluid and pure conduction through the HDPE wall
encapsulating the PCM through to its centerline. The heat transfer rate for one layer is cal-
culated and subsequently multiplied by the number of layers to determine the total energy
transferred to or from the storage tank, thus neglecting the difference between different
cells. Three tests are conducted to validate estimations for freezing and melting times:
constant mass flow rate and inlet temperature, variable inlet temperature, and variable
mass flow rate and inlet temperature. In the paper, the working fluid outlet temperature
and the heat flow rate are recorded to compare to experiments and validate the model [33].
While the total amount of energy absorbed or released was predicted fairly accurately,
the model outlet temperature did not match experiments very well. Jokiel suggests greater
care in considering how the heat transfer coefficient changes with progressing melting or
freezing within the PCM containers.

Researchers at the Norwegian University of Science and Technology also used the
TIL Suite to model cold storage within an ammonia/carbon dioxide cascade refrigeration
system for a poultry processing plant in Norway, with the goal of shifting refrigeration
load and reducing peak electricity use [34]. Selvnes et al. used Modelica to model latent
thermal energy storage at −11 ◦C with carbon dioxide as the refrigerant through the PCM
heat exchanger, thus introducing an additional phase change process. The heat exchanger
is a steel tank with a stack of steel heat exchanger plates through which carbon dioxide is
condensed to melt the PCM or evaporated to freeze the PCM depending on the mode of
operation. Two models were developed, one with a tube-based thermal storage model and
one without. This paper does not include a detailed description of either of these Modelica
models, though it can be assumed that they resemble those described by Jokiel with the
addition of liquid-vapor phase change on the working fluid side.

A similar study on supermarket refrigeration coupled with cold storage was con-
ducted at the University of Maryland. Bush et al. proposed adding latent thermal storage
to a mechanical carbon dioxide refrigerant subcooling loop for supermarket refrigera-
tion [35]. The system PCM heat exchanger consists of a cylindrical tank with multiple
nodes, representing finite volumes. At each node, the enthalpy changes with time via
heat transfer between the channel wall and PCM, losses between the PCM and ambient
environment outside the tank, and conduction between adjacent PCM nodes. The authors
took a lumped-parameter approach in which convection and mass transfer are lumped into
conductive heat transfer in the phase change material. Additionally, an average of the solid
and liquid density are used in order to neglect volume change. Four phase change materials
with melt temperatures between −5 and 10 ◦C were evaluated. The model assumes a
constant heat transfer coefficient of 65 W/m2K, thereby avoiding the complication of time
and space varying conductance. This paper validates the TES model with previous results
from the literature, both of which included storage geometry and material properties that
could be used as model inputs [36,37]. The simulation predicted time to freeze and working
fluid outlet temperature are slightly off from experimental data from those previous papers,
perhaps due to the assumption of constant values for various parameters.

Dhumane, another researcher at University of Maryland’s Center for Environmental
Energy Engineering (CEE), continues to iterate on the in-house CEE Modelica library,
and the latent storage component in particular. The roving comforter, RoCo, was imagined
as a system that could provide localized space cooling using refrigerant as a working fluid
through a PCM heat exchanger. In 2017, Dhumane et al. introduced their Modelica model
for RoCo [38]. The PCM is represented as a combined conductor and capacitor which
interacts with the tube and container walls. The heat transfer coefficient is determined
via correlation for refrigerant in helical coils. This first paper compared preliminary
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experimental data and model temperature predictions. Several years later, Dhumane et al.
were able to compare their Modelica model to a compact prototype of RoCo. Using
the prototype performance as feedback, they have improved models of various system
components and focused on using a heat pump to solidify the PCM. Dhumane et al.
provided a thorough documentation of their implemention of a refrigerant PCM heat
exchanger in Modelica, though their models are not publicly available [39].

Similar to the results summarized above, our new TES model captures unit cell
heat transfer within the storage device in addition to the component scale time-varying
temperature of the working fluid that travels through it. The remainder of this work
begins with a description of experimental prototype testing followed by an overview of
the first-principles numerical framework and development of the PCM heat exchanger
model in Modelica. With experimental data available through the development process,
we validated the Modelica model with the previous numerical and experimental findings
as we built it. With this valid, open-source model, we intend to make a suite of component-
level building blocks of thermal storage for incorporation into space conditioning and
hot water systems for residential, commercial, and industrial applications. This paper
describes the numerical implementation and validation for the first of the models in this
proposed suite: a white-box PCM heat exchanger model with one inlet and one outlet
port for a working fluid that can be divided into any number of parallel rectangular flow
channels within the device. Though we are not the first researchers to pursue this endeavor,
we hope that adding a suite of PCM heat exchanger models to the open-source Modelica
Buildings Library will make thermal load shifting simulations easier for HVAC designers,
facility operators, and energy researchers around the world.

3. Experiment Design

The experiment we used to validate our two models entailed measuring the perfor-
mance of a 100 kJ TES device shown in Figure 1. Though this prototype was commis-
sioned for the purposes of research, its design could be viable for commercial endeavors.
One possibility is to scale this device up and couple it with a water-to-air heat exchanger
for condenser pre-cooling. Other applications could integrate PCM TES with hydronic heat
pumps to serve building loads. For either of these systems, energy would be used to charge
the device when it is most economically and environmentally advantageous. It would
subsequently be discharged to meet thermal loads on demand.

The PCM heat exchanger we tested was fabricated and assembled by a commercial
vendor (Allcomp Inc., Industry, CA, USA) and subsequently filled with phase change
material. Water was used as a heat transfer fluid (HTF) to melt and solidify the PCM
in repeated thermal cycles of solidification and melting. The TES device has an offset
fin configuration on the working fluid side and aluminum porous fins in the storage
matrix. The device has five flow channels and four hermetically sealed storage sections
filled with PCM. Experimental testing of this prototype was performed at Texas A&M.
The experimental apparatus and procedure are explained in greater detail in previous
work [27]. Here, we’ll only summarize the major pieces.
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Figure 1. Photograph and schematic (not to scale) illustrating heat flux (q′′) from hot heat transfer
fluid (HTF) flow passages into phase change material (PCM) storage sections during melting process.

3.1. Device Geometry

The TES prototype consists of stacked rectangular sections, alternating between flow
passages and storage matrix sections. Specific details of the design are summarized in
Table 1. Of particular interest is the void fraction, which greatly impacts the effective
properties that form the dimensionless parameters in the governing equations.

Table 1. Thermal Energy Storage Prototype Geometry.

Geometry Parameter, Variable Value Unit

Length of TES Device, L 0.407 m

Wetted perimeter of flow passage, sw 9.42× 10−2 m

Cross sectional area of flow passage, Ac 8.97× 10−5 m2

Matrix volume per unit flow length, ν′ 1.99× 10−4 m2

Number of flow passages, nw 5

Number of storage matrix sections, ns 4

Void fraction in storage matrix, εs 0.729

3.2. Thermophysical Properties

There are four types of phase change materials that might be used in this type of
application: organic paraffins, organic non-paraffins, inorganic salt hydrates, and inorganic
metal eutectics [40]. Our collaborators at Texas A&M considered various materials for
this prototype, including organic PCMS-like wax hydrocarbon (PureTemp 29) and poly
ethylene glycol (MPEG 750), as well as inorganic PCMs like lithium nitrate, calcium
chloride, and sodium sulphate salt hydrates. All displayed a similar melt temperature
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range (27–32 ◦C) but differed in the latent heat, subcooling, phase segregation, nucleating
agents, and additives required. The five PCMs were ranked in terms of cost, reliability,
volumetric storage capacity, and ease of application. The material selected for the prototype
was lithium nitrate trihydrate (LNT), a salt hydrate that has been optimized to better handle
transient cycling. Anhydrous lithium nitrate salt powders were procured commercially
from Beantown Chemical, NH, with purity greater than 99%. Thermophysical properties
shown in Table 2 are consistent with the literature [41].

Table 2. PCM Properties: Lithium Nitrate Trihydrate.

Property Parameter, Variable Value Unit

Thermal Conductivity, kPCM 0.584 W/mK

density, ρPCM 1500 kg/m3

specific heat, cp,PCM 2910 J/kgK

latent heat of fusion, hls 278 kJ/kg

melt temperature, Tm 30 ◦C

The melt temperature often experimentally deviates from a single value, Tm, due to
the subcooling or superheating required to initiate phase change [42]. The liquidus tem-
perature, Tliq, was taken to be 29.66 ◦C and the solidus temperature, Tsol , was taken to be
29.5 ◦C. These values used in the numerical models are well within the range predicted
by experiments, though they differ from the single value of 30 ◦C reported in the table.
The amount of PCM inserted into the TES prototype was 474 g. The latent heat of LNT was
measured in this study to be 278 kJ/kg using the T-History method [43]. The theoretical
latent energy storage capacity of the device was found to be 132 kJ, which differs from
the rated capacity of 100 kJ. For context, the latent heat of fusion of water is 334 kJ/kg.
The cooling that this device can provide through phase change is equivalent to ∼14 ice
cubes. While an ice tray might be enough to keep a beverage in a pitcher cold through a
party, this device would have to be significantly scaled up to prove useful for power and
refrigeration systems.

Phase change materials, including LNT, suffer from low thermal conductivity,
making heat exchanger design all the more critical to facilitate good heat transfer. For the
prototype, we considered several configurations, including shell and tube, metal foam
matrix, chevron plate frame, rectangular channel, and plate-fin geometries. The design we
ultimately selected consisted of offset fins within larger rectangular sections, alternating
between fluid flow and PCM storage sections. Thermal properties were improved by
using a metal mesh in the PCM, enabling effective heat conduction through the storage
matrix. Many high conductivity materials, like copper and aluminum, are well suited for
enhancing heat exchange. Considering all factors, the low cost and chemical compatibility
of aluminum made it ideal for the metal mesh in our prototype. Its properties are shown in
Table 3.

Table 3. Metal Mesh Properties: Aluminum 5056.

Property Parameter, Variable Value Unit

Thermal Conductivity, km 117 W/mK

density, ρm 2640 kg/m3

specific heat, cp,m 910 J/kgK
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Metal pathways are ideal for transporting the thermal energy away from the channel
wall towards the melt front. They enhance the effective properties (conductivity, density,
specific heat) of the storage matrix which are calculated according to Equation (1) and
summarized in Table 4.

p̄ = pm(1− εs) + ppcmεs (1)

Table 4. Effective Properties: Storage Matrix.

Property Parameter, Variable Value Unit

Effective Thermal Conductivity, ks 32.1 W/mK

effective density, ρs 1810 kg/m3

effective specific heat, cp,s 2370 J/kgK

The thermophysical properties of the working fluid are also necessary in order to
solve the governing equations. The experiments were conducted with pure de-ionized
water. Its properties were taken at the average inlet temperatures for melting and freezing
respectively. The ranges in Table 5 reflect the values associated with the cold and hot fluid
inlet temperatures.

Table 5. Working Fluid Properties: Water.

Property Parameter, Variable Value Unit

Thermal Conductivity, kw 0.608–0.623 W/mK

density, ρw 994–997 kg/m3

specific heat, cp,w 4090–4130 J/kgK

3.3. Transport Parameters

Mass flow rates for melting and freezing were provided with the experimental data.
The total mass flow rate, given in Table 6, is assumed to be distributed equally among the
five flow passages in the device.

Table 6. Thermal Energy Storage Experimental Conditions.

Operating Parameter, Variable Value Unit

Mass flow rate for melting, ṁext 3.44× 10−3 kg/s

Mass flow rate for freezing, ṁchar 3.56× 10−3 kg/s

Inlet temperature for melting, Twi,ext 36 ◦C

Inlet temperature for freezing, Twi,char 26 ◦C

The working fluid was controlled to achieve a relatively constant inlet temperature for
the duration of each test. The properties of the working fluid were assumed to be constant
throughout a given process and determined based on the average water inlet temperature.

3.4. Heat Transfer Coefficient

With the device geometry, thermophysical properties, and transport parameters
specified, a convective heat transfer coefficient was determined via empirical correlation.
The Colburn analogy can be used to characterize convective heat transfer for flow geometry
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with transport mechanisms that are difficult to analytically simplify. The flow passages
consist of offset fins, giving the following Colburn-j type relation from the literature [44]:

j = 0.6522× Re−0.5403
( s

h f

)−0.1541( t f

l f

)0.1499( t f

s

)−0.0678

(
1 + 5.269× 10−5Re1.340

( s
h f

)0.504( t f

l f

)0.456( t f

s

)−1.055)−0.1 (2)

where Re is the Reynolds number of the flow, s is the spacing between fins, h f is the height
of the fins, t f is the thickness of the fins, and l f is the length of the fins.

The Colburn-j factor is used to calculate the Stanton number, St, which relates the
magnitude of heat transfer into a fluid to the thermal capacity of the fluid. This is subse-
quently used to calculate the Nusselt number, Nu, which describes the relative magnitudes
of convective and conductive heat transfer at a fluid boundary. From there, we solved for
the convective heat transfer coefficient, h:

St =
j

Pr2/3

Nu = StRePr

h =
kwNu

Dh

(3)

With h, the overall heat transfer coefficient, U, can be found for the first-principles
model. The Modelica model does not require an explicit definition of U, though it does use
the correlation for h described above.

Based on geometry, a stability analysis is performed for the PCM matrix enclosure to
determine whether or not natural convection occurs. A fluid heated from the bottom is
stable provided that its Rayleigh number is below a critical value. The Rayleigh number
has a cubic dependence on the characteristic length. For the geometry given in Table 1,
natural convection is not present. As noted in the introduction, previous work has been
used to derive U [24,25]. The more elegant of these results will be used, namely that the
overall heat transfer coefficient, U, can be found from the device geometry (At, Aw, hs),
thermophysical properties (ks), convective coefficient, h, and the melt fraction, xe, which is
a function of position in the device as well as time:

Uext =

[
1

h(At/Aw)
+

hs

2ks
xe

]−1

(4)

where At/Aw = (ηfinh f + s)/(s + t f ) includes the offset fin efficiency and hs is the height
of the storage matrix sections.

A key finding from both studies of conductance was that an average U could be used
in place of a spatially and temporally varying one for high performance devices. To be
sure that this was also the case for the prototype experiments, we applied a quasi-steady
treatment of the variation of U with xe and compared our results to constant conductance.
As the conductance is quite high, we see no measurable difference in the fluid outlet
temperature predicted. Thus, an average conductance is suitable for modelling the TES.
In order to average Equation (4), we integrate over the range of xe encountered during the
melting process.

Ūext =
1

xe, f

∫
xe, f =1

xe,i=0

[
1

h(At/Aw)
+

hs

2ks
xe

]−1

dxe (5)
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After integrating over melt fraction and normalizing by the final value, we find that:

Ūext =
2ks

hs
ln

[
1 +

hs

2ks
h(At/Aw)

]
(6)

This gives a value for Ūext that falls between the convective heat transfer coefficient, h,
and the steady state value reached at the end of melting that U asymptotes to when the
PCM melt front reaches the adiabat between flow passages. The key term in the variable U
expression, xe, can be interpreted as a proxy for the growing distance between the channel
wall and the melt front. This term is the dominant thermal resistance in the problem
due to the high efficiency of the working fluid side heat transfer. By extrapolating this
simple model to freezing, we predicted the values given in Table 7 for conductance in the
experimental prototype.

Table 7. Averaged Overall Heat Transfer Coefficient, Ū.

Process Ū Value Unit

Melting 2980 W/m2K

Freezing 2930 W/m2K

This average overall heat transfer coefficient is subsequently used to calculate Ntu,
the number of transfer units required to solve the non-dimensionalized set of equations
that comprise the first-principles numerical framework.

4. First-Principles Framework

Three differential equations govern the temperature and melt fraction fields within a
thermal energy storage device [26]. Thermal energy is advected by the working fluid (w)
and enters or leaves the storage matrix element (e) through the channel wall.

∂Tw

∂t
= −

( ṁ
ρw Ac

)∂Tw

∂z
+

Usw

ρw Accp,w
(Te − Tw) (7)

∂Te

∂t
=

Usw

ρscp,sν′
(Tw − Te) ;

∂xe

∂t
= 0 (8)

for Te 6= Tm (sensible heat transfer) and xe = 0 or xe = 1.

∂xe

∂t
=

Usw

ρshlsν′
(Tw − Te) ;

∂Te

∂t
= 0 (9)

for Te = Tm (latent heat transfer) and 0 < xe < 1.
These equations are converted to a non-dimensional framework, as is typically done

for effectiveness–NTU heat exchanger analysis. Due to the complex nature of phase change
physics, we require several dimensionless groups to predict performance. The differential
equations within the TES device are non-dimensionalized using the following definitions:

θ =
Te − Tmin

Tmax − Tmin
, φ =

Tw − Tmin
Tmax − Tmin

(10)

ẑ =
z
L

, t∗ =
t

tres
, tres =

ρw AcL
ṁ

(11)

These non-dimensional equations scale the φ, θ, and xe variables to values between
0 and 1.

∂φ

∂t∗
= −∂φ

∂ẑ
+ Ntu(θ − φ) (12)
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∂θ

∂t∗
= NtuRwe(φ− θ) ;

∂xe

∂t∗
= 0 (13)

for θ 6= θm and xe = 0 or xe = 1.

∂xe

∂t∗
= NtuRweStio(φ− θ) ;

∂θ

∂t∗
= 0 (14)

for θ = θm and 0 < xe < 1.
Relevant dimensionless parameters are formed to concisely write the governing

equations. Two of the non-dimensional groups are similar to those that result from compact
heat exchanger analysis, with the addition of a third that accounts for latent heat transfer.
The number of transfer units, Ntu, relates the heat transfer into the matrix to that advected
along the flow. It is critical for design because it encapsulates the conductance, UA, which is
inherently dependent on the device configuration. The second parameter, Rwe, is the ratio
of thermal capacities between the working fluid and matrix element and thus is dependent
on the materials selected. The third parameter, the Stefan number, Stio, relates the relative
importance of sensible heat transfer to latent heat transfer between the inlet and outlet.
This captures the operating conditions, namely the temperature range in which the thermal
energy storage is used. For the previously outlined purpose to transfer energy via latent
heat transfer, the Stefan number will be quite small. These dimensionless groups are
defined as:

Ntu =
UswL
ṁcp,w

, Rwe =
ρwcp,w Ac

ρscp,sν′
, Stio =

cp,s(Tmax − Tmin)

hls
(15)

Typical values of the dimensionless numbers for low temperature energy applications are:

Ntu = O(101), Rwe = O(100), Stio = O(10−1) (16)

These are calculated from TES device geometry, thermophysical properties, and trans-
port parameters. For the experiment considered here, the complete set of parameters in the
three governing equations were non-dimensionalized according to Equation (15) to give
the values shown in Table 8.

Table 8. Thermal Energy Storage Prototype Dimensionless Variable Values.

Process Ntu Rwe Stio

Melting 32.5 0.534 0.234

Freezing 30.4 0.541 0.234

The three coupled differential equations each have slightly different forms.
Equation (12) is an inhomogeneous first order partial differential equation, while
Equations (13) and (14) are inhomogeneous first order ordinary differential equations.
Many numerical methods for heat transfer problems employ symmetric approximations to
derivatives because the diffusion equation is parabolic and requires spatial information
on both sides of each node. In earlier iterations of analyzing the TES device, a central
difference approximation was used to account for diffusion. However, in comparing the
coefficients for advective and diffusive terms, we found that advection was significantly
more important than diffusion. This means that energy transfer via flow through the device
greatly outweighs the potential for energy transfer through axial conduction. The advection
equation is hyperbolic and requires spatial information on the upstream side of each node.
By employing one-sided approximations to derivatives in the differential equations, we can
achieve first order accuracy in time and space. This method matches the asymmetry in
the equations; Equation (12) models translation in space and all three equations march
forward in time. Thus, in order to solve the differential equations numerically, we use a
first order accurate finite difference approximation, employing the upwind and forward
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Euler discretization methods respectively. The temperature and melt fraction fields in the
storage matrix are determined using these equations. This working fluid temperature,
φ, is dictated by:

φn+1
j = φn

j + ∆t∗ ×
[
Ntu(θ

n
j − φn

j )
]
− ∆t∗

∆ẑ

[
φn

j − φn
j−1

]
(17)

This equation is first order in time and space, necessitating a boundary and an initial
condition. The working fluid exchanges heat with phase change material in the storage
matrix, which undergoes both sensible and latent heat transfer depending on the tem-
perature of each discrete node. Sensible energy storage occurs when a cell containing
PCM at position j∆ẑ and time n∆t∗ is not at its melt temperature, θm. The storage matrix
temperature at the next time step can be determined via:

θn+1
j = θn

j + ∆t∗ ×
[
NtuRwe(φ

n
j − θn

j )
]

; xn+1
e,j = xn

e,j (18)

for θn
j 6= θm and xn

e,j = 0 or xn
e,j = 1.

If Equation (18) would result in the element temperature at the next time step, n + 1,
passing the PCM melt temperature, then θn+1

j is set to θm and latent heat transfer begins,
with melt fraction change calculated from Equation (19):

xn+1
e,j = xn

e,j + ∆t∗ ×
[
NtuRweStio(φ

n
j − θn

j )
]

; θn+1
j = θn

j (19)

for θn
j = θm and 0 < xn

e,j < 1.
The grid size used to solve Equations (17)–(19) for the first-principles model results

presented in this paper are ∆ẑ = 0.005 and ∆t∗ = 0.00025.
The equations governing the storage matrix temperature and melt fraction are first

order in time but have no spatial derivative. As such, only one boundary condition is re-
quired to solve these coupled first order differential equations. In ẑ, we non-dimensionalize
the time varying working fluid inlet temperature, Twi, to write the boundary condition in
its dimensionless form:

At ẑ = 0 : φn
j=1 = φwi(t∗) (20)

for t∗ > 0.
Initial conditions on temperatures, φ and θ, and melt fraction, xe, are also required

for the entire domain. At the beginning of the heating process, we might expect the PCM
in the device to be completely frozen at the cold system temperature, corresponding to
dimensionless values of 0 for φ, θ, and xe. Conversely, after a complete melting process
ending at the hot system temperature, the initial conditions for re-freezing the device
should correspond to dimensionless values of 1. These can represent any distribution
desired, as in Equation (21):

At t∗ = 0 : φn=1
j = φ0(ẑ) , θn=1

j = θ0(ẑ) , xn=1
e,j = xe,0(ẑ) (21)

for 0 ≤ ẑ ≤ 1.
Table 8 enables us to proceed with the solution of the differential Equations (17)–(19),

with boundary condition given by Equation (20) and initial conditions from Equation (21)
for the first-principles model. Solving the differential equations with specified initial and
boundary conditions provides spatially and temporally resolved temperature and melt
fraction fields.

These initial and boundary conditions can be spatially uniform and temporally steady
if desired. To capture charge and discharge cycles, the initial conditions can be modified
to match the end and beginning of subsequent processes and the boundary condition can
be adjusted to capture time-varying conditions. The temperature and melt fraction fields
should be resolved spatially and temporally until the melting or freezing process end time,
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t∗end, is reached. In order to determine device performance at t∗end, the following equation
should be used to evaluate effectiveness, εtes, for a PCM heat exchanger:

εtes,ext =
∑1

ẑ=0 xe(t∗end, ẑ)

∑1
ẑ=0 xe,max(t∗, ẑ)

where xe,max = 1 (22)

for the melting process.

εtes,char =
∑1

ẑ=0 1− xe(t∗end, ẑ)

∑1
ẑ=0 1− xe,min(t∗, ẑ)

where xe,min = 0 (23)

for the freezing process.
The storage process, which may occur between melting and freezing processes, is not

characterized as having an effectiveness (because no energy is added or removed from
the device). For the experimental testing of the prototype, freezing immediately followed
melting; no storage took place. The effectiveness for either energy transfer process has the
functional relationship:

εtes = εtes(t∗, Ntu, Rwe, Stio) (24)

In addition, the latent energy capacity of the TES can be calculated according to:

Ecap = ρPCMν′Lhlsεtes (25)

The results of using this numerical first-principles framework to predict performance
of the TES prototype will be compared to those generated by an object-oriented approach
with Modelica.

5. Modelica Implementation
5.1. Preliminary Modelica Model

Before constructing complex system models, it was necessary to verify Modelica’s
capability to effectively capture phase change physics in the thermal storage component.
The preliminary model test setup, shown in Figure 2, was composed of a connected series
of unit cells of finite volume. On one side of these, the primary pump delivered working
fluid to the heat exchanger at a specified inlet temperature. The working fluid traveled
through the series of PCM heat exchanger elements before reaching the outlet.

Figure 2. Preliminary model of the thermal energy storage test rig in Modelica.
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The preliminary model for a PCM heat exchanger element of the TES device is shown
in Figure 3. This included two ports on either side that served as inlets and outlets
for the working fluid. There were also two temperature sensors, one before and one
after energy transfer. On the working fluid side, the convective heat transfer coefficient
was computed by a function that determines its value based on the Reynolds number,
consistent with Equation (2). The heat transfer area in the conductance term mirrored that
of the experimental prototype, though it could be updated for different designs.

Figure 3. Preliminary model of a single PCM heat exchanger element in Modelica.

The PCM was exposed to a convection boundary, with the flow channel control vol-
ume on one side (s = 0) and a symmetry boundary at the centerline of the storage section
between flow passages (s = x). The thickness of the slab, x, between these two boundaries
is defined in the PCM material record. In Modelica, we have the freedom to spatially
resolve the PCM matrix unit cell via the nSta parameter which dictates the number of states
or nodes. nSta can be automatically determined by an algorithm based on the thickness
and thermal diffusivity of a material slab and the number of states, nStaRe f , in a defined
reference material layer. The PCM matrix unit cell in the thermal energy storage model
used the Modelica Buildings Library Buildings.HeatTransfer.Conduction.SingleLayer com-
ponent [45]. The algorithm behind this object is the heat diffusion equation with specific
internal energy, u, replacing temperature, T, as the independent variable to be determined:

ρc
∂T
∂t
→ ρ

∂u
∂t

= k
∂2T
∂s2 (26)

Temperature is then modeled as a function of internal energy with a constitutive
equation including Tsol , Tliq, hls, c, and ρ. This function is represented by a cubic hermite
spline interpolation with linear extrapolation. The required PCM properties were set to
those of the effective properties described in the experiment design section.

5.2. Full Modelica Model

Following preliminary model validation, we developed a full Modelica model of the
experimental prototype with parameters that could be easily extended to other PCM heat
exchanger designs. The full TES model is composed of a series of finite volumes and
uses the Modelica Buildings.Fluid.HeatExchangers.DryCoilDiscretized heat exchanger as
a basis of design [29]. Our full model, similar to the preliminary model, discretizes the
TES into a number of heat exchanger elements that capture the most basic heat transfer
phenomena between the working fluid and PCM. There were a few simplifications in the
preliminary model that we improved with three major enhancements.
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5.2.1. Metal Frame Capacitance and Conductance

The prototype TES unit has five working fluid passages that sandwich four PCM
matrix sections. We are able to capture this geometry by differentiating between perimeter
and core elements, essentially dividing the model shown in Figure 3 into two separate
classes of PCM heat exchanger elements. The core elements contain a flow channel control
volume that exchanges heat with a PCM matrix unit cell on both sides, whereas the perime-
ter elements only exchange heat with a PCM matrix unit cell on one side. For perimeter
elements, the other side of the flow channel control volume exchanges heat with the metal
case unit cell, that also provides structural support for the PCM heat exchanger.

In the full model, we accounted for the additional thermal mass in the heat exchanger
core due to the metal casing that contains the PCM. This mass is most significant around
the perimeter of the core. On the top, bottom, and sides, there are aluminum plates that are
5 mm thick. Considering the perimeter casing around the length of the prototype device,
this is 0.86 kg of metal, with a capacitance of 769 J/K. To account for this capacitance,
the metal case was added to a perimeter heat exchanger element in the Modelica model as
in Figure 4. The thermophysical properties of this metal case are specified in a material
record. As the material is significantly more conductive than PCM, the metal case unit cell
undergoes axial conduction with neighboring nodes in the PCM heat exchanger. It has an
insulation boundary with ambience to prevent environmental heat losses.

Figure 4. Full model of a perimeter element in Modelica.

5.2.2. Flow Channel Discretization

The flow channel is divided axially into pipe segments that are specified as a parameter
rather than hard-coded. The full model also accounted for manifolds to divide the flow into
parallel elements with a common convection coefficient, as shown in Figure 5. There are
two outer flow channels and any number of inner flow channels, which is consistent with
most rectangular stack PCM heat exchanger designs. The model user can specify the
number of sequential and parallel pipes as parameters.
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Figure 5. Full model of the PCM heat exchanger in Modelica with core and perimeter elements.

5.2.3. Working Fluid Residence Time

We determined the residence time within the prototype to be 51 s, on average, and in-
corporated an existing Buildings.Fluid.Delays.DelayFirstOrder block from the Modelica
Buildings Library into our full TES model [29]. Figure 6 shows this delay block to the right
of the PCM heat exchanger in the updated model of the thermal energy storage system.

Figure 6. Full model of the thermal energy storage test rig in Modelica.

6. Results and Discussion

Figure 6 shows a representation of the test rig in Modelica. This setup enables easier
comparison to both the measured data and first-principles model prediction of outlet
temperature. Figure 7 presents the comparison of experimental, first-principal numerical
model, and Modelica model inlet and outlet temperature measurements. Prior to simulation
of the melting process, we initialized the TES device models to 25.5 ◦C, consistent with
experiments. For the duration of the test, we used the experimental time-varying inlet
temperature, shown in red, as a boundary condition for both of the models. It first increases
to melt the PCM and then decreases to initiate freezing of the PCM, thereby producing
a complete energy transfer cycle. The dashed blue line is the TES working fluid outlet
temperature from experimental data. The solid blue line is the exit temperature variation
predicted by the previously developed first-principles computational model, and the solid
black line is the exit temperature predicted by the Modelica model.
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Figure 7. Comparison of experimental data with model predictions of prototype outlet temperature.

In this experiment, melting is immediately followed by freezing, with no storage
period between the two processes. Given a temperature gradient between the PCM and
surrounding environment, additional energy losses would occur through the exposed
sides of the heat exchanger throughout the cycle. If the device were properly insulated,
as the prototype is, thermal energy could be stored for hours. A larger device, with a lower
surface area to volume ratio, could likely retain much of its thermal energy for days if
needed. The models assume perfect insulation from the surroundings, which is a reasonable
approximation for this device. Future model iterations could explore this further.

There are some discrepancies to note between the experimental data and first-principles
and Modelica model predictions. Some of this has to do with additional dynamics that
neither of the models account for. The highest discrepancy is observed during freezing.
There, the models are not designed to capture the poor nucleation rates that necessitate
subcooling before the phase change material can start freezing. The dip in the dashed
blue line at ∼2500 s reflects this phenomenon. We’ve discussed this for the first-principles
model in previous work [27].

Aside from subcooling, the greatest disagreement appears between the curves below
the melt temperature for both melting and freezing. We note that both model slopes differ
from experiments while the PCM is solid for both processes, but that slopes match well
while the PCM is liquid for both processes. This inconsistency could be attributed to a
difference in thermophysical properties (cs < cl , ks > kl , ρs > ρl) which impact both
conductance (heat transfer) and capacitance (energy storage). The models currently use
constant average values for each of these thermophysical properties and do not account for
the variation between liquid and solid PCM. That said, the difference in thermophysical
properties between the two PCM states is fairly minimal. Instead, we believe that there is
most likely a major contact resistance between the flow channel and PCM when the salt
hydrate is dehydrated.

Noting our inability to capture subcooling and contact resistance, we can see a limita-
tion of our modeling approaches. By creating white box (physics-based) models based on
first principles equations, we neglect secondary dynamics that have a measurable impact
on heat transfer. To address this, we could instead create grey box (mixed) or black box
(data-based) models of thermal energy storage. Such a technique would likely involve non-
linear (least squares) regression to determine a set of coefficients that fit the experimental
data. While there is utility in this method, data-based models are often bounded by their
inability to make accurate predictions outside of the training data set.

Beyond temperature predictions, we can also explore other comparative metrics,
including the amount of energy accumulation in the TES prototype for the melting and
freezing cycle. In order to determine this, we performed a water-side integration of the
transient heat transfer rate and collected results in Table 9. For the calculation, we used
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constant thermophysical properties (ρw,cp,w) associated with the fluid inlet temperature for
each process. Previously, we estimated that the latent energy storage capacity of the TES
prototype was 132 kJ. The higher storage capacities in the table below reflect additional
sensible energy storage.

Table 9. Water-Side Energy Balance of Full Cycle.

Energy Balance Ein Eout Ediff Unit

Experimental 171.5 179.1 −7.6 kJ

First-principles 155.0 148.4 6.6 kJ

Modelica 142.2 142.3 −0.1 kJ

To understand the meaning of the values in this table, we need to understand the signs
associated with the energy difference, Ediff. A negative sign indicates that more energy
was removed by the working fluid than put into the TES. We see that for the experimental
data, this was the case. We suspect that there was more energy initially in the thermal
storage than estimated, as the initial conditions of the prototype were not included in this
simple calculation. A positive sign for Ediff indicates that more energy was put into the
TES than was removed by the working fluid. For the first-principles model, this means that
some energy accumulated in the battery over the duration of the cycle. This makes sense,
given that we specify a heat transfer effectiveness of 95%. We cannot fully remove all of
the energy stored in the battery. In a perfect melt and freeze cycle with identical initial and
final conditions, the water-side energy balance would show 0 kJ, indicating that all energy
input into the storage was removed. Our Modelica model nearly predicts a perfect energy
balance and we believe that the energy difference shown is due to simplifications made to
perform this water-side calculation. This indicates that all energy input into the Modelica
model is extracted at the end of the cycle.

Another metric that we can use to determine whether or not the models effectively
capture the physics is the process end time (e.g., heating time, cooling time), which in-
cludes both sensible and latent energy transfer. For the experimental run shown here,
the completion times summarized in Table 10 were observed. The times indicate when the
outlet temperature reaches the inlet temperature for both the heating and cooling processes.
These can serve as proxies for rate of charge and discharge.

Table 10. Times to Complete Heating and Cooling Processes.

Process Completed Value Unit

Experimental heating 1590 s

First-principles heating 1530 s

Modelica heating 1908 s

Experimental cooling 5370 s

First-principles cooling 4488 s

Modelica cooling 5160 s

The process completion times are close, with the model prediction error ranging from
3–25%. For the melting process, we see 3.9% error in the first-principles prediction, while
we see 24.7% error in the Modelica prediction. For the freezing process, we see 16.4% error
in the first-principles prediction and 3.9% error in the Modelica prediction. While these are
promising, they indicate further work to be done to better characterize the conductance
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which dictates process completion times. In particular, we recommend further research to
determine the potential impact of contact resistance for solid salt hydrate phase change
materials. We expect that cavities form as the phase change material solidifies and shrinks,
reducing conductance in the device below the transition temperature.

It will be challenging to represent exact heat transfer physics with the models with-
out a careful inclusion of additional dynamics. However, in the models presented here,
the average absolute difference between experimental measurement and numerical pre-
diction of outlet fluid temperature is one to two degrees celsius. In addition to the energy
comparison and process completion time metrics, this small temperature difference lends
significant support to the accuracy of the first-principles and Modelica predictions and
meets our intended goal of developing and validating models that designers can use for
the simulation and analysis of thermal storage systems.

7. Conclusions

In previous works, we established a dimensionless first-principles framework to model
transient heat transfer in a TES device [26]. We also presented a summary of experimental
tests of a TES prototype using lithium nitrate trihydrate phase change material as a storage
medium [27]. The experimental design and numerical framework were summarized in
this paper, to be used as benchmarks to validate the performance of a new TES model in
Modelica. Modelica is an object-oriented language that gives us the freedom to develop
models, simulate performance, test controls, iterate on system designs, and make all of this
available as part of larger component libraries.

Our new TES model captures unit cell heat transfer within the storage device in addi-
tion to component scale time-varying temperature of the working fluid that travels through
it. We validated its performance with our previous experimental data and first-principles
predictions. Using energy accumulation, heat transfer rates, and outlet temperature differ-
ences as metrics, we found that the model meets our expectations. There are a few sources
of discrepancies that could be explored in future work to improve this model further.
In particular, we note that subcooling and solid-phase PCM contact resistances appear to
be the primary physics driving differences between measured data and model predictions.
Those secondary dynamics should be considered when evaluating whether a model is good
enough to represent phase change thermal storage for the application at hand. For our
purposes of modeling innovative HVAC systems with load shifting capabilities, we believe
it is.

We are in the process of creating a free and open-source thermal storage suite in
Modelica that contains this PCM heat exchanger model and others. We intend to make the
models available to other researchers by including them in the Modelica Buildings Library
package. With this contribution, we aim to make load shifting with active thermal storage
easier to simulate and ultimately incorporate into building heating and cooling systems.
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Abbreviations
The following symbols are used in this manuscript:

Ac Cross-sectional area of the working fluid flow passage
cp,s Effective specific heat of the storage matrix
cp,w Specific heat of the working fluid
hls Latent heat of fusion of the PCM in the storage matrix
ks Effective thermal conductivity of the storage matrix
kw Thermal conductivity of the working fluid
L Length of the TES device
ṁ Working fluid mass flow rate per passage
sw Wetted perimeter of the working fluid flow passage
Te Temperature of a discrete element in the storage matrix
Tliq Liquidus temperature of the PCM in the storage matrix
Tm Melt temperature of the PCM in the storage matrix
Tmax Maximum temperature encountered in the TES device
Tmin Minimum temperature encountered in the TES device
Tsol Solidus temperature of the PCM in the storage matrix
Tw Temperature of a discrete parcel of working fluid
U Overall heat transfer coefficient
xe Melt fraction of a discrete element in the storage matrix
∆t∗ Non-dimensional temporal discretization
∆ẑ Non-dimensional spatial discretization
εs Fraction of the storage matrix occupied by PCM
θ Dimensionless temperature of a discrete element in the storage matrix
ν′ Storage matrix volume per unit length of the device
ρs Effective density of the storage matrix
ρw Density of the working fluid
φ Dimensionless temperature of a discrete parcel of working fluid
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