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Abstract: In the design of modern power electronics converters, especially DC-DC converters, circuit-
level computer simulations play an important role. This article analyses the accuracy of computations
of the boost converter characteristics in the steady state using an electrothermal averaged model of a
diode–transistor switch containing an Insulated Gate Bipolar Transistor (IGBT) and a rapid switching
diode. This model has a form of a subcircuit for SPICE (Simulation Program with Integrated Circuit
Emphasis). The influence of such factors as the switching frequency of the transistor, the duty cycle of
the signal controlling the transistor, the input voltage, and the output current of the boost converter
on the accuracy of computing the converter output voltage and junction temperature of the IGBT
and the diode were analysed. The correctness of the computation results was verified experimentally.
Based on the performed computations and measurements, the usefulness range of the model under
consideration was determined, and a method of solving selected problems limiting the accuracy of
computations of the characteristics of this converter was proposed.
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1. Introduction

DC-DC converters [1–3] are commonly used to supply power electronics devices.
One of the most popular types of these converters is a boost converter. This converter
allows obtaining the output voltage higher than the input voltage while maintaining high
conversion efficiency [1–3]. The diagram of the considered converter is shown in Figure 1.
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Figure 1. Diagram of a boost converter.

At the designing stage of all electronic systems, including DC-DC converters, com-
puter simulations are necessary [1,4,5]. One of the most popular simulation programs
used in electronics is SPICE (Simulation Program with Integrated Circuit Emphasis) [4,6].
One of its greatest advantages, compared to other popular simulation environments [7],
is the ability to easily implement any compact model of an electronic component. Un-
fortunately, the models included in the SPICE program are isothermal, i.e., they do not
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take into account thermal phenomena. In these models, the junction temperature of the
component is constant and does not depend on the power dissipated in it. In order to take
into account thermal phenomena in computations, the SPICE program formulates models
called electrothermal in the form of subcircuits for this program. The second significant
disadvantage of the models built into the SPICE program is their limited accuracy, resulting
from the simplified modelling of some important physical phenomena occurring in the
component, which for the Insulated Gate Bipolar Transistor (IGBT) was presented, among
others, in the paper [8].

The methods of estimating the internal temperatures of semiconductor devices using
the model-order reduction techniques are described in the paper [9]. In turn, the methods
of behavioural electrothermal modelling of power devices are described in the paper [10],
whereas the methods of electrothermal simulations of switch-mode power converters are
considered in the paper [11].

Performing the transient analysis of DC-DC converters in SPICE using the built-in
models of electronic components is time-consuming. As it results from the paper [9], the
time required to perform the computations to an electrically steady state is equal to even
24 h. From the engineering point of view, this is an unacceptably long time. Therefore,
for many years, scientists have been conducting research on new methods of analysis that
will allow reducing this time to an acceptable value [10–16]. These methods consist of
modifying the classic method of transient analyses of electronic networks [10,11,13]. They
use special algorithms to predict values of voltages and currents at the steady state.

Yet, another way is to use the method of a DC analysis with the averaged models of
semiconductor devices or the whole electronic systems [12–14,16,17]. Using this method, it
is possible to achieve a significant reduction in the computation time while maintaining
the accuracy of computations of static characteristics.

One of such methods is a method using the averaged model of the diode–transistor
switch [12,16,17], which is included in each single-inductor DC-DC converter, e.g., a boost
converter, the diagram of which is shown in Figure 1. In such a model, the observation
is used that at operation of the converter, the diode and the transistor contained in it
conduct the current alternately, and for each of these devices associated with subcircuits,
the equations describing the average values of voltages and currents of the converter in the
steady state are formulated [3,17]. The following assumptions are made when formulating
the equations constituting the average models used in the analysis of DC-DC converters:

(a) The formulated equations apply to the converter operation in the steady state,
(b) The equations take into account only DC components (average values) of voltages

and currents,
(c) The switching times of semiconductor devices are negligibly short.

The equations of the model are obtained by equating to zero the dependences describ-
ing the average values of voltage on inductors and the average values of the capacitor
currents occurring in the modelled network.

Averaged models of the diode–transistor switch have been described in the literature
for many years, and the results of computations performed using such models are de-
scribed for different DC-DC converters [3,12,17–26]. However, until recently, such models
were formulated only for converters containing ideal switches [3,17–22] or Metal Oxide
Semiconductor Field Effect Transistors (MOSFETs) [12,23–26], although IGBTs are not less
popular in this application [27–30]. It is worth noting that when using models of ideal
switches, it is impossible to compute the junction temperature of the diode and the tran-
sistor operating in the DC-DC converter. Meanwhile, the information about the values
of these temperatures is important for the designer of the system and it allows verifying
the correctness of the design. A diode–transistor switch with an IGBT requires a different
approach than for MOSFET, e.g., for modelling the output characteristics, which results
from their different shapes.

The main advantage of the averaged electrothermal model of a diode–transistor switch
is short time of computations, which typically does not exceed 0.1 s. Nonetheless, this kind
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of model has some drawbacks. These drawbacks include neglecting dynamic effects in the
thermal behaviour, impossibility of monitoring voltage on the transistor gate to observe a
possible dielectric breakdown, and omitting the parasitic capacitances of semiconductor
devices. Therefore, the averaged models may be useful to designers who need a fast and
accurate estimation of the converter characteristics and verification that the semiconductor
devices operate within their safe operating area.

The papers [31,32] propose a model of a diode–transistor switch for the analysis
of DC-DC converters containing an IGBT. The model presented in [31] is a simplified
model. In this model, a simplified method of describing the output characteristics of the
transistor was used, and the influence of thermal phenomena is not taken into account.
The main disadvantages of the model from [31] were removed in its next version, which
are presented in [32]. However, this model does not take into account some important
physical phenomena that may significantly affect the accuracy of computations using this
model. The correctness of the cited model was verified only in a limited range of load
current changes and at one value of the control signal frequency equal to 10 kHz.

This article analyses the influence of the accuracy of selected factors on the accuracy
of the computations of the boost converter characteristics made with the use of the model
from [32] under various operating conditions. Section 2 presents the model under consid-
eration, Section 3 describes the measurement system used to verify the correctness of this
model. Furthermore, in Section 4, the computed and measured characteristics of the boost
converter in a wide range of changes in the load current and frequency of the control signal
are presented. We also comment on the reasons for the discrepancies between the results of
computations and measurements. A method of reducing these discrepancies is proposed,
and their effectiveness is demonstrated in practice.

2. Considered Model

As it was mentioned above, in order to compute the DC characteristics of DC-DC con-
verters, the averaged electrothermal models of a diode–transistor switch can be effectively
used. The considered electrothermal model of the diode–transistor switch proposed in [32]
is based on the known concept, which was previously presented for the MOSFET and the
ideal lossless switch described, among others, in the papers [16,24]. This model allows
determining the DC characteristics of any DC-DC converter containing a diode–transistor
switch and junction temperature of the semiconductor devices contained therein. The
diagram of this switch is shown in Figure 2.
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Figure 2. Diagram of a diode–transistor switch with the IGBT and the diode.

The network representation of the considered electrothermal averaged model of a
diode–transistor switch (AVG model) is shown in Figure 3. This switch contains an IGBT
and a diode.

Terminals 1, 2, 3, and 4 of the AVG model correspond to the terminals of the IGBT
and the diode visible in the diagram of the diode–transistor switch shown in Figure 2. The
considered model is connected to other components of the analysed DC-DC converters,
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using these terminals according to the respective diagrams. The frequency f and the duty
cycle d of the signal controlling a DC-DC converter are parameters of the AVG model. These
parameters that are used occur in the formulas describing some controlled voltage and
current sources in this model. Internal temperatures of the IGBT and the diode correspond
to voltages on terminals TjT and TjD, respectively.
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Figure 3. Network representation of the AVG model including the IGBT and the diode [32].

The described model contains four blocks: main circuit, aided block, thermal model,
and CCM/DCM.

The main circuit contains two controlled voltage sources ER and ET and the controlled
current source GD. These voltage sources model the average voltage between the collector
and the emitter of the IGBT, whereas the current source models the average value of the
diode current. V1 is the voltage source of zero value that monitors this current. I1av and
I2av, as well as V1av and V2av in the main circuit, denote the average values of voltages and
currents of the semiconductor devices. The output values of the controlled voltage and
current sources are described with the equations formulated using the idea presented in
the papers [12,24]. According to this idea, at the steady state in each period T of the control
signal, the current flows through one semiconductor device only. The transistor current
flows for the time equal to d·T, and the diode current—for the time (1 − d)·T (in CCM
(Continuous Conduction Mode) or less in DCM (Discontinuous Conduction Mode)). In the
considered model, the current–voltage characteristics of both the semiconductor devices
are described by piecewise linear functions. These functions use parameters depending on
the internal temperatures of these semiconductor devices. Values of these parameters are
computed in the aided block. In turn, internal temperatures of the diode and the IGBT are
computed in the thermal model. The value of the equivalent duty cycle Veu is computed
in the controlled voltage source Eu included in the CCM/DCM block. The output value
of this source depends on the parameters control signal—the duty cycle d and frequency
f of the control signal, as well as inductance L of the inductor contained in the analysed
DC-DC converter and load resistance of this converter.

The internal temperature of the IGBT (TjT) and the diode (TjD) are computed in the
thermal model with self-heating phenomena taken into account. This model uses the
electrical analogue of a DC compact thermal model [1,33]. In this analogue, voltages TjT
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and TjD correspond to internal temperatures of the IGBT and the diode, respectively. In turn,
the average values of power dissipated in these semiconductor devices are represented
by the controlled current sources GTT and GTD. The output currents of these sources are
described as follows [32].

GTD =

(
VD +

RD·I2av

1−Veu

)
· I2av

1−Veu
(1)

GTT =

(
VIGBT +

RIGBT·I1av

Veu

)
· I1av

Veu
(2)

where VIGBT, VD, RD, and RIGBT describe the parameters of piecewise linear models of the
transistor and the diode characteristics.

The efficiency of the removal of heat generated in these devices is characterised by
thermal resistance represented by resistors RthT and RthD. The voltage source VTa represents
ambient temperature.

The other equations describing the controlled sources presented in Figure 3 are in [32].

3. Measurement Setup

In order to evaluate the usefulness of the considered model, the characteristics of
the boost converter containing the considered semiconductor devices are measured and
computed. The diagram of the investigated converter is presented in Figure 4.
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Figure 4. Diagram of the tested boost converter.

In the considered converter, the input voltage VCC is supplied from the GWInstek
PSB-2800L power supply. Appa 208 multimeters are used as ammeters and voltmeters.
The inductance of coil L1 is equal to 560 µH, and the capacitance of C1 is 1 mF. The
voltage controlling the IGBT Vctrl is produced by the NDN C5603P function generator
and connected to the gate of the IGBT via the driver IR2125. The prototype is mounted
on the Printed Circuit Board (PCB). The diode of the type IDP08E65 is characterised by
the maximum repetitive peak reverse voltage equal to 650 V and the maximum forward
current equal to 16 A, and the IGBT of the type IGP06N60T is characterised by the maximum
collector–emitter voltage equal to 600 V and the maximum DC collector current equal to
12 A. Based on the data given in the datasheet, the maximum switching frequency of this
IGBT is estimated as equal to 500 kHz. Some waveforms of voltages and currents of the
investigated DC-DC converter were measured using an oscilloscope Rigol MS05104 and a
current probe Tektronix PCPA 300 for different values of load resistance and parameters of
the control signal.

In order to determine the internal temperature Tj of the IGBT (TjT) or the diode (TjD),
the case temperature TC of these semiconductor devices is measured using a pyrometer
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PT-3S by Optex. Next, using the values of thermal resistances junction-ambient Rthj−a
and junction-case Rthj−c, the values of temperature Tj are calculated using the following
formula [7]

Tj = Tc + (Tc − Ta)·
Rthj−c

Rthj−a − Rthj−c
(3)

where Ta denotes ambient temperature. Values of thermal resistance Rthj−c are given in the
data provided by the manufacturer, whereas thermal resistance Rthj−a is measured with
the use of indirect electrical methods described e.g., in the paper [34].

The investigated DC-DC converter operates without any feedback loop, which is
typically used in switch-mode power supplies including such converters. Therefore, at the
selected operating conditions, the influence of changes in the load resistance and parameters
of the control signal are not compensated for by the feedback loop. For this reason, any
disadvantages of the considered model can be clearly illustrated for the investigated circuit.

4. Investigation Results

In order to analyse the usefulness range of the model from [32], hereinafter referred
to as the AVG model, computations and measurements of the characteristics of the boost
converter in various operating conditions are performed. In particular, the change of the
following operating parameters of the considered converter is taken into account: input
voltage Vin, load resistance RL, frequency f, and the duty cycle d of the IGBT control signal.
The measurements are carried out for a transistor and a diode operating at different cooling
conditions. The operation of the investigated converter in both the CCM (Continuous
Conduction Mode) and the DCM (Discontinuous Conduction Mode) [2] is considered.

The computations were performed for parameters with values identical to those
given in [32], with the stipulation that the values of the model parameters RthD and RthT
correspond to thermal resistances of the transistor and the diode. For the considered
elements placed on heat sinks of the dimensions of 7.5 cm × 5 cm × 3.5 cm, the values of
these parameters were 6.2 K/W, and for the devices operating without a heat sink, it was
43.85 K/W.

Selected results of measurements and computations of the investigated DC-DC con-
verter are illustrated in the successive figures. In all these figures, points denote the results
of measurements, whereas solid lines denote the results of computations performed with
the AVG model.

Figure 5 shows the output characteristics of a boost converter operating with low input
voltage Vin = 12 V under various cooling conditions, and Figure 6 shows the corresponding
dependences of junction temperature of the transistor (a) and the diode (b) on the output
current.

As it results from the data presented in Figures 5 and 6, the AVG model correctly
reproduces the output characteristics of a boost converter operating in the CCM and the
DCM, but only for the output current higher than 10 mA. For lower values of this current,
there are significant discrepancies between the results of computations and measurements.
The source of these discrepancies is losses resulting from switching off the IGBT omitted
when formulating the considered model. The effect of these losses is an increase in the
temperature of the transistor despite a decrease in the current value of the IGBT, as shown
in Figure 6a. In order to improve the accuracy of modelling this characteristic, the heat
generation model should take into account not only power losses related to the conduction
of the IGBT but also power losses resulting from its switching. The method of modelling
losses associated with the transistor switching for the needs of the averaged diode-transistor
switch model is presented in [27] for the MOSFET transistor. In the range of very low
values of the Iout current, the cause of the discrepancy may also be the omission of leakage
currents of the transistor and the diode at the stage of formulating the considered model.
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Figure 5. Measured and computed output characteristics of the boost converter for semiconductor
devices operating at different cooling conditions.
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Figure 6. Measured and computed dependences of the IGBT junction temperature (a) and the diode
junction temperature (b) on the output current of the investigated converter.

As shown in Figure 5, the cooling conditions do not significantly affect the shape of
the Vout(Iout) dependence for Iout > 1 mA. However, they significantly affect the efficiency
of heat removal from the semiconductor devices contained in the considered converter.
As shown in the range of very low values of Iout current, an increase in temperature TjT is
visible, which proves that an average value of the dissipated power is as much as 0.5 W.

Figure 7 shows the output characteristics of the considered converter for four values
of the IGBT switching frequency. Computations and measurements are performed for the
transistor and the diode placed on heat sinks.

The results of computations and measurements presented in Figure 7 prove that for
the collector currents below 10 mA and for switching frequencies higher than 10 kHz, the
measurement results differ significantly from the results of computations made with the use
of the AVG model. For the constant value of the output current, the discrepancy between
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the computations and measurements results increases with the switching frequency of the
IGBT. An increase in the discrepancy also results from the fact that with an increase of
switching frequency, the value of the current switched off by the transistor decreases [2]. A
measure of this discrepancy is the relative error in determining voltage δVout calculated
from the formula

δVout =

∣∣∣Voutmeasured −Voutcomputed

∣∣∣
Voutmeasured

(4)

where Voutmeasured denotes the measured value of the output voltage, whereas Voutcomputed
is the value of this voltage computed with the use of the AVG model.
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Figure 7. Measured and computed output characteristics of the boost converter for the transistor and
the diode placed on heat sinks for selected values of switching frequency.

The computation error of the output voltage as a function of the output current is
shown in Figure 8.

As it can be seen from the data presented in Figure 8, the relative error of determining
the output voltage using the AVG model decreases with an increase of the output current
of the boost converter and a decrease of frequency in the CCM. The error δVout does
not exceed a few percent. The graph has clear minima and maxima resulting from the
modelling of the output characteristics of the turned-on IGBT using the piece-wise linear
function. The smallest error values occur for a switching frequency equal to 10 kHz, and
the highest error values occur for the highest among the considered frequencies, which is
related to the AVG model not taking into account the influence of parasitic capacitances in
the IGBT on the characteristics of the considered DC-DC converter.
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Figure 9 shows the dependence of the output voltage of the boost converter on the
duty cycle of the signal controlling the transistor contained in it. During the measurements,
the considered converter operated with the input voltage of 48 V. The IGBT and the diode
were placed on the heat sinks, and the measurements were made for two values of load
resistance. Additionally, in Figure 10a, the dashed line marks the results of computations
made in the SPICE program using the AVG model, to which are added the values of the
junction temperature increase ∆Tj resulting from dynamic losses in the IGBT computed on
the basis of the Equations (5) and (6).

∆Tj = Tjcond + Rthj−a·Pswt (5)

Pswt =
(
Eon

(
Ion, Tj, VCE, RG

)
+ Eoff

(
Ioff, Tj, VCE, RG

))
·f (6)

where Tjcond is the value of the IGBT junction temperature computed using the AVG model,
Rthj−a is the IGBT thermal resistance junction—ambient, and Pswt is the mean value of the
power dissipated in the IGBT resulting from switching losses.
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Figure 9. Measured and computed dependences of the output voltage on the duty cycle of the boost
converter for selected values of load resistances.

The values of Eon and Eoff necessary for the computations were obtained by approxi-
mating with linear functions the dependencies presented in the datasheet of the considered
IGBT [35]. Due to the sawtooth shape of the collector current of the IGBT operating in the
boost converter, it was necessary to separately determine the value of the switched currents
Ion and Ioff. The following formulas were used for this purpose [2].

Ion = Iinavg −
∆IL

2
(7)

Ioff = Iinavg +
∆IL

2
(8)

∆IL =
(Vout −Vin)·d

L·f . (9)

The results presented in Figure 10a prove that even with the correctly determined
values of the converter output voltage, which are shown in Figure 9, the computations of
the corresponding values of the IGBT junction temperature may be characterised by a big
error. The reason for this error is the omission of switching losses in the heat generation
AVG model. In the case of the IGBT operation with high switching frequency, switching
power losses that are proportional to e.g., to frequency and the switched current, can be
much higher than the conduction losses of the IGBT [36,37]. This is demonstrated by the
computation results presented in Figure 11, which show the conduction losses (red line)
computed using the AVG model and the switching losses averaged for one period that
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are computed using the Formula (3)—blue line. The effect of frequency and the collector
current on the average power dissipated in a transistor operating with resistive load is
illustrated in Figure 11a,b, respectively.

Energies 2021, 14, x FOR PEER REVIEW 10 of 16 
 

 

in the boost converter, it was necessary to separately determine the value of the switched 

currents Ion and Ioff. The following formulas were used for this purpose [2] 

Ion = Iinavg −
∆IL
2

 (7) 

Ioff = Iinavg +
∆IL
2

 (8) 

∆IL =
(Vout−Vin)∙d

L∙f
. (9) 

 

 

 

Figure 10. Measured and computed dependences of the IGBT junction temperature (a) and the 

diode junction temperature (b) on the duty cycle of the control signal of the IGBT in the investi-

gated converter. 

The results presented in Figure 10a prove that even with the correctly determined 

values of the converter output voltage, which are shown in Figure 9, the computations of 

the corresponding values of the IGBT junction temperature may be characterised by a big 

error. The reason for this error is the omission of switching losses in the heat generation 

AVG model. In the case of the IGBT operation with high switching frequency, switching 

power losses that are proportional to e.g., to frequency and the switched current, can be 

much higher than the conduction losses of the IGBT [36,37]. This is demonstrated by the 

computation results presented in Figure 11, which show the conduction losses (red line) 

computed using the AVG model and the switching losses averaged for one period that 

are computed using the Formula (3)—blue line. The effect of frequency and the collector 

current on the average power dissipated in a transistor operating with resistive load is 

illustrated in Figure 11a,b, respectively. 

The curves shown in Figure 11 show that both switching and conduction losses are 

an important component of the power dissipated in this device during its operation. It is 

particularly noteworthy that in Figure 11 in the considered operating conditions, switch-

ing losses of the transistor are equal in the value to conduction losses for the frequency of 

35 kHz, and for the frequency of 100 kHz, switching losses are already four times higher. 

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

T
jD

[o
C

]

d[-]

f = 70 kHz

Vin = 48 V

measurements

computations

RL = 247 W
RL = 470 W

b)

Figure 10. Measured and computed dependences of the IGBT junction temperature (a) and the
diode junction temperature (b) on the duty cycle of the control signal of the IGBT in the investigated
converter.

The curves shown in Figure 11 show that both switching and conduction losses are
an important component of the power dissipated in this device during its operation. It is
particularly noteworthy that in Figure 11 in the considered operating conditions, switching
losses of the transistor are equal in the value to conduction losses for the frequency of
35 kHz, and for the frequency of 100 kHz, switching losses are already four times higher. It
is also worth noting that in Figure 11b, for the considered operating conditions, switching
losses depend more strongly on the collector current than on conduction losses.

The discrepancy between the computation results taking into account the impact of
the IGBT switching losses on its junction temperature and the measurement results shown
in Figure 11a probably results from not taking into account the influence of overvoltages
and overcurrents on the value of turn-on and turn-off energies. Examples of overvoltages
and overcurrents are shown in the waveforms shown in Figure 12.
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In the case of a diode, in the considered frequency range, switching losses are much
lower than conduction losses [38]. This is visible in Figure 10b, on the basis of which it
can be stated that when using the diode model that does not take into account the effect of
losses associated with its switching, the value of its junction temperature is computed with
good accuracy.

Minor discrepancies between the results of computations and measurements, which
are presented in Figure 9, result from inaccurate determination of the value of the duty
cycle for the converter operating in the CCM. The problem of determining the value of the



Energies 2021, 14, 154 12 of 16

duty cycle is due to the fact that the operation of the IGBT with high switching frequency
differs significantly from the operation of an ideal switch. In the case of an ideal switch,
the value of the duty cycle voltage between the output terminals is equal to the value of
the transistor control signal coefficient subtracted from one.

The computation method presented above was used in the formulas in the considered
model. However, in the case of an IGBT operating with high switching frequency, due to
non-zero values of parasitic capacitances, the value of the duty cycle of the signal between
the output terminals of the transistor may significantly differ from the value for an ideal
switch. In Figure 13, the dependences of the relative error in determining the duty cycle on
the frequency of the control signal and the duty cycle of the control signal for the considered
IGBT resulting from omitting the non-ideality of this device in determining this factor are
presented. The value of this error was determined according to the formula

δd =
|dGG − (1− dVCE)|

1− dVCE
(10)

where dGG is the value of the duty cycle of the signal at the output of the driver controlling
the transistor, and dVCE is the value of the duty cycle between the output terminals of the
IGBT.
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Figure 13. Measured values of the relative error in determining the duty cycle of the signal between
the IGBT output terminals as a function of the duty cycle of the control signal (a) and the frequency
of the signal controlling this transistor (b).

As it is presented in Figure 10, for low control signal duty cycle values, the user
has poor control over the actual voltage duty cycle value between the transistor output
terminals. A similar effect can be observed with increasing frequency. This can lead to
significant discrepancies between the computed value of the converter output voltage
from the mathematical model and the one obtained during the measurements of the real
converter.
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Figure 14 shows the dependence of the output voltage of the DC-DC converter on the
switching frequency of the IGBT contained therein. In the figure, the computation results
for the duty cycle value consistent with the signal at the driver output are marked using
the solid line, and the dashed line is used for the Vout voltage values computed for the
converter operating in the CCM taking into account the error in determining the duty cycle
described above. In these computations, the dependence of the form is used:

Vout = Voutc + Vin·
(

1
1− dGG − ∆d

− 1
1− dGG

)
(11)

where Voutc is the computed value of the output voltage using the model [33], and ∆d is
the absolute error in determining the duty cycle.

The converter output voltage dependencies presented in Figure 14 prove that neglect-
ing the influence of electrical inertia related to the switching of the IGBT leads to a value of
the duty cycle of the collector–emitter voltage different than for the ideal switch. This is the
reason why the error in determining the output voltage increases with increasing frequency.
At the same time, as the computations show, taking this into account in computations
allows for a significant improvement of its accuracy.

As indicated in the papers [39,40], the omission of the nonlinear dependence of ther-
mal resistance of the IGBT junction temperature significantly influences the accuracy of
determining the transistor junction temperature. In order to check whether this problem
also occurs for the transistor operating in the boost converter, the measurements and
computations of its output characteristics and the correlation between the interior temper-
ature of the IGBT operating without a heat sink were carried out. In order to emphasise
the considered issue, Figure 15 presents only the measurement results for the converter
operating in the CCM.
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The results presented in Figure 15 prove that even with the correct representation
of electrical properties of the converter, i.e., losses related to switching the IGBT, the
computed junction temperature value for high values of the output current is significantly
overestimated due to the use of a linear thermal model in the AVG model. This problem
could be solved relatively easily by averaging the nonlinear thermal model described in
the paper [39]. In the modified model, the thermal capacitances will be omitted, and one
nonlinear resistor describing the dependence Rthj−a(Tj) will be used.
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Figure 15. Measured and computed dependences of the output voltage (a) and the IGBT junction
temperatures (b) on the output current of the investigated converter.

5. Conclusions

The paper presents the results of simulation and experimental studies illustrating the
limitations of an electrothermal averaged model of a diode–transistor switch containing
an IGBT and a rapid switching diode. The investigations were carried out for the boost
converter in a wide range of changes of load current, frequency, and the duty cycle of the
control signal. Various cooling conditions for the transistor and the diode contained in the
tested converter were considered.

It was proved that for both the considered types of cooling conditions of semiconductor
devices in the whole considered range of changes in the duty cycle and frequency of the
control signal, good agreement was obtained between the computed and measured values
of the output voltage of the boost converter operating in the CCM. On the other hand, in
the DCM, the results of computations and measurements are convergent for the frequency
f < 20 kHz and the load current Iout > 10 mA.

The problem of determining the value of the control signal duty cycle in the high-
frequency range is pointed out. In this regard, the transistor switching times are not
negligible in relation to the pulse duration. It was shown that at high frequency values
f > 70 kHz, the error in determining the output voltage resulting from inaccuracy in
determining the value of the duty cycle can reach even 10%. It is shown that this error
could be reduced if the value of duty cycle is estimated, taking into account values of
switch-on and switch-off times of the used transistor.

It is indicated that switching losses in the IGBT are significant for characteristics of the
boost converter. It was shown that omitting these losses in the considered model causes
significant, even twofold lowering of the value of the IGBT junction temperature increase
above the ambient temperature. A modification of the description of the thermal model of
the transistor using Formulas (5) and (6) was proposed to allow taking into account the
influence of switching losses in the transistor on its junction temperature. It was shown
that this modification allows improving the computation accuracy.
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The problem of nonlinearity of thermal phenomena in semiconductor devices, which
causes the junction temperature value to be overestimated in the range of high output cur-
rents of a converter, is also highlighted. The manner of taking into account the nonlinearity
of the thermal model of the used semiconductor devices is proposed.

The problem of the junction temperature in the range of very low Iout values is also
indicated. Improvement of the model under consideration that enables obtaining high
accuracy of computations in a wide range of frequency changes will be the subject of
further research by the authors.

The presented research results may be useful for designers of DC-DC converters. The
presented results of computations and measurements also allow assessing the influence
of the control signal frequency and load current as well as the cooling conditions of
semiconductor devices on the properties of the tested boost converter.
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