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Abstract: Neural network models are data-driven and are effective for predicting and interpreting
nonlinear or unexplainable physical phenomena. This study collected building information and
heating energy consumption data from 16,158 old houses, selected key input variables that affect the
heating energy consumption based on the collected datasets, and developed a deep neural network
(DNN) model that showed the highest accuracy for the prediction of heating energy consumption
in an old house. As a result, 11 key input variables were selected, and an optimal DNN model was
developed. This optimal DNN model showed the highest prediction accuracy (R2 = 0.961) when
the number of hidden layers was five and the number of neurons was 22. When the optimal DNN
model was applied for the standard model of low-income detached houses, the prediction accuracy
(Cv(RMSE)) of the optimal DNN model, compared to the EnergyPlus calculation result, was 8.74%,
which satisfied the ASHRAE standard sufficiently.

Keywords: old detached house; prediction of heating energy consumption; deep neural network;
data-driven model approach

1. Introduction

According to the 2018 National Housing Information Survey of the Korean Statistics
Information Service (KOSIS), there are about 17.63 million houses in Korea, 9% of which
were built before 1979 when housing insulation standards were enacted. Of those buildings,
47% are more than 20 years old [1]. Old houses are vulnerable to a lack of insulation and
poor airtightness, which may cause heat loss and thus excessive energy consumption. For
this reason, the government announced the 3rd National Energy Plan and has made efforts
to improve the energy welfare system and to reduce the energy consumption of old houses.
Old houses, however, are smaller in size and more numerous than general buildings. In
addition, due to lack of diagnostic equipment, manpower and the long diagnostic time
required, it is difficult to measure all parameters affecting energy consumption and to
predict energy consumption by the parameters.

There are two model approaches to predict building energy consumption: physics-
based models and data-driven models [2]. Physics-based models are based on the laws of
thermodynamics and physics. EnergyPlus, eQuest, and Trnsys are representative physics-
based energy-simulation software tools developed on this model approach [3]. They calcu-
late building energy consumption using building parameters, air-conditioning and heating
equipment system parameters, as well as environmental parameters such as building
construction details, operation schedules, HVAC (Heating, Ventilation, and Air Condition-
ing) design information and climate, sky, and solar/shading information. However, the
physics-based model requires a lot of computation time and resources for simulation [4]
and, in many cases, it does not accurately reflect the thermal performance of the actual
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building because it simplifies the model to account for the lack of available detailed build-
ing information at the time of simulation [5]. On the other hand, the data-driven model is
an effective method for modeling physical phenomena for which the theory is unknown
or unexplainable. This approach has recently attracted attention from researchers [6–10]
because it can simulate energy consumption from available building information and
energy data without the need for detailed modeling and the numerous input parameters
required by the physics-based approach. The data-driven approach, instead, requires
enough data to obtain accurate simulation results, and requires insight into the appropriate
preprocessing of datasets and the understanding of simulation results.

Neural network modeling is a data-driven approach used widely in the prediction of
building energy consumption [11–20]. Matlab Neural Network Toolbox, TensorFlow/Keras,
and PyTorch are representative energy-simulation software tools widely used for neural
network modeling. ANN is a learning algorithm created by simulating human neural net-
works. Early ANN started with a single hidden layer in the neural network structure. This
structure had been applied to nonlinear regression analysis. However, with growing inputs
dimensions and interference components, the shallow layer ANN model cannot fit these
situations, while the deep neural network (DNN) is capable of meeting the requirements
such as better accuracy, deceased computational time and noise robustness.

The neural network model has been used by many researchers for building energy
simulation. González and Zamarreño [16] proposed the use of a data-driven approach as a
building energy-consumption prediction method. Their use of an ANN model to predict
building energy consumption produced more accurate calculations with fewer input data,
and more quickly than conventional physics-based models. Huang et al. [17] and Biswas
et al. [18] applied it to residential buildings and heating systems. Tardioli et al. [19] used
an ANN model to predict energy demand on the urban level, rather than for individual
buildings. Mohandes et al. [20] used a DNN model to predict energy consumption of a
commercial building, and Luo et al. [21] applied DNN model for predicting electricity
consumption of an office building. They extracted features of weather data and DNN
could provide accurate week-ahead energy consumption. In summary, the use of a DNN
model for prediction of building energy consumption has been mostly for commercial or
residential buildings, but less for old houses.

This study aimed to develop a DNN model for predicting the heating energy con-
sumption for 16,158 old houses in Korea. The key input variables that affect the heating
energy consumption were selected, and based on these input variables, an optimal DNN
model was proposed by determining the structural parameters (the number of hidden
layers and the number of their neurons) with the highest prediction accuracy. In addition,
we evaluated the applicability of the optimal DNN model to low-income standard house.

2. Characteristics of Old Houses

The Korea Institute of Energy Research (KIER) has been carrying out an energy effi-
ciency improvement project for old houses since 2014. The energy efficiency improvement
project is conducted to support fuel poverty (Public Aid Recipients) based on the national
Energy Law with the aim of preventing energy inequality and social polarization and
improving energy efficiency. People in the fuel poverty group have lower-income and
spend more than 10% of their ordinary income for energy purchases. The government
collects building information through diagnosticians for about 20,000 households each year
and, with an on-site inspection, supports repair/replacement work for walls, windows,
doors, airtightness and boilers to improve energy efficiency. The building information
includes architecture scheme (householder, address, region, building structure, building
orientation, number of residents, year of completion, building use, floor plan) and energy
performance (area of building envelope, U-value, ACH (Air Changes per Hour), heating
equipment) before and after the repair/replacement work [22]. Table 1 shows a sample
portion of the collected building information.
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Table 1. An example of datasets that have collected building information and heating energy consumption of old houses.

Number

General Area U-Value HVAC Heating
Energy

Consump-
tion

City
Building
Orienta-

tion
Structure Region Year of

Completion
Heating
Space Wall Window Door Roof Floor Wall Window Door Roof Floor ACH Boiler Efficiency

1 Daegu East Heavy Gyeongsang 25-Jan-90 16.30 34.22 0.86 1.44 16.32 16.32 0.76 3.90 2.70 0.52 0.76 1.00 Oil 90.00 2985
2 Busan South Heavy Busan 01-Jan-70 40.00 56.88 4.35 1.89 0.00 40.08 1.54 3.90 2.70 0.00 1.54 1.00 Gas 83.50 6823
3 Wando South Heavy Jeollanam-do 07-May-64 60.00 53.88 0.24 2.88 60.00 60.00 1.54 5.29 2.40 1.54 1.54 1.00 Oil 80.00 14,975
4 Wando South Heavy Jeollanam-do 03-Jul-80 60.00 76.81 3.08 7.28 60.00 60.00 1.05 5.30 2.40 1.05 1.05 1.00 Oil 80.00 12,701
5 Wando South Heavy Jeollanam-do 08-Aug-70 53.00 54.98 5.24 4.00 53.00 53.00 1.54 5.30 2.50 1.54 1.54 1.00 Oil 80.00 14,486
6 Wando South Heavy Jeollanam-do 11-Sep-65 51.00 57.54 3.08 5.82 51.00 51.00 1.54 5.30 2.40 1.54 1.54 1.00 Oil 80.00 14,243
7 Wando South Heavy Jeollanam-do 29-May-85 16.00 33.37 1.54 1.89 16.00 16.00 0.58 2.80 2.70 0.58 0.58 1.00 Oil 80.00 2524
8 Wando East Heavy Jeollanam-do 07-Jul-87 50.00 74.38 3.79 3.46 50.00 50.00 0.58 4.47 2.58 0.58 0.58 1.00 Oil 80.00 6172
9 Wando North Heavy Jeollanam-do 07-Jul-83 25.00 30.40 5.44 1.36 25.00 25.00 0.58 6.60 2.40 0.58 1.16 1.00 Oil 80.00 3553

10 Wando South Heavy Jeollanam-do 08-Jun-68 37.00 49.98 8.50 1.36 37.00 37.00 1.54 5.30 2.40 1.54 1.54 1.00 Oil 80.00 10,489
11 Wando North Heavy Jeollanam-do 06-Apr-85 50.00 69.73 5.88 1.89 50.00 50.00 0.58 2.80 2.70 0.58 0.58 1.00 Oil 80.00 5502
12 Wando North-East Heavy Jeollanam-do 02-Apr-95 21.00 41.28 2.42 0.00 21.00 21.00 0.76 6.60 0.00 0.52 0.76 1.00 Oil 80.00 3148
13 Wando South Heavy Jeollanam-do 07-May-03 53.00 67.66 8.00 3.78 53.00 53.00 0.58 6.60 2.55 0.35 0.41 1.00 Briquette 70.00 4213
14 Wando South Heavy Jeollanam-do 18-Apr-64 100.00 96.76 8.40 0.00 100.00 100.00 1.54 3.87 0.00 1.54 1.54 1.00 Oil 80.00 24,453
15 Wando South Heavy Jeollanam-do 03-Jul-90 30.00 62.74 0.00 1.89 30.00 30.00 0.76 0.00 2.70 0.52 0.76 1.00 Oil 80.00 5495
16 Wando South Heavy Jeollanam-do 06-Jul-89 45.00 57.52 5.04 3.69 45.00 45.00 0.76 3.90 2.55 0.52 0.76 1.00 Oil 80.00 6165
17 Wando South Heavy Jeollanam-do 07-Jun-86 50.00 65.58 6.45 1.89 50.00 50.00 0.58 5.30 2.70 0.58 0.58 1.00 Oil 80.00 6533
18 Wando South Heavy Jeollanam-do 20-Aug-88 50.00 65.47 3.41 1.89 50.00 50.00 0.76 3.90 2.70 0.52 0.76 1.00 Oil 85.00 5382
19 Wando North Heavy Jeollanam-do 04-Aug-88 86.00 81.90 8.96 1.89 172.00 0.00 0.76 3.90 2.70 0.52 0.00 1.00 Oil 80.00 12,023
20 Wando South Heavy Jeollanam-do 16-Sep-00 60.00 68.08 6.16 1.89 60.00 60.00 0.76 5.30 2.40 0.52 0.76 1.00 Oil 80.00 8290
21 Wando South Heavy Jeollanam-do 22-May-70 38.00 55.63 3.49 1.36 38.00 38.00 1.54 5.30 2.70 1.54 1.54 1.00 Oil 80.00 10,057
22 Wando North-East Heavy Jeollanam-do 23-Sep-77 28.00 44.41 1.76 1.44 28.00 28.00 1.54 6.60 2.70 1.54 1.54 1.00 Oil 80.00 9014
23 Busan South Heavy Gyeongsang 08-Apr-71 16.00 16.60 1.08 0.00 17.00 17.00 1.54 3.90 0.00 1.54 1.54 1.00 - 50.00 4232
24 Wando South Heavy Jeollanam-do 13-Jul-78 50.00 60.06 5.94 0.00 50.00 50.00 1.54 6.60 0.00 1.54 1.54 1.00 Oil 80.00 15076
25 Wando South Heavy Jeollanam-do 07-Jul-85 45.00 49.58 13.34 0.00 45.00 45.00 0.58 5.11 0.00 0.58 0.58 1.00 Oil 85.00 6360
26 Wando South Heavy Jeollanam-do 07-Jun-65 45.00 75.76 9.88 5.00 45.00 45.00 1.54 5.30 2.40 1.54 1.54 1.00 Oil 80.00 14,025
27 Wando South Heavy Jeollanam-do 20-Jun-59 25.00 43.18 10.26 1.12 25.00 25.00 1.54 5.30 2.70 1.54 1.54 1.00 Oil 80.00 8623
28 Wando South Heavy Jeollanam-do 08-Jun-83 40.00 64.73 5.07 2.88 40.00 40.00 0.58 5.61 2.40 0.58 1.16 1.00 Oil 80.00 6932
29 Wando South Heavy Jeollanam-do 08-Mar-86 65.00 68.71 3.92 1.89 65.00 65.00 0.58 3.90 2.70 0.58 0.58 1.00 Oil 90.00 6329
30 Wando South Heavy Jeollanam-do 10-Aug-63 40.00 68.64 2.64 3.52 40.00 40.00 1.54 5.30 2.40 1.54 1.54 1.00 Oil 80.00 13,233
31 Wando North-East Heavy Jeollanam-do 05-Jun-85 28.00 53.55 3.52 1.89 28.00 28.00 0.58 6.60 2.70 0.58 0.58 1.00 Oil 80.00 4378
32 Wando South Heavy Jeollanam-do 18-Jun-83 45.00 57.36 8.64 0.00 45.00 45.00 0.58 6.60 0.00 0.58 1.16 1.00 Electricity 100.00 5939
33 Wando West Heavy Jeollanam-do 08-May-65 48.00 59.17 0.00 9.91 48.00 48.00 1.54 0.00 2.44 1.54 1.54 1.00 Oil 80.00 14,901
34 Wando South Heavy Jeollanam-do 18-Jun-77 45.00 57.70 13.83 1.95 45.00 45.00 1.54 5.30 2.40 1.54 1.54 1.00 Oil 80.00 14,866
35 Wando South-East Heavy Jeollanam-do 14-Sep-02 40.00 60.74 7.42 5.76 40.00 40.00 0.58 6.18 2.40 0.35 0.41 1.00 Oil 80.00 5843
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This study targeted 16,158 old houses among the 20,000 households for which building
information was collected. The 16,158 old houses were completed more than 20 years, and
were deteriorated in structure and function due to aging, and had high energy-consuming
houses with low insulation performance [23]. The old houses had either a light-weight
structure (panel, wood, and prefabricated structure) or a heavy-weight structure (steel,
concrete, and masonry). The average heating space area was 42.89 m2, and the average
areas of envelope elements including the roof, walls, floors, windows and doors, was
42.66, 47.2, 40.90, 6.57 and 2.27 m2, respectively. The U-value was measured using a heat-
flux meter according to the ISO 9869-1. An average analysis method was used and each
measurement took 72 h. The U-value was measured by the spot measurement method.
The average U-value for the roof, walls, floors, windows and doors was 0.97, 0.91, 1.01,
4.28 and 2.78 W/(m2·K), respectively. ACH was applied at 1-h, which was suggested in the
results of a detailed survey of low-income houses in Korea [22]. The heating equipment
used individual boilers (type of boiler: gas, oil and briquettes). The efficiency of the boilers
used the value from their name plates which the diagnostician investigated in the field. The
average boiler efficiency was 84.4%. Heating energy consumption was calculated according
to ISO 52016 [24]. ISO 52016 is an international standard for procedures for calculating
the heating and cooling energy consumption of buildings. It contains calculation methods
for the assessment of sensible energy needs for heating and cooling, latent energy needs
for dehumidification, design sensible heating/cooling loads, design latent loads, and
internal temperatures. The average energy consumption was 279.42 kWh/(m2·a), which is
higher than the minimum energy consumption (173.20 kWh/(m2·a)) to escape from fuel
poverty [25].

3. Input Data and Configuration of DNN Model
3.1. Preparation of Input Data

The input data for the DNN model used in this study came from the building infor-
mation for 16,158 old houses surveyed in 2019 (1 January 2019−31 December 2019). This
input data was prepared for modeling through a preprocess of error elimination–missing
value elimination–outlier elimination–normalization.

1. Error elimination: this is the process of eliminating inaccurate information from
the collected input data. For example, address or meteorological data, etc., that do
not match or contradict the actual data for the old, detached houses of this study,
were removed.

2. Missing data elimination: collected data may contain missing values, and statistical
analysis using these datasets does not produce the desired results. Therefore, the
data were checked for missing values and the data set containing missing values was
removed or replaced with one containing the correct values.

3. Outlier elimination: an outlier, in statistics, is a data point that differs significantly
from other observations. The outlier may be due to variability in the measurement, or
it may indicate experimental error; the latter are sometimes excluded from the data
set. An outlier can cause serious distortion of the analytical results. The outlier value
is determined to be greater than 97.5% or less than 2.5% in the normal distribution.
This study removed outliers using the Mahalanobis distance method [26]. The Ma-
halanobis distance (MD) is the distance between two points in multivariate space.
The MD calculation—Mahalanobis Score (Probability)—p-value test was conducted
using IBM SPSS statistic software. Through this, 16,158 data were extracted from
17,008 data.

4. Normalization: the data range distribution is adjusted by changing the range of data
with different scales to 0 and 1. In this study, data normalization was performed using
the following Equation (1):

xnew =
x − xmin

xmax − xmin
(1)
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3.2. Neural Network Model

The DNN model had input layers, hidden layers, and an output layer (Figure 1),
similar to the human neuron structure which has a dendrite, an axon, and cell bodies. Each
node of the model received an external input and adjusted its influence on the output by
weight and bias; the output value was derived by an activation function. The representative
activation functions were step function, sigmoid function and linear function. The optimal
weights in the learning process were adjusted using back propagation [27]. The DNN
model is often used to solve nontheoretical problems such as pattern recognition and
classification, as well as prediction in place of mathematical models. Back propagation
is a representative algorithm for learning neural networks based on supervised learning,
the signals of which are forward and backward propagated. As a learning function of the
DNN model, the LMA (Levenberg Marquardt Algorithm) is widely used. The LMA is an
algorithm for solving the nonlinear least squares problem [28]. It updates the link weight
and bias values according to optimization [29]. This study proposes a DNN model as an
alternative for estimating the heating energy consumption of old houses.
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Figure 1. Conceptual structure of the deep neural network (DNN) model [22].

3.3. Modeling Approach

In this study, a DNN model for the prediction of heating energy consumption in old
houses was developed through the process of Selection of key input variables–setting
initial model conditions–optimization. The selection of key input variables affects the
prediction accuracy of the model. If the input variables are incorrectly selected, the model
prediction accuracy may drop significantly. Therefore, it is very important to find the key
input variables that are most relevant to the target variables. The key input variables in this
study were selected through correlation analysis of statistical techniques [30] for the input
variables and target variables, as shown in Table 2, and then through prediction accuracy
analysis [31] using an initial DNN model as shown in Table 3.

1. Correlation analysis: the Pearson correlation coefficients between the input variable
and the target variable were calculated using the IBM Statistical Package for the Social
Sciences (SPSS) [32]. From these, the input variables with a strong correlation were
included as the key input variables.

2. Prediction accuracy analysis using an initial DNN model: the following stepwise
method was applied. Possible combination cases were created, based on the key
input variables selected from the correlation analysis above, and the coefficient of
determination (R2) was calculated for each combination case. The final key input
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variables were determined by a stepwise method that excludes the combination case
of the input variable with the lowest coefficient of determination.

Table 2. Input variables and target variables considered for the DNN modelling of old houses.

Type Input Variable Target Variable

General details

Region (32 cities)
Building orientation (E, W, S, N, NE, NW, SE, SW)

Structure (heavy, light)
Year of completion

ACH
Type of boiler

Boiler efficiency

Energy consumption
[kWh/a]

Area [m2]

Heating space area
Wall
Roof
Floor

Window
Door

U-value
[W/(m2·K)]

Wall
Roof
Floor

Window
Door

Table 3. Feature and setting value of the structural and learning parameters of initial DNN model.

Parameters Feature Value

Model

Back propagation efficiently computes the
gradient of the loss function with respect to the

weights of the network for a single
input-output example

LMA (Levenberg Marquardt
Algorithm) [29]

Data division (%) Training:Validation:Testing 70:15:15

Structural Parameters
Hidden layer The increase in the number of hidden

layers/neurons, the predict performance is
improved, but the calculation takes a long time

1

Neuron of hidden layer 10

Learning parameters

Learning rate The smaller value has improved predict
performance, but the longer it takes to learn 0.2

Momentum Basically, it starts with 0.1, and the bigger value
it is, the faster the learning speed 0.6

Epochs Maximum number of learning 1000

Goal Target error ratio between actual and
predicted values 0.01

In this study, modeling was performed by using the ‘MATLAB Neural Network
Toolbox’ of The MathWorks, Inc. [33]. The initial DNN model used the values of the
parameters in Table 3. Optimization of the model is the process of selecting the most
suitable structural variables (number of hidden layers, number of their neurons) and
parameters affecting the learning speed from the initial neural network model, to improve
the predictive performance of the model. The number of hidden layers and the number
of neurons in the hidden layers which have the highest prediction accuracy (R2-value)
are determined by simulation in the range of the number of hidden layers = 1–10 and
the number of neurons = 10–30, for the selected key input variables. This study did not
consider the influence of parameters that affect the learning speed of the simulation.
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4. Results and Discussion
4.1. Selection of Key Input Variables

The analysis of the correlation between the input variable and the target variable
was performed by using SPSS, and the results are summarized as the Pearson correlation
coefficient in Table 4. The Pearson correlation coefficient [34] is the quantification index
of the linear correlation between X and Y. This is the covariance between two variables
divided by the product of their standard deviations, which has a value between +1 and −1.
A perfect positive linear correlation is measured as +1, 0 means no linear correlation and −1
means a perfect negative linear correlation. As shown in Table 4, the Pearson correlation
coefficients are in the order of roof U-value > roof area > wall U-value > floor area > floor
U-value > year of completion > wall area > heating space area > boiler efficiency > door
area > window U-value > window area > region > structure > door U-value > ACH >
building orientation. The boiler type was not considered in the present analysis, because it
does not affect heating energy consumption. As a result of the correlation analysis, roof
U-value (0.636), roof area (0.617), wall U-value (0.604), floor area (0.557), floor U-value
(0.550), year of completion (−0.539), wall area (0.4888), and heating space area (0.430) were
selected as the primary key input variables, because of high correlation with the target
variable. Boiler efficiency (−0.276), door area (0.275), window heat permeability (0.269),
and window area (0.252), with relatively low Pearson correlation coefficients, were selected
as variables to be considered again in the analysis of the prediction accuracy of the initial
DNN model.

Table 4. Results of Pearson correlation analysis using IBM SPSS Statistics Software.

Type Input Variable Pearson Correlation Coefficient Rank

General details Region 0.162 13
Area [m2] Building orientation −0.012 17

U-value (Heat transmission coefficient)
[W/(m2·K)]

Structure 0.159 14
Year of completion −0.539 6

ACH 0.012 16
Type of boiler N/A N/A

Boiler efficiency −0.276 9
Heating space area 0.430 8

Wall 0.488 7
Roof 0.617 2
Floor 0.557 4

Window 0.252 12
Door 0.275 10
Wall 0.604 3
Roof 0.636 1
Floor 0.550 5

Window 0.269 11
Door −0.051 15

Table 5 shows the coefficient of determination, R2, which represents the prediction
accuracy of the initial DNN model for each combination case. The values of R2 from Case
1 to Case 16 ranged from 0.890 to 0.936. The coefficient of determination is a measure
of explanation of the model for the data set, which means that the higher this value the
higher the prediction accuracy of the model. As seen in Table 5, Case 13 shows the highest
prediction accuracy. When the initial DNN was modeled with 11 input variables (excluding
door area), it had the highest prediction accuracy (R2 = 0.936). Based on these results, we
selected 11 input variables (roof U-value, roof area, wall U-value, floor area, floor U-value,
year of completion, wall area, heating space area, boiler efficiency, window area, and
window U-value) as the final key input variables for the DNN model for predicting energy
consumption of old houses.
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Table 5. Cases of available combinations of the input variables selected from the SPSS correlation analysis and performance results (R2-values) for each case predicted from the initial DNN
model.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14 Case 15 Case 16

Window U-value
[W/(m2·K)] × # × × × # × × # # × # # # × #

Window area [m2] × × # × × # # × × × # # # × # #

Door area [m2] × × × # × × # # # × × # × # # #

Boiler efficiency [%] × × × × # × × # × # # × # # # #

Heating space area [m2] # # # # # # # # # # # # # # # #

Wall area [m2] # # # # # # # # # # # # # # # #

Year of completion # # # # # # # # # # # # # # # #

Floor U-value
[W/(m2·K)] # # # # # # # # # # # # # # # #

Floor area [m2] # # # # # # # # # # # # # # # #

Wall U-value
[W/(m2·K)] # # # # # # # # # # # # # # # #

Roof area [m2] # # # # # # # # # # # # # # # #

Roof U-value
[W/(m2·K)] # # # # # # # # # # # # # # # #

R2-value 0.893 0.890 0.896 0.895 0.931 0.896 0.896 0.933 0.896 0.929 0.933 0.898 0.936 0.935 0.935 0.935

Note: O and X are input variables that were considered and not considered in the case analysis, respectively.
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4.2. Optimal DNN Model

The optimization of the DNN model was performed by calculating R2 while changing
the structural variables (the number of hidden layers and the number of their neurons)
for the selected key input variables, and then identifying the structural variables with the
highest R2 (i.e., best prediction accuracy) for use in the DNN model. In the optimization
process, the number of hidden layers was increased from 1 to 10 and the number of neurons
in the hidden layer was increased from 10 to 30. R2 was then calculated for all possible
combinations of the structure variables. In these calculations, since the value of R2 showed
a slight deviation for every time of training with random sampling, it was trained 30 times
and the average of the results was used.

Table 6 shows the R2 calculation results when the number of neurons was fixed at 10
and the number of hidden layers was varied from 1 to 10. As shown in this table, when
the number of hidden layers was five, the prediction accuracy was the highest, with an R2

of 0.954. Table 7 shows the results obtained by fixing the number of hidden layers to five
(as determined in the previous Table 6) and changing the number of neurons from 10 to
30. When the number of neurons was 22, the prediction accuracy was the highest, with an
R2 of 0.961. The results of the regression analysis (R2) for the training, validation, test and
total datasets are plotted in Figure 2.

Table 6. Predict performance results (R2-values) for the change of hidden layer number when the
number of neurons is fixed to 10.

Number of
Hidden Layer 1 2 3 4 5 6 7 8 9 10

R2-value 0.936 0.945 0.949 0.951 0.954 0.953 0.952 0.953 0.952 0.950

Table 7. Predicted performance results (R2-values) for the change of neuron number when the
number of hidden layers is fixed to five.

Number of Neurons in Hidden Layer 10 11 12 13 14 15 16

R2-value 0.954 0.955 0.955 0.954 0.956 0.958 0.954

Number of Neurons in Hidden Layer 17 18 19 20 21 22 23

R2-value 0.958 0.956 0.956 0.959 0.958 0.961 0.958

Number of Neurons in Hidden Layer 24 25 26 27 28 29 30

R2-value 0.959 0.958 0.959 0.958 0.960 0.959 0.958
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4.3. Summury and Discussion

As shown in Table 4 above, the results of the correlation analysis and prediction
accuracy analysis showed that the U-values and envelope areas of the roof, wall, and floor
had a high correlation, which influences the heating energy consumption through envelope
heat loss proportional to the U-value and envelope area [24]. The completion year of the
building was not used in physics-based model (e.g., E+), but in the DNN model, it was
identified as a major variable that influences the prediction results. This variable is also
related to the U-value standard of the national building code, and the standard has been
strengthened recently. The heating space area has a proportional relationship with the
occupied space and the building volume and affects the heating load through heat loss
by infiltration. Although the boiler efficiency is an important variable in heating energy
consumption, it was placed in a relatively low rank in this study. This seems to have a low
correlation due to pipe heat loss and efficiency decline due to aging. The area and U-value
of the window, like the roof, wall, and floor described above, are variables that contribute
to the envelope heat loss, but their area is small and thus the influence is small. Other
variables (door area and U-value, region, structure, ACH, building orientation) did not
significantly affect the prediction of heating energy consumption of old houses by DNN
model in this study.

The structure of the neural network varies depending on the complexity or hyper-
parameter setting, and if an appropriate model is not selected, it may cause underfitting
or overfitting. Underfitting refers to a state in which learning is not performed because
there is too little data to approach the decision boundary, while overfitting refers to a case
where the variance is high due to overtraining. To avoid these problems, regularization,
hyperparameter selection, and supply of sufficient amount of learning/verification data are
necessary [28,35]. This study performed learning by dividing 16,158 data sets into training,
validation, and testing. As a result of learning, the neural network structure of hidden
layers 5 and neurons 22 had the highest prediction accuracy (R2 = 0.961), which shows that
this optimized DNN model is suitable for predicting the heating energy consumption of
old houses.

The developed optimal DNN model showed high predictive accuracy even when
applied to Korean standard house that were not used for the above training. The Korean
standard house is a house selected by extracting features that can have representative-
ness from architectural information, envelope performance, and floor plan obtained by
surveying about 3000 low-income detached houses [23]. The floor plan of the standard
house is shown as Figure 3. Table 8 shows the building information used as input for the
model simulation and the heating energy consumption of the standard house as calcu-
lated by EnergyPlus. A description of EnergyPlus is summarized in Appendix A, and the
details are contained in the User’s Manual from the Department of Energy [36]. Table 9
compares the result of the EnergyPlus calculation (in Table 8) with the result of heat-
ing energy consumption predicted by the optimal DNN model for the standard house.
The annual heating energy consumption for the standard model house, as calculated
by EnergyPlus, was 12,143 kWh/a (annual heating energy consumption per unit area:
272.75 kWh/(m2·a)). As predicted by the optimal DNN model from this study, the annual
heating energy consumption was 13,307 kWh/a (annual heating energy consumption per
unit area: 298.80 kWh/(m2·a)). The Cv(RMSE) of heating energy consumption predicted
by the optimal DNN model was 8.74%. The Cv(RMSE) is a coefficient of variation (Cv)
of a root mean square error (RMSE) and is a measure of the difference between an actual
and a predicted value. The closer the Cv(RMSE) is to 0%, the more accurate the predic-
tion. ASHRAE (The American Society of Heating, Refrigerating and Air-Conditioning
Engineers) suggests that the acceptable value of Cv(RMSE) is 15% on a monthly, and 30%
on an hourly, scale basis, as shown in Table 10 [37]. The Cv(RMSE) result of 8.74% indicates
that the optimal DNN model can be used to evaluate the heating energy consumption of
low-income houses. In addition, the DNN model developed in this study will be applicable
to energy prediction of residential buildings in other countries with similar climate and
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building types. This result will be useful in setting the standard of energy consumption
and reduction targets in large regional units such as old housing communities and cities.
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Figure 3. Floor plans of Korean standard house.

Table 8. Building Information and heating energy consumption (calculated by EnergyPlus) of
standard house.

Division Values

Window U-value [W/(m2·K)] 5.84
Window area [m2] 8.05

Heating space area [m2] 44.52
Wall area [m2] 56.09

Year of completion 1980
Floor U-value [W/(m2·K)] 1.05

Floor area [m2] 44.52
Wall U-value [W/(m2·K)] 1.05

Roof area [m2] 44.52
Roof U-value [W/(m2·K)] 1.05

Boiler efficiency [%] 80
Energy consumption(Calculated)

[kWh/yr] 12143

Energy consumption (Calculated/m2)
[kWh/m2·yr]

272.75

Table 9. Cv(RMSE) of heating energy consumptions predicted by the optimal DNN model to those
calculated by EnergyPlus for the standard house.

Division Values

Optimal DNN model-predicted annual heating consumption
[kWh/yr] 13,307

Optimal DNN model- predicted annual heating consumption per unit area
[kWh/m2·yr] 298.90

EnergyPlus-calculated annual heating consumption
[kWh/yr] 12,143

EnergyPlus-calculated annual heating consumption
per unit area [kWh/m2·yr] 272.75

Cv(RMSE) [%] 8.74
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Table 10. ASHRAE guideline of tolerance limits for the Cv(RMSE) of building energy modelling.

Division Monthly Hourly

Tolerance limits (Cv(RMSE)) 15% 30%

5. Conclusions

This study developed an optimized DNN model for predicting heating energy con-
sumption by selecting key input variables for 16,158 old houses and determining the
structural variables (number of hidden layers and their neurons) with the highest predic-
tion accuracy. As a result of correlation and prediction-accuracy analyses, 11 key input
variables (roof U-value, roof area, wall U-value, floor area, floor U-value, year of comple-
tion, wall area, heating space area, boiler efficiency, window area, and window U-value)
were selected. The optimal DNN model for predicting the heating energy consumption of
old houses showed the highest accuracy (R2 = 0.961) when the number of hidden layers and
neurons in hidden layers was five and 22, respectively. The developed optimal DNN model
showed high accuracy (Cv(RMSE) = 8.74%) in the applicability evaluation for heating
energy consumption of the standard house and satisfied the ASHRAE standard sufficiently.
Moreover, the optimal DNN model, compared to the physics-based model (EnergyPlus),
can have high energy prediction accuracy with fewer input variables, and can reduce
modeling and simulation time. These advantages will make it easier for field engineers to
use with less expertise and experience in building energy modeling. We believe that our
study makes a significant contribute to energy welfare by improving the energy efficiency,
diagnosis and prediction for low-income houses.
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Appendix A

The EnergyPlus program has its roots in both the BLAST and DOE-2 programs.
BLAST (Building Loads Analysis and System Thermodynamics) and DOE-2 were both
developed and released in the late 1970s and early 1980s, as energy and load simulation
tools. EnergyPlus is an energy analysis and thermal load simulation program. The program
can be detailed for internal conditions; can consider the interactions between factors in each
hourly load calculation; and calculates energy consumption through integrated simulations
between buildings, systems, and plants. In addition, the module-type structure provides
flexibility, and the calculation results can be accurately reproduced in the actual building,
over time. See the User’s Manual of the Department of Energy [36] for details.
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