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Abstract: Smart spaces are characterized by their ability to capture a holistic picture of their
contextual situation. This often includes the detection of the operative states of electrical appliances,
which in turn allows for the recognition of user activities and intentions. For electrical appliances
with largely different power consumption characteristics, their types and operational times can be
easily inferred from data collected at a single metering point (typically, a smart meter). However, a
disambiguation between consumers of the same type and model, yet located in different areas of a
smart building, is not possible this way. Likewise, small consumers (e.g., wall chargers) are often
indiscernible from measurement noise and spurious power consumption events of other appliances.
As a consequence thereof, we investigate how additional sensing modalities, i.e., data beyond
electrical signals, can be leveraged to improve the appliance detection accuracy. Through a set of
practical experiments, recording ambient influences in eight dimensions and testing their effects on
21 appliance types, we evaluate the importance of such added features in the context of appliance
recognition. Our results show that electrical power measurements already yield a high appliance
recognition accuracy, yet further accuracy improvements are possible when considering ambient
parameters as well.

Keywords: appliance load signatures; ambient influences; device classification accuracy

1. Introduction

The number of different electrical appliances in households keeps rising. As such,
it is becoming increasingly important to recognize the potentials for energy savings and
demand side management, i.e., the possibility to defer power consumption in order to
improve the stability of the power grid. For these purposes, it is not only vital to have
complete knowledge about the appliances present in a building, but also their individual
energy demands and operational times. Monthly electricity bills only provide insufficient
information to accomplish this task, however, as the required information can only be
estimated from the household total. Even current-generation smart meters are incapable of
providing a detailed and unambiguous itemization of energy consumption, so more fine-
grained means for load monitoring in a home are needed to provide enhanced consumption
feedback and accomplish energy savings (which were documented to reach up to 12%
in [1]).

Two fundamentally different approaches exist for the collection of the required data at
appliance level. One the one hand, Intrusive Load Monitoring relies on the installation of
power sensing devices for each appliance under consideration (or at least every electrical
circuit in the home). The advantages of being able to attribute power consumption to
individual devices, however, come at a high cost for instrumenting the environment with
sensors, and maintaining their operability during their lifetime. On the other hand, Non-
Intrusive Load Monitoring (NILM) methods collect the electrical information of a whole
building or apartment and use algorithms to disaggregate the total power demand into
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the contributions of individual devices. The non-intrusive approach is often preferred due
to lower costs and installation efforts. However, current NILM methods do not always
succeed in accurately and unambiguously disaggregating power data from households [2].

Most current methods for appliance recognition and load disaggregation consider
electrical consumption data (e.g., active power) [2,3]. When data are available at a sufficient
resolution, however, more complex features like spectral components can be computed and
used supplementally. Using more, especially more complex, features has been shown to
improve the rate of correct device recognitions [4]. Confusion may still exist between certain
appliance types, and some appliances have been reported to be “hard to disaggregate” [5,6]
based on their electricity consumption alone. One potential candidate to alleviate the
current limitations of NILM is the additional use of contextual information, as documented
in [7–9]. For example, the distributions of On- and Off-durations as well as dependencies
between device usages are modeled into a Factorial Hidden Markov Model (FHMM) in [7].
The resulting performance shows a marked improvement, even for a larger number of
active appliances, and reaches improvements of up to 25%.

A similar approach based on user presence and time constraints was presented in [3].
The application of time constraints alone was shown to achieve a small improvement
of about 3 %. However, as soon as indicators of the user presence were included in
combination with time constraints, improvements of about 14% were reported.

But there are more parameters besides the aforementioned attributes. It is well-known
that many electrical devices generate acoustic, magnetic, or optical emissions, or dissipate
the consumed energy as heat during their activity. The potentials of using such information
in the appliance recognition task have been investigated in [5,10,11] and further studies
presented in Section 2. We, however, believe that our work is first to present a holistic and
comprehensive study that determines the information gain of a range of additional sensing
modalities. A thorough understanding of the importance of ambient sensing features is
vital to optimally support appliance recognition (e.g., by lowering the number of candidate
devices for the classification task). We strongly expect monitoring systems to profit from a
deeper understanding of the features that characterize the operation of electrical appliances.
System operators could then decide to specifically collect data based on the importance
of certain sensor types, i.e., their usefulness, to better evaluate if costs outweigh possible
benefits. Costs typically arise from hardware purchases and the device deployment in their
optimum locations (e.g., luminosity sensors need to be mounted next to the light-emitting
parts). However, non-monetary costs may also play a role, e.g., when sensors have the
potential to compromise on user security or privacy. Understanding the importance of
ambient sensing features will thus ease the considerations which sensor types to deploy.
Accordingly, our work seeks to establish the foundation to enable further work in this
context by providing an answer to the following question: Which ambient sensors can lead
to improved appliance recognition results, and what are the most useful sensor types to
facilitate the categorization of electrical consumers by their types?

In order to answer this question, we design a study to be conducted in two sequential
steps. The first step, the design and implementation of a comprehensive data acquisition
setup, is essential due to the unavailability of publicly released data that contains informa-
tion beyond electrical power consumption data. In our second step, data analysis, we assess
the contribution of each sensing modality to the overall appliance recognition task. Beyond
the recognition of specific appliances, we also determine the set of features to facilitate the
detection of appliance classes (i.e., the distinction between devices of different categories).
Ultimately, the analyses presented in this work allow us to derive recommendations for
future data collection campaigns, similar to the set of guidelines for electrical datasets
presented in [12].

Our manuscript is organized as follows. In Section 2 we provide an overview of
further studies which considered additional ambient sensing and illustrate how these
works were considered for the design of our study. In Section 3 we present our system
design to collect data from eight ambient parameters, both during appliance operation
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and inactivity. The concept for our subsequent evaluation and its parameter choices are
detailed in Section 4. We evaluate to what extent devices could be recognized and what
ambient sensors carried the most information in Section 5, and we summarize the insights
gained in our study in Section 6.

2. Related Work

A number of studies have considered further data besides electrical information
sources to improve the device identification and accordingly improve the disaggregation
process: Acoustic sensors, light, temperature, vibration, electro-magnetic fields, or ac-
celeration data [5,10,11,13–16]. Remarkedly, however, the aforementioned works have
considered these parameters largely in isolation, as shown in Table 1. Opposed to this, we
present a comprehensive study that relies on all sensor types in this work.

Table 1. Types of Ambient Sensors Used in Related Work.

Reference Sound Light Temperature Electro-Magnetic
Fields Acceleration Vibration

[5] X
[15] X X X
[16] X X X X X
[10] X X X X
[14] X

this paper X X X X X X

The sensor deployment methodologies differ as well. The authors of [5,11,13,14] use a
small number of sensors, which are not fixed to the appliances under consideration, but
rather monitor the ambient conditions in general. As such, they can collect information
from appliances that are operating simultaneously. In contrast to this, the collection setups
presented in [10,15,16] use separate sensors for each appliance, thus recorded values can
be unambiguously attributed. These sensor placements are mostly related to the different
concepts of the respective studies. The authors of [11,13,17] present different sensing
platforms and concepts, but only briefly evaluate the possibility to identify electrical
devices. In [14] the authors introduce a system which solely includes ambient audio
information, collected on a per-room granularity. The system is considered as a load
monitoring system and uses different collected audio features as a first disaggregation
layer. Only if the audio features do not allow for disaggregation, the electrical features are
evaluated and can overwrite the decision. The authors of [18] follow a similar approach,
albeit they implement a smartphone-based system to detect household activities. Through
the annotation of activities with corresponding energy consumption data, the authors
enable basic load monitoring based on audio information. Lastly, the authors of [10]
present the appliance-agnostic usage of “multi-modal signatures” through the common
evaluation of all sensor data and their changes that allow for device identification. They
recognize the potential of closely correlated environmental data as trusted sources of
appliance activations, allowing NILM systems to validate or re-train themselves. While the
general usefulness of multimodal signatures is proven in [10], the used sensor types are not
evaluated concerning their individual usefulness. Aligned with these insights, the authors
of [19] have also remarked the potential of environmental sensors in disaggregation tasks.

Bearing these related findings in mind, we present our data acquisition concept and
its evaluation in the following sections. As the related studies did use approaches with
and without consideration of electrical data for the recognition process, our study will
accordingly include evaluations for both approaches.

3. Data Acquisition Concept

A number of datasets are widely used in related research on energy data analytics
so far (e.g., [20–24]). Collecting such datasets, however, is often motivated by the desire
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to capture a large continuous stream of electrical energy consumption readings for data
processing tasks like pattern recognition or forecasting. Ambient features or user-specific
details (e.g., presence) are not part of most datasets, and there is no dataset available that
comprises electrical signals as well as the full set of ambient conditions we consider in this
work. As a result of this shortcoming of published datasets, it was necessary to run our
own data collection campaign. We have decided to design a collection system for both
electrical and ambient sensor data and use it to collect a dataset for the data analysis we
conduct in Section 4. We describe our rationales behind the design of the system as well as
the data preprocessing steps we apply in the following subsections.

3.1. Selection of Appliances

As we aim for a generalizable evaluation of device types and their emissions of non-
electrical signals, the first decision to make is the selection of the set of appliances under
consideration. Our goal is to determine a representative set of electrical devices, that
will be operated in a controlled environment in order to collect the input dataset for all
further analyses. To make an informed choice of devices, we have consulted studies on
electrical appliance ownership worldwide [25–27]. Through considering the appliance
types reportedly owned by at least 2/3 of the households, we have been able to identify a
set of 13 appliances that are present in many households in developed countries. Minor
household devices are typically not part of the aforementioned surveys due to their large
diversity and the negligible contributions to the monthly energy bill. Still, several use
cases for their recognition in load data are conceivable, e.g., the identification of user
activities that are tightly bound to the use of these devices. Accordingly, we have chosen
eight additional devices related to cooking (e.g., a mini oven), personal hygiene (such as
a hair dryer), and office activities (e.g., a printer). The full set of all 21 appliances under
consideration is provided in Section 4.

3.2. Selection of Monitored Parameters

Having selected the appliances under consideration, their (expected) ambient influ-
ences need to be determined, in order to derive the sensors required to capture these
parameters. For the evaluation of possible ambient influences we have extracted possible
emissions from the devices’ data sheets, the general construction of devices (thus implicitly
considering the laws of physics), and moreover inspected the devices under test manually
during their operation. The complete list of all eight captured sensor parameters is given
in Table 2.

3.3. Data Collection System Design

Based on the derived set of requirements pertaining to the parameters to monitor, a
collection system was prototypically designed and implemented. As it was our intention
to collect the sensor measurements as close to the Device under Test (DuT) as possible,
most of the ambient sensors were wired up to an embedded microcontroller system, based
on the PJRC Teensy 3.2 board. Its compact size offered the possibility to be mounted very
close to the DuT. Sensors for the parameters of interest were interfaced to the board either
via a digital two-wire (I2C) interface, or through analog signals that were converted into
the digital domain by the microcontroller’s integrated 16-bit Analog-to-Digital Converter
(ADC). The microcontroller system was programmed to use a periodic sampling schedule,
and capture the considered parameters as synchronously as possible. Retrieved sensors
values (e.g., digitized temperature readings) are scaled in order to report their data in SI
units (e.g., °C). The data sampling rates are shown alongside the sensor types in Table 2.
They were selected such that the microcontroller system could perform data processing
and transmit them (across its USB-serial connection) in real-time. The choice of 400 Hz for
vibration measurements aligns well with typical rotational speeds of the evaluated internal
motors (e.g., internal motors of DVD and CD players typically spin at 200 rpm to 570 rpm).
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Table 2. Summary of the Used Sensing Devices and the Properties of the Data They Collect.

Symbol Sensing Device Interface Collected Information
[Unit] Sampling Frequency

T temperature sensor I2C ambient temperature [°C] 1/5 Hz
H humidity sensor I2C relative humidity [%] 1/5 Hz

UV UV radiation sensor I2C UV steps from the sensor 400 Hz

IR IR radiation sensor ADC ADC steps 400 Hz
LDR visible light sensor ADC ADC steps 400 Hz

B magnetic flux density
sensor ADC magnetic flux density [mT] 400 Hz

Vib vibration sensor ADC ADC steps 400 Hz

Aud microphone USB dominant audio frequency
[Hz] 44.1 kHz

U oscilloscope USB mains voltage [V] 10 kHz
I oscilloscope USB appliance current [A] 10 kHz
P oscilloscope USB appliance power [W] 10 kHz

The sensor platform was connected to a personal computer in charge of centrally
collecting all sampled data, to which two more sensors were attached. First, electrical
signals for both voltage and current are collected at 10 kHz through a USB-interfaced
PicoScope 4444 oscilloscope, equipped with a Hall effect current probe and a passive
differential measurement voltage probe. Second, the collection of audio information and
the determination of the most dominant frequency was accomplished through a connected
USB microphone, sampling audio at 44.1 kHz. Temporal synchronization between the
data recorded from the heterogeneous sensing modalities is ensured through inter-process
signaling on the data collecting system. The raw data is collected into a file containing
electrical information, an audio file, and a CSV file containing the ambient measurements.

3.4. Measurement Environment

With the exception of large and immobile appliances (washing machine, dryer, re-
frigerator), measurements were collected in the same ambient conditions of an office
environment. The remaining measurements were collected in-situ, i.e., a kitchen (for the
fridge) and the laundry room (for washing machine and dryer). The ambient sensors were
placed directly on the DuT, oriented according to the expected maximum emission strength
for each captured feature. As such, e.g., light sensors were placed in front of light emitting
devices and magnetic flux density sensors were placed close to motors wherever possible.
While such a placement may not be realistic for real-world deployments, note that the
intention of our approach is to determine importance of such features in the first place, for
which as detailed information as possible are required. An example of the sensor placement
for the mini oven is shown in Figure 1. Unless practically impossible, measurements were
collected for full working cycles of devices. Each measurement was succeeded by a phase
of appliance inactivity, in order to allow for sensor offset calibration. Data from devices
with continuously variable power demand or without deterministic operation durations
(e.g., computer monitors, lamps) were collected for two to five minutes. The only device
measured for shorter duration was the food hand mixer, as it could only be operated for
up to one minute before requiring a cool-off period, according to its user manual.
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Vibration UV Radiation Visible Light Infrared Light Magnetic Flux Density Humidity and Temperature

Figure 1. Practical Setup of the Data Collection Test Bench. The Microphone is not Pictured, due to its Positioning Outside
of the Image Boundaries.

At least two operational cycles were recorded for each DuT in order to permit cross-
checking the recorded sensor data. All measurements were manually checked for correct-
ness before storage, in order to ensure consistency regarding the collected data. In the rare
occasion of obviously inconsistent data, the data collection was repeated, and the faulty
data trace discarded. For devices that could be operated in different states (such as the hair
dryer or fan), measurements were collected for each of the states individually, and treated
as the same device during the evaluations.

3.5. Data Postprocessing and Dataset Creation

For the feature evaluation presented in Section 4, we only consider a simplified feature
subset, consisting of either the maximum changes or a binary activation indication for the
ambient features under evaluation. These simplified features were chosen because they
could easily be determined locally on the low-power sensing device. Besides their fast
computation, omitting raw data from collection also caters to user privacy protection [28].
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Additionally, findings based on such simple features are also reproducible on systems
using higher sampling rates. All three points were vital to allow the results of this study to
be used as a guideline for a wide range of practical systems, some of which are expected to
only provide low data resolutions.

To compute these features, each data collection period Tcoll was succeeded by an
offset calibration phase Tcal . Both were designed to have approximately the same duration
(i.e., 2–5 min, cf. Section 3.4). A clear delineation between both phases was easily possible
due to the corresponding changes in electrical current consumption. Changes to the
ambient humidity and temperature values were detected using additional temperature
and humidity values, collected through a secondary measurement device in the room.
During the manual evaluation of each trace, the steady-state value of each ambient sensor
readings was determined for Tcal , and used as the baseline value for the uninfluenced
ambient readings. For each of the used sensor types, the difference between both values in
Tcoll and the baseline is used as a feature in our analysis. In addition to the use of absolute
values by which each parameter has changed, we also consider them in a binary form,
according to the following rule set:

• T, H, Ultraviolet (UV): A change was reported when the values recorded during Tcoll
differed by at least 1 (°C, %, or UV step) from the values recorded during Tcal .

• Infrared (IR): We observed the IR sensor’s readings to oscillate by a maximum of ± 5
ADC steps during Tcal . A change of the IR signal was thus logged when the average
of the IR samples recorded during Tcoll differed by at least 1 step from the highest
non-singular value in Tcal .

• Visible light (LDR): Readings collected from the Light Dependent Resistor (LDR) were
determined to fluctuate by ± 15 ADC steps. A change was thus logged when collected
measurements differed by at least 50 ADC steps from the average value during Tcal .

• Magnetic flux density (B): To account for naturally occurring variations, a change in
the magnetic flux density was detected if the mean values during the steady phase of
Tcal and Tcoll differed by at least 0.2 mT.

• Vibration (Vib): To minimize the impact of spurious vibration signals, the mean value
seen during Tcoll was required to differ by at least ± 15 ADC steps from readings seen
during Tcal .

• Audio information (Aud): The recorded audio files were checked manually to ensure
that no undesired ambient noise would affect the evaluations. During this check it
was furthermore verified that the device actually produced sound emissions. This
approach was chosen because an algorithmic threshold solution would not have
accounted for possible undesired sound collections from the collection environment.

We would like to note that supplementally collected electrical features (voltage, cur-
rent, power) were not translated into a binary form, given that voltage readings remained
constant and current samples always showed variations during a device’s operation. In-
stead, the electrical features used in this paper were chosen such that they represent
electrical information already used during load monitoring, at a complexity similar to the
considered ambient features. This enables a comparison between use cases only using
ambient data and use cases combining ambient data with the already present electrical
data. All electrical features are calculated during a 40 ms (i.e., two mains periods) long
section of the measurement, selected such that the appliance’s current consumption is
maximal, and requiring that its value is identical in both successive mains periods. Based
on the data from this excerpt, the RMS voltage (U) and current (I) as well as the active
power (P) are calculated.

Based on the collected and post-processed data, we have generated four variations of
the dataset to serve as the foundation for our evaluations. All datasets contain a total of
144 traces. Their details are given as follows.

• Ambient Parameters; binarized (Abin): Changes in the sensor measurements were
evaluated in a binary way in order to evaluate if the corresponding ambient character-
istic is influenced by the device’s activation. The resulting data consisted of a binary
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value for each sensor, which we use in our evaluation as indicators whether the DuT’s
operation had an impact on the corresponding characteristic.

• Ambient and Electrical Parameters; binarized (AEbin) is an extension to Abin that
makes the (numerical) electrical readings (U, I, P) available to the evaluation system
in addition to the (binary) indicators of changes in the ambient data.

• Ambient Parameters; differences (A∆): In contrast to the previously described Abin
dataset, the maximum change is used now, i.e., the difference between the maximum
sensor value during Tcoll and the average of the values collected during Tcal . While
most sensor values could be evaluated on the raw data, the vibration and audio
measurements where evaluated in the frequency spectrum. As such the measured time
sequence was transformed into the frequency spectrum and the strongest frequency
was chosen.

• Ambient and Electrical Parameters; differences (AE∆): Analogous to AEbin, the
AE∆ dataset is comprised of the (numerical) values from A∆ in conjunction with the
(numerical) values for the three electrical features.

Let us consider an example of the data collection and processing sequence for the mini
oven appliance as follows. The mini oven was equipped with the sensors according to
Figure 1. Sensor data was collected during the mini oven’s operation twice, with sufficient
time between measurements to allow for a cooling down. Raw environment sensor data for
one of the measurement run are plotted in Figure 2. The average sensor values during Tcal
and from ambient measurements are then postprocessed to create the four aforementioned
variants of the dataset. In the figure, the first 20 min of the sample, during which an
electrical current flow was recorded, constitute Tcoll . The remaining about 20 min of the
collected trace constitute Tcal . The postprocessing is applied as described, a visualization
of the process is included in Figure 3. The resulting entries for the four datasets introduced
above are computed. They are shown for reference in Table 3.
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Figure 2. Data Collection Example , Displaying the Environmental Sensor Traces. Units According to
Table 2, the End of Tcoll is Marked as a Dotted Grey Line.
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Figure 3. Feature Extraction Processing Flow, Applied to Collected Raw Data .

Table 3. Sample Data Collected from a Mini Oven, Following the Processing Flow Depicted in Figure 3.

Dataset T H UV IR LDR B Vib Aud I P U

Abin TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE
A∆ +9 °C −8 % 0 +74 0 +0.59 mT 37.2 Hz 7838 Hz

AEbin TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 4.39 A 995 W 226.8 V
AE∆ +9 °C −8 % 0 +74 0 +0.59 mT 37.2 Hz 7838 Hz 4.39 A 995 W 226.8 V

4. Data Evaluation Concept

Our research objective is to assess how knowledge of the ambient conditions in an
appliance’s environment can support the recognition of electrical appliances. A total of
eleven attributes are available for analysis (cf. Section 3): Eight ambient sensor attributes
and three electrical quantities (voltage, current, and power). Instrumenting residential
environments with sensing devices to capture all of these parameters, however, has several
drawbacks. Besides the monetary costs for purchasing and installing sensors as well as
ensuring their continuous operability, the continuous collection of data may be perceived
as an intrusion into user privacy.

We hence conduct a methodological evaluation how each of the sensed attributes
impact the appliance recognition rate, in order to determine the most information-rich
subset of features.

We begin our evaluations with a determination of the importance of the contributions
of each of the collected features when used to distinguish between the 21 appliance types
listed in Table 4. In subsequent evaluations, however, we also present three evaluations
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considering the categorization of appliances into classes, as well as appliance recogni-
tion results when the appliance class is known a priori. Through this set of evaluations,
guidelines on the best-suited feature subsets for different appliance recognition scenarios
are derived.

Table 4. List of Considered Appliances and Associated Categories.

Device Type
Classification By

Operation State Energy Consumption Load Curve

DVD player Single-State small inductive
Fan Multi-State small ohmic

Coffee machine Single-State large ohmic
Fridge Single-State large inductive
Lamps Single-State small ohmic/SMPS

Laptop computer Infinite-State small SMPS
Personal computer Infinite-State small SMPS

Microwave Single-State large inductive
Monitor Infinite-State small SMPS

Vacuum cleaner Single-State large inductive
Washing machine Multi-State large ohmic

Dryer Multi-State large ohmic
Printer Infinite-State small ohmic/SMPS

Hand mixer Multi-State small inductive
Mini oven Single-State large ohmic

Toaster Single-State large ohmic
Mouth wash Multi-State small inductive
Hair dryer Multi-State large ohmic

Clothes iron Single-State large ohmic
FM radio Infinite-State small inductive

Kettle Single-State large ohmic

4.1. Determining the Feature Importance for Appliance Recognition and Classification

Determining the usefulness of features for classification purposes is a task that occurs
across many research domains [29]. Considering the appliance recognition and classifica-
tion case of this study, the usefulness of features is considered to allow cost-efficient data
collection through the exclusion of features that carry little or no information. Additionally,
feature selection methods allow for the comparison of the usefulness of features or subsets
of features for different use cases. Note that the usefulness of a feature is highly specific
to a given use case. For our contribution, we have chosen appliance recognition as a use
case, i.e., the classification of appliances by their types, depending on the values of the
available feature set. Appliance recognition is a typical classification use case from the field
of energy data analysis: Based on a set of features, the single most likely appliance type
should be returned. As follows, we assess the importance of the features we have described
in Section 3.5 for the task at hand. Instead of conducting a single study on the general
feature importance, however, we proceed in a more fine-grained fashion by considering
several subsets of appliances (cf. Table 4). This way, we seek to provide a more detailed
picture of the feature relevance for different use cases.

4.2. Methodology for Determining the Distinctiveness of Features

For the evaluations we conduct below, two pieces of information are of primary interest:

1. A score to describe the importance of each feature, and
2. the most expressive subset of features, referred to as the optimal subset.

While the individual determination of a feature’s importance helps in assessing to
what extent each feature can reduce the chance of misclassification, it generally cannot
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identify the feature combination that leads to the best classification result overall. In order
to find such combinations, the determination of an optimal subset is required. This feature
subset considers which features work best together, indicating an ideal set of features to
be used for the considered use cases [29]. When combined, both methods (individual
feature relevance and best feature subset) allow for the development of better appliance
monitoring systems.

4.2.1. Feature Importance

The usefulness of each feature is determined through the usage of a Random Forest of
Trees. A decision tree is a structure which continuously divides the whole input data into
subsets, such that the new subsets become more pure, i.e., features that lead to different
output values become divisive elements [30]. In other words, the features that enable
the cleanest division of input data into categories are considered the most important. In
contrast to a simple decision tree, the Random Forest of Trees generates multiple trees for
randomly selected subspaces of the total feature space. Only a subset of the input sets of
the feature values is evaluated in each tree, and the resulting trees are then combined by
averaging the determined probabilities. This ultimately allows for greater classification
accuracy improvements as compared to a singular decision tree [30].

The Gini Impurity is defined as the rate of misclassification when an additional
decision element is added to an existing decision tree [31]. It is widely used for the feature
selection in Random Forests of Trees in order to annotate each division of input data into
new subsets with an importance score. Only the decision that yields the greatest reduction
of the Gini impurity is maintained, which corresponds to a decrease in the probability of
misclassification. The averaged Gini impurity scores are used as feature importance scores
in our present study.

4.2.2. Optimal Feature Subset

To confirm that attained results can be generalized and allow to determine an optimal
feature subset, we rely on the Recursive Feature Elimination [29]. The algorithm starts
with the full set of features and greedily excludes the least informative feature after each
evaluation iteration. A ranking criterion is calculated for all features, and the feature with
the lowest ranking criterion is eliminated. This process is repeated until the desired size of
the feature subset is reached [32]. If the size of the optimal subset is unknown in advance,
a performance rating for the trained classifier results can be introduced. For this study, the
accuracy was chosen as a performance rating for the trained classifier, such that the subset
with the greatest overall accuracy result is chosen as the optimal feature subset.

4.2.3. Avoiding Overfitting

Small subsets of data can be prone to overfitting their input data, i.e., adapting to their
characteristics too well. Cross-validation is a methodology which allows to counteract
overfitting, as the available data of input features and known correct output classifications
is not simply divided into disjunct subsets of training and testing data, but broken down
into multiple smaller sets, so-called folds. The classifier is then trained in a leave-one-out
manner: Each fold is once used as the test subset, while all other folds are used for training.
The results of these training phases are averaged and given as the Cross-Validation Score
(CVS) [29,32].

4.2.4. Implementation

All aforementioned feature selection methods were implemented in Python using
the scikit-learn library [33]. The Recursive Feature Elimination is implemented using a
Support Vector Classification and uses the accuracy as its performance rating. We specify
the average accuracy in percent, with an accuracy of 100 % indicating that all input samples
could be correctly categorized. As the collected datasets are rather small, only a 2-fold
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cross-validation is conducted. The 2-fold validation is stratified to ensure that the class
distributions between the test and training sets remain comparable to the full set of data.

4.3. Device Categorization

Let us next introduce the device categorization used during our evaluation studies.
A complete overview of the appliances under consideration and their corresponding
classes according to the three categorization approaches are given in Table 4. Categorizing
appliances by their classes allows us to not only run analyses on the entire dataset, but
also on subsets of the data in which all devices share a commonality (e.g., an inductive
load curve). For example, the device of type mini oven is a member of the Single-State
devices class, belongs to the large consumers (classified by its power consumption), and is
an ohmic appliance (due to the load type of its heating rods).

4.3.1. Categorization by Number of Operational States

Classifications by an appliance’s number of operational states can be found in works
considering load monitoring [2,34,35]. The typical device classes listed in the context of
Non-Intrusive Load Monitoring (NILM), based on the complexity of their consumption
patterns, are given as follows.

• Single-State Devices: Also known as On/Off appliances, such devices exhibit one
steady electrical power consumption value during their activity.

• Multi-State Devices: These devices have multiple states of usually different power
consumption levels, that occur in defined (usually sequential) patterns.

• Infinite-State and/or Continuously Variable Devices: This class of devices exhibits
constantly variable power consumption values.

We included this categorization for two reasons: First, different works in load monitor-
ing have reported that Single-State appliances are often easier to disaggregate [2]. Second,
we expect greater differences in the importance of ambient features when appliances exhibit
multiple operational states.

4.3.2. Categorization by Power and Energy Consumption

We wish to note at this point that NILM is not the only use case for energy data
analysis. For example, applications like demand side management favor the availability of
loads with a large energy consumption. As large energy consumers typically emit more
excess heat and generate stronger magnetic fields, differences in the feature importance
are likely to occur. Finding the optimal feature subset for such application cases is thus a
prerequisite for the realization of such services. Hence, we classify the appliances under
consideration by their power consumption, which we define as follows:

• Large Consumer: Devices surpassing 1 kW of consumption or 10 kWh per year con-
sumption, which was determined based on the data sheet information concerning
expected annual consumption.

• Small Consumer: All electrical devices that do not count as large consumers.

4.3.3. Categorization by Load Type

Finally, we consider device classification according to their load type, according to
the classification scheme proposed in [34]. The load type is determined by the phase shift
between mains voltage and an appliance’s current consumption as well as the presence
of non-linear loads within devices. To allow to determine the load type for the devices in
our evaluation, we followed the definition and examples given in [34], and evaluated the
devices’ data sheets.

• Ohmic Consumers: Devices that have neither recognizable reactive power nor exhibit
harmonics beyond the fundamental mains frequency

• Inductive Consumers: Devices whose inductive component dominates their current
intake (e.g., transformers).
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• Switched-Mode Power Supplies (SMPS): Devices with a large amount of harmonic con-
tent, whose characteristics may moreover vary depending on the currently exhibited
power demand.

It needs to be noted that we excluded the “composite load” class proposed in [34],
as for our test only the washing machine and dryer could have fit the corresponding
definition. Furthermore, the proposed “Capacitive Consumers” presented in [34] do not
have a representation in our set of devices, as they are not typically found in residential
spaces.

4.4. Conducted Evaluations

We evaluate the ambient features with respect to three general use cases:

1. First and foremost, we assess how well the feature set allows for correctly determining
the type of the appliance. This appliance recognition test is conducted for each of the
datasets Abin, A∆, AEbin, and AE∆. The available features are provided at the input,
and the system trained to correctly categorized them into the corresponding (known)
output, i.e., the device type, reporting an overall accuracy score eventually.

2. We assess the correct recognition of an appliance’s device class. This evaluation
group considers the usage of features calculated from ambient sensor data for the
classification of devices according to their operation state, energy consumption, and
load curve (as introduced in Table 4).

3. We assess how well the system can distinguish between device type that are confirmed
to belong to the same class. To this end, we train the system with data from all
appliances of a single class only, and verify which features allow to distinguish
between the remaining electrical devices best. Using the evaluations in this scenario,
we seek to find out if and to which degree ambient information is informative if a
device class is already known, but the devices inside the class are supposed to be
distinguished.

5. Evaluation of the Feature Importance

As follows, we present the results of the different evaluation settings introduced in
Section 4.4. Unless noted otherwise, we present the Cross-Validation Score (CVS) and
optimal feature subset for each of the four sets of input data (cf. Section 3.5). The symbol
notations for the sensed modalities introduced in Table 2 are used in the results.

5.1. Evaluation Results for the Distinction between Devices on the Full Dataset

Our first evaluation was conducted on the whole generated datasets and considered
the device types as output. The results for the Random Forest of Trees method are displayed
in Figure 4, whereas the results for the Recursive Feature Elimination are documented
in Table 5. The bar graphs indicate the calculated feature importances, wherein the y-
axis denominates the feature, while the x-axis denominates the corresponding feature
importance in percent.
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Figure 4. Feature Importances for the Appliance Recognition Across the Whole Dataset.
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Table 5. Cross-Validation Score (CVS) Values for the Evaluated Appliance Recognition Scenarios.

Features in the Best Feature Subset

CVS [%] T H UV IR LDR B Vib Aud U I P

Abin 68.8 X X X X X X X n/a n/a n/a
AEbin 70.8 X X X X X X X

A∆ 70.8 X X X X X X n/a n/a n/a
AE∆ 76.4 X X X X X X X

The Random Forest of Trees method indicates a high usefulness for the vibrations
and sound measurements. For the case of using binary change indicators, the magnetic
flux density is deemed similarly important. The inclusion of electrical parameters slightly
equalizes the importance levels, yet the addition of electrical parameters only leads to slight
improvements of the results when compared to the use of ambient sensors alone. This result
is confirmed through the Feature Elimination, which shows that the inclusion of electrical
parameters allows for slightly improved Cross-Validation Scores, but the best feature subset
does still require nearly all features. The UV and visible light emissions are only useful for
a very small number of devices; the UV readings exclusively for lamps. While this indicates
that the sensor type is not of interest for most evaluations, it furthermore shows that there is
potential to improve lamp recognition by means of only a single sensor type. Furthermore,
audio frequency features can be considered to be highly informative, as they are not only
present for most devices, but distinctly different between them. The maximally observed
sensor changes, as collected in A∆ and AE∆, enable more fine-grained assessments of the
impact of observed signal changes. While the subsequent measurements on a device did
generally not exhibit strong variations, variations did exist between different devices of the
same type. The differences in ambient influences between two devices of the same type
can, however, be high. For example measurements from two different microwaves resulted
in consistent dominant audio frequencies for each of the devices across measurements.
Nonetheless, one microwave exhibited a dominant frequency of 172 Hz, whereas the other
had a dominant frequency of 344 Hz. This indicates that setups evaluating ambient data
need to consider the similarity of devices of the same type and if multiple devices of the
same type are present. Such findings must be considered during training, as they indicate
that training done on one household may not be transferable to other environments.

5.2. Evaluation Results for Device Categories

The following evaluations were conducted such that, based on the ambient mea-
surements, each DuT was classified into its corresponding class for each categorization
presented in Section 4.3. Each presented evaluation provides the feature importance
considering the Random Forest of Trees method and the optimal feature subset deter-
mined through the Recursive Feature Elimination, as well as the CVS achieved with the
optimal subset.

5.2.1. Classification According to the Number of States

In this evaluation each measurement was classified as belonging to either a Single-
State, Multi-State or Infinite-State appliance. The results are listed in Figure 5. Both
evaluated algorithms show a high importance of audio and vibration features for the classi-
fication into Single-State, Multi-State and Infinite-State Appliances. The binary evaluation
achieves a better Cross-Validation Score, indicating that the simple presence of sound or
vibrations could provide relevant contextual information for this classification. However,
both CVS values are low, such that a classification based on the ambient features alone may
not be fruitful.
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Figure 5. Feature Importances [%] and Best Feature Subset for the Classification into Single-State,
Multi-State and Infinite-State Devices—Considering Only Ambient Features.

5.2.2. Classification According to Electrical Power Consumption

This evaluation considers the feature usefulness to determine if a set of ambient
measurements belongs to a large consumer or small consumer appliance. Its results are
given in Figure 6. The evaluation according to consumption ranks the temperature and
humidity sensors as most relevant for this distinction. This is unsurprising, as appliances
designed to significantly heat or cool the environment generally exhibit a high power
consumption. However, the Feature Elimination furthermore reveals that the UV radiation
is a relevant feature for this distinction, which is reasonable considering that only the light
installations under evaluation emitted UV radiation, all of which belong to the class of
small consumers.

Figure 6. Feature Importances (%) and Best Feature Subset for the Classification into Small Consumers
and Large Consumes—Considering Only Ambient Features.

5.2.3. Classification According to Load Curves

The evaluation considering load types evaluates feature usefulness to determine if
measurements were taken from an ohmic, inductive or SMPS appliance. The results are
contained in Figure 7. To classify devices according to their load curves, the Feature
Elimination indicates that maximum changes are more effective. However, the results
for the two applied methods differ considerably. This indicates that the combination of
features is a lot more informative than singular features. The similar usefulness of most
features determined through the Random Forest of Trees matches this finding. However, it
needs to be remarked that the CVS for the binary evaluation is very low, indicating that
this evaluation is not well-suited for a classification into load types.

Figure 7. Feature Importances (%) and Best Feature Subset for the Classification into Ohmic, Induc-
tive, and Switched-Mode Power Supplies Devices—Considering Only Ambient Features.
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5.3. Device Type Distinction within Different Device Catgetories

The following evaluations consider if and to which degree ambient information is
informative if a device class is already known, but the instances of the device type within
the given class shall be distinguished. Such an evaluation allows us to identify the device
classes whose instances can be distinguished algorithmically. In contrast to the classification
task considered in the previous section, the evaluations were not run on the full datasets
with a target output from the set of device classes. Instead, we have run them on subsets of
the full data, divided such that only one class of devices is part of the subset. The results
are recorded in Tables 6 and 7 and presented in the following subsections.

Table 6. CVS Values for the Evaluated Appliance Destinction Scenarios—Binary Features.

Abin Best Feature Subset AEbin Best Feature Subset

CVS [%] T H UV IR LDR B Vib Aud CVS [%] T H UV IR LDR B Vib Aud U I P

Single-State 83.3 X X X X X X X X 97.2 X
Multi-State 53.6 X X X X 60.7 X X X X
Infinite-State 100 X X X X X 100 X

Large 42.0 X X X X 75.3 X X X X X
Small 61.9 X X X X X X 71.6 X X X X

Ohmic 48.8 X X X X 78.8 X X X X X
Inductive 57.4 X X X X X X X 59.5 X
SMPS 100 X X X X 100 X X

Table 7. CVS Values for the Evaluated Appliance Destinction Scenarios—Maximum Feature Changes.

A∆ Best Feature Subset AE∆ Best Feature Subset

CVS [%] T H UV IR LDR B Vib Aud CVS [%] T H UV IR LDR B Vib Aud U I P

Single-state 88.9 X X X X X X 90.3 X
Multi-state 62.5 X X X X X X 75 X X X X X X X
Infinite-state 100 X X X 100 X

Large 77.8 X X X X X X 69.2 X X X X
Small 90.4 X X X X X 84.2 X X X X X

Ohmic 76.3 X X X X X X X 77.5 X X X X X X
Inductive 87.1 X X X X 87.2 X X X
SMPS 100 X X 100 X X

5.3.1. Distinguishing between Devices Sharing the Same Number of States

Recall that the device classes categorization used in this paper divides the set of
considered appliances into Single-State, Multi-State and Infinite-State appliances. Again,
we have computed the best feature subset within each of these categories, as well as ranking
the feature importances. The Feature Elimination results can be found in Tables 6 and 7,
in the first to third row, while the results for the Random Forest of Trees are depicted in
Figure 8.

Concerning the recognition of device types from measurements of either only Single-
State or only Multi-State Appliances, a rather large set of ambient measurements is required
for best results. None of the features are particularly indicative of a specific appliance
when considered on its own. However, the visible light and UV radiation are not present
in Multi-State appliances, as none of the considered Multi-State devices emitted light.
The distinction of Infinite-State devices differs as their distinction reaches the maximal
Cross-Validation Score, in the case of maximum change evaluations, with a small dataset
which only contains changes in temperature, humidity, and vibration. Sound emissions
were identified as similarly important through the Random Forest of Trees method. The
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inclusion of electrical features was found to be useful for all three intra-category distinctions
(as visible in the columns on the right-hand side of the tables).

Figure 8. Feature Importances (%) for Recognition of Appliances of a Single Class—Appliance
Categorization By: Number of State.

5.3.2. Distinguishing between Devices of the Same Consumption Class

For the following evaluations, the datasets of ambient features were divided, such as to
create datasets that only contain measurements from either large or small consumers. The
resulting datasets were evaluated to assess to what extent the device type of a measurement
can be determined based on the data. The Feature Elimination results are documented in
Tables 6 and 7 in the fourth and fifth row, and the results for the Random Forest of Trees
are visualized in Figure 9.

Considering the large consumers (see Table 4), most appliances include a heating or
cooling element, and multiple of them a motor, all of which can be expected to generate
magnetic fields, vibrations, and sounds. Accordingly, both feature selection methods
identify the magnetic flux density, vibrations, and audio features as important. The
presence of IR radiation is furthermore shown to be distinctive. Small consumers do show
low Cross-Validation Scores when only considering the presence of emissions, however
maximum change evaluation scores indicate adequate results. Two findings are of special
interest: First, the maximum change evaluation reaches better Cross-Validation Scores for
feature subsets only including ambient features. Additionally, the feature subsets are quite
large, but the majority of sensors is present for the recognition of only small and for the
recognition of only large consumers.
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Figure 9. Feature Importances (%) for Recognition of Appliances of a Single Class—Appliance
Categorization By: Power Consumption.

5.3.3. Distinguishing between Devices of the Same Load Type

To allow to evaluate the usefulness of ambient feature information for appliance
recognition for appliances belonging to a certain load type, the whole datasets were split
to only contain measurements of devices belonging to one load type and than evaluated
such that for each measurement the device type should be distinguished. The Feature
Elimination results are documented in Tables 6 and 7 in the sixth to ninth row, whereas the
results for the Random Forest of Trees are depicted in Figure 10.

While the intra-class distinction for inductive and SMPS devices generates small opti-
mal feature subsets for AE∆ with three or less features, the distinction of ohmic appliances
always requires bigger subsets. While acknowledge that our results for SMPS might be
potentially biased, given that many of these devices were emitting light and thus the great
importance of the LDR is not surprising. Still, the differences between ohmic and inductive
appliances indicate that systems using features best-suited for ohmic devices could gain
additional information to ease the distinction of inductive devices with low additional
data requirements.

5.4. Interpretation and Discussion

We evaluated a set of features calculated from ambient sensor readings considering
their usefulness and importances for different decision scenarios. All selected and evaluated
features were shown to be relevant for at least one of the considered evaluations. However,
the UV radiation was found to ease the distinction of different lamps, but could not be
detected for any other appliance. Accordingly, its usefulness is restricted to scenarios
involving such appliances.

To enable further consideration of the usefulness of individual features, we have
accumulated how often each feature was part of an optimal feature subset. The sums
are displayed in Table 8 and reconfirm the restricted usage potentials for the UV mea-
surements. It can be furthermore seen that the audio and vibration data have an overall
high importance, and were marked especially useful if only binary ambient information is
available (i.e., if operating devices leads to the presence of acoustic signals or vibrations).
A comparably high usefulness can be attributed to the temperature, magnetic flux density,
and humidity measurements; they are included in more than half of the optimal feature
subsets. Their importance is even higher when only ambient features are available for
evaluation. This evaluation of emissions and feature selection methods illustrates that
multiple ambient features might be necessary to properly distinguish electrical devices.
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Figure 10. Feature Importances (%) for Recognition of Appliances of a Single Class—Appliance
Categorization By: Load Curve.

Table 8. Number of Times each Feature was included in the Optimal Feature Subset.

Best Feature Subset

Dataset # of Evaluations T H UV IR LDR B Vib Aud U I P

Abin 12 8 8 3 5 8 9 10 11 n/a n/a n/a
A∆ 12 10 10 1 8 5 9 9 9 n/a n/a n/a
AEbin 9 1 3 0 5 1 5 4 4 1 2 3
AE∆ 9 5 6 0 6 3 3 5 3 1 0 1

Considering the usage of electrical and ambient features, our results show that the
inclusion of electrical features allows to achieve distinction with less ambient sensors and
generally achieves higher Cross-Validation Scores. This indicates that systems integrating
ambient information in the decision process should consider electrical and ambient feature
at the same time and not within different decision mechanisms.

During the evaluation of the usefulness for different scenarios, this work also con-
sidered the possibility to use ambient sensor data to assign device classes. While the
classifications specific to the appliance’s internal workings, based on the number of ap-
pliance states (Single-State, Multi-State, or Infinite-State appliances) or based on the load
curves (ohmic, inductive, or Switching Power Supplies), achieved low Cross-Validation
Scores, the distinction between smaller and larger consumers could be shown to be feasible
based on the easy-to-calculate features evaluated in this study from a small set of ambient
sensors. Considering the classification according to load types or number of states, the
use of binary features (indicating the change of an ambient parameter) is outperformed by
the use of amplitude information from the audio and vibration sensors. As other studies
have shown the feasible usage of more complex audio features (e.g., [5,14]), the additional
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information gain through such features could be investigated in future work to improve
the results for the usage of ambient data for appliance classification even further.

Lastly, we conducted evaluations on two kinds of features: A binary change evaluation,
and the evaluation of the maximum changes of sensor values. Considering the results,
we have observed that binary features of ambient influences typically yield lower Cross-
Validation Scores and often contain more features in the resulting optimal feature subsets.
The usage of maximum change information resulted in a rise of 15.3 percentage points
in the CVS, with a maximum improvement of nearly 30 percentage points for appliance
recognition scenarios using only ambient information. A further 5.1 percentage points
increase in CVS could be observed when including electrical information in appliance
recognition scenarios.

We expect the results of this work to be a useful guideline for the creation of future
energy data collection systems. Our careful analysis of the information gains of sensor
types beyond the traditionally used electrical signals showcases the great potentials of
using ambient information in conjunction with electrical data. We are convinced that
the analyzed scenarios regarding certain classes of devices and the usefulness of ambient
sensor types can help developers to advance and improve existing systems and algorithms
based on our findings.

6. Conclusions and Outlook

In this work, we have conducted an evaluation of ambient sensor data and its possible
uses in the context of electrical appliance recognition and load signature analysis in general.
Based on two feature selection and ranking methods, we have demonstrated that sensor
data for temperature, humidity, audio, vibrations, the magnetic flux density and IR radia-
tion are useful for nearly any load monitoring use case. It could additionally be shown that
a single measure for the change of ambient features during an appliance’s operation is often
sufficient to reach decent Cross-Validation Scores, indicating that such a data collection
with low resource usage can already improve load monitoring systems. By considering
different evaluation scenarios, we were able to show that the combination of both electrical
and ambient sensor data has been proven to provide the best benefits. We would like to
reiterate at this point that our work is not primarily contributing to the field of NILM, i.e.,
the disaggregation of aggregate load data. Rather than that, we have methodologically
determined the most information-rich sensor parameters that can improve energy data
analysis methods (such as NILM) in a more general and algorithm-independent way.
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Abbreviations
The following abbreviations are used in this manuscript:

Abin Ambient Parameters; binarized
AEbin Ambient and Electrical Parameters; binarized
A∆ Ambient Parameters; differences
AE∆ Ambient and Electrical Parameters; differences
ADC Analog-to-Digital Converter
CSV Comma-Separated Value
CVS Cross-Validation Score
DuT Device under Test
FHMM Factorial Hidden Markov Model
IR Infrared
LDR Light Dependent Resistor
NILM Non-Intrusive Load Monitoring
SMPS Switched-Mode Power Supplies
UV Ultraviolet
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