

Supplementary Materials

Thermodynamic Analysis of Biomass Gasification Using Aspen Plus: Comparison of Stoichiometric and Non-Stoichiometric Models

María Pilar González-Vázquez¹, Fernando Rubiera¹, Covadonga Pevida^{1,*}, Daniel T. Pio² and Luís A.C. Tarelho²

- ¹ Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain; mariapilar.gonzalez@incar.csic.es (M.P.G.-V.); frubiera@incar.csic.es (F.R.)
- ² Department of Environment and Planning & Centre for Environmental and Marine Studies (CESAM), Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
 - danieltp@ua.pt (D.T.P.); ltarelho@ua.pt (L.A.C.T.) * Correspondence: cpevida@incar.csic.es
 - 1 1

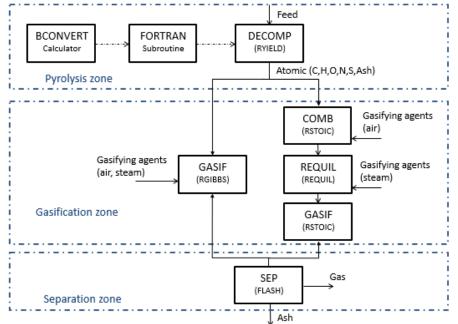
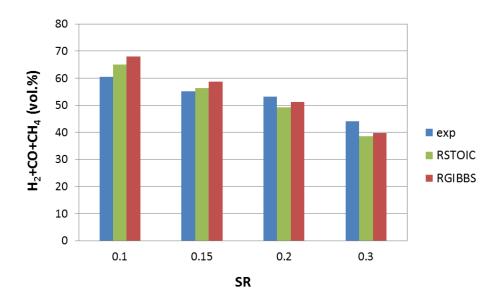
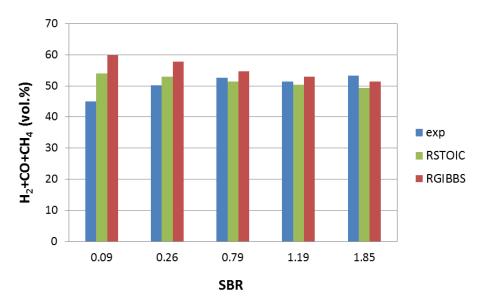
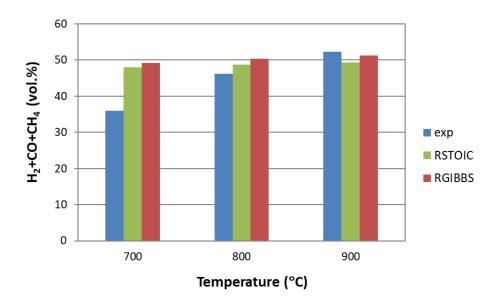


Figure S1. Flow chart of the simulation procedure for the steam gasification process.


Citation: M.P. González-Vázquez, F. Rubiera, C. Pevida, D.T. Pio, L.A.C. Tarelho. Thermodynamic Analysis of Biomass Gasification Using Aspen Plus: Comparison of Stoichiometric and Non-Stoichiometric Models. *Energies* **2021**, *14*, 189. https://doi.org/10.3390/en14010189

Received: 27 November 2020 Accepted: 28 December 2020 Published: 1 January 2021


Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Copyright: © 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

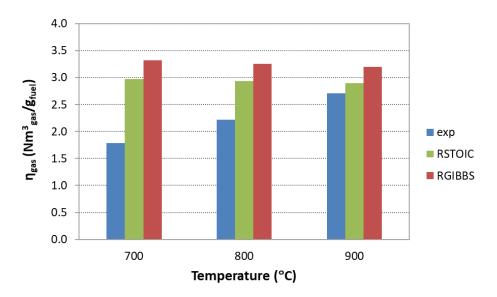

Figure S2. Comparison between experiment and simulation data of combustible gas concentration at different stoichiometric ratios, for the gasification of PKS with 70 vol.% steam at 900 °C.

Figure S3. Comparison between experiment and simulation data of combustible gas concentration at different steam to biomass ratios, for the gasification of PKS at 900 $^{\circ}$ C with SR = 0.2.

Figure S4. Comparison between experiment and simulation data of combustible gas concentration at different temperatures, for the gasification of PKS at SR = 0.2 and 70 vol.% steam.

Figure S5. Effect of the variation of η_{gas} with temperature for the gasification of PKS with SR = 0.2 and 70 vol.% steam.

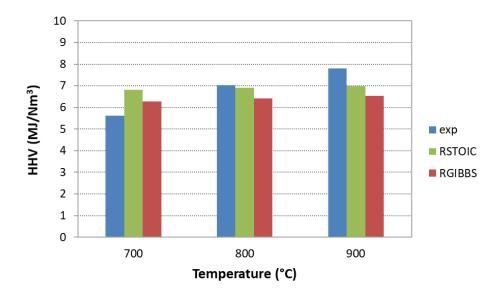
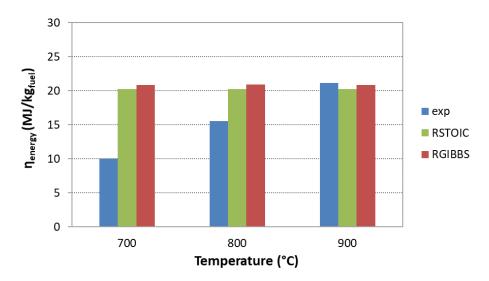



Figure S6. Effect of the variation of HHV with temperature for the gasification of PKS with SR = 0.2 and 70 vol.% steam.

Figure S7. Effect of the variation of temperature on η_{energy} for the gasification of PKS with SR = 0.2 and 70 vol.% steam.

Table S1. Block description used in the simulation model.

Block name	Aspen Plus® name	Description						
		Models a reactor by specifying reaction yields of each component. Converts the						
DECOMP	RYIELD	non-conventional stream "FEED" into its conventional components. Ultimate						
		and proximate analysis of biomass are required.						
		Fortran subroutine used to calculate the yields of the component attributes of the						
BCONVRT	CALCULATOR	biomass feedstock. A set of different variables associated to inlet/outlet streams						
		required to solve this block.						
HEAT-1/	EXCHANGER	Increase the oxidizing agent temperature from ambient temperature to the gas						
HEAT-2	EACHANGEN	preheater. This temperature is fixed in 650°C.						
		Gibbs free energy reactor. Simulates the partial oxidation and gasification reac-						
GASIF	RGIBBS	tions. Chemical equilibrium is restricted by specifying a temperature approach						
		for each reaction. The operation temperature is a variable studied in the work.						

SEP	FLASH	Separates the gas production in the gasification and the solid waste remaining in the process.					
СОМВ	RSTOIC	Simulates the oxidation reactions occur in a gasification process when conven- tional components of biomass react with O ₂ from the air stream inlet. Stoichio- metric reaction is known. The operation temperature is a variable studied in the work.					
GASIF		Simulates the char gasification when carbonaceous material reacts with gasifying agent no consumed in the previous steps. Stoichiometric reaction is known. The operation temperature is a variable studied in the work.					
REQUIL	REQUIL	Simulates the equilibrium of homogeneous reactions when steam is used as gasi- fying agent. The operation temperature is a variable studied in the work.					
MIX2	MIXER	Mixes the stream S1 and S with specifying temperature and pressure variables.					

Table S2. Comparison of experimental and model predictions and error values for the product gas compositions (vol.%) at different stoichiometric ratios during gasification of PKS using 70 vol.% steam at 900 °C.

SR	EX	XPERIN	1ENTA	AL	GIBBS				RMS	RSTOIC				RMS
JK	CO ₂	CO	CH ₄	H_2	CO ₂	СО	CH ₄	H_2	NNI O	CO ₂	СО	CH ₄	H_2	
0.1	15.83	26.05	7.33	27.10	12.37	23.25	2.76E-03	44.76	9.82	12.60	24.21	4.88	35.88	5.09
0.15	17.02	24.43	6.53	24.13	15.60	17.18	7.83E-04	41.52	10.00	14.67	19.26	3.65	33.42	4.59
0.2	15.63	22.64	5.95	24.68	17.54	13.16	2.75E-04	38.15	8.81	16.24	15.38	2.65	31.29	3.89
0.3	17.00	17.71	4.61	21.74	19.50	8.18	4.54E-05	31.49	7.31	18.49	9.61	1.10	27.84	2.10

Table S3. Comparison of experimental and model predictions and error values for the product gas compositions (vol.%) at different steam to biomass ratios during gasification of PKS at 900 °C with SR=0.2.

CDD	E	XPERIM	IENTA	L	GIBBS				DMC	RSTOIC				RMS
SBR	CO ₂	СО	CH ₄	H_2	CO ₂	СО	CH ₄	H_2	RMS	CO ₂	СО	CH ₄	H_2	KW15
0.09	16.90	21.947	5.83	17.22	4.62	31.14	8.63E-03	28.71	10.01	6.18	29.64	4.40	19.99	6.78
0.26	15.81	24.23	6.71	19.18	7.46	27.15	4.17E-03	30.69	8.00	8.96	25.65	3.63	23.75	4.45
0.79	15.53	23.66	5.93	23.09	12.54	19.98	1.26E-03	34.68	6.93	13.09	19.65	2.81	28.87	4.04
1.19	16.91	21.30	5.77	24.38	15.00	16.68	6.45E-04	36.27	7.07	14.67	17.58	2.70	30.02	3.88
1.85	15.63	22.64	5.95	24.68	17.54	13.16	2.75E-04	38.15	8.81	16.24	15.38	2.65	31.29	5.19

Table S4. Comparison of experimental and model predictions and error values for the product gas compositions (vol.%) at different temperatures during gasification of PKS using 70 vol.% steam with SR=0.2.

TCC	E	XPERIM	IENTA	L	GIBBS				DMC	RSTOIC				DMC
T(°C)	CO ₂	CO	CH ₄	H_2	CO ₂	CO	CH ₄	H_2	RMS	CO ₂	CO	CH ₄	H_2	RMS
700	16.67	19.081	5.38	11.57	20.66	8.83	3.08E-02	40.39	15.65	18.31	12.50	2.59	32.97	11.31
800	15.73	22.60	6.16	17.48	19.00	11.13	2.40E-03	39.22	12.78	17.23	14.00	2.62	32.10	8.70
900	15.60	22.59	5.94	23.77	17.54	13.16	2.75E-04	38.15	9.15	16.24	15.38	2.65	31.29	5.47