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Abstract: This paper presents an analysis related to thermal simulation of the test structure
dedicated to heat-diffusion investigation at the nanoscale. The test structure consists of thin
platinum resistors mounted on wafer made of silicon dioxide. A bottom part of the structure
contains the silicon layer. Simulations were carried out based on the thermal simulator prepared
by the authors. Simulation results were compared with real measurement outputs yielded for the
mentioned test structure. The authors also propose the Grünwald–Letnikov fractional space-derivative
Dual-Phase-Lag heat transfer model as a more accurate model than the classical Fourier–Kirchhoff (F–K)
heat transfer model. The approximation schema of proposed model is also proposed. The accuracy
and computational properties of both numerical algorithms are presented in detail.

Keywords: Dual-Phase-Lag heat transfer model; thermal simulation algorithm; thermal measurements;
Finite Difference Method scheme; Grünwald–Letnikov fractional derivative

1. Introduction

1.1. State of the Art

Nowadays, a heat transfer problem in the case of modern electronic structure is one of the most
important research areas in the high-tech industry. The main reason for this fact is a significant
downsizing of integrated circuits that is implemented in all modern electronic devices. Moreover,
it also connects with a meaningful increase of an operation frequency of the mentioned devices. Both of
these facts cause a rapid growth of a heat density generated inside such small structures. Consequently,
the increased internal heat generation results in a huge increase of a temperature in critical parts of a
device during its operation. It should also be highlighted that assurance of a proper cooling condition
in the case of nanosized electronic structures is a non-trivial issue. Thus, all of these factors may
influence an unstable operation and shorten the life cycle of an entire structure. Therefore, a thermal
analysis seems to be one of the most important steps in the process of designing and developing
modern electronic structures.

For a long time, heat conduction problems have been solved based on Fourier’s theory [1,2].
This approach uses the Fourier’s law and resulting Fourier–Kirchhoff (F–K) model for solids. They can be
described by the following system of equations: q(x, t) = −k · ∇T(x, t)

cv
∂T(x,t)
∂t +∇ ◦ q(x, t) = qV(x, t)

x ∈ Rn, n ∈ N, t ∈ R+ ∪ {0} (1)

where q is a heat flux density vector; k means a thermal conductivity of investigated material; T is
a function regarding temperature rise above the ambient temperature; cv means a volumetric heat
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capacity being a product of a specific heat of a material for a constant pressure (cp) and its density (ρ);
and qV reflects the value of internally generated heat.

The classical F–K equation can also be directly derived from the classical thermodynamics for
a positive-definite entropy-production rate, for which the thermodynamic state transition in a heat
transfer process is extremely slow (quasi-stationary process). Therefore, the process time (t) should be
longer than a system’s relaxation times.

Despite the numerous advantages of the Fourier–Kirchhoff approach, the research has shown
that the application of the mentioned model may not reflect real phenomena [3–5]. One of its biggest
disadvantages is an assumption considering the infinite speed of heat propagation. Apart from that,
an instantaneous change of a temperature gradient or a heat flux should also be emphasized as a
non-physical behavior postulated by the investigated theory. None of them, especially in the case of
electronic structure with physical dimensions in nanometer-scale, has been empirically confirmed [6,7].
Thus, a thermal model including improvements of the F–K approach should be used instead of the
classical theory.

The thermodynamic state is nonequilibrium in a fast transient process where time is comparable
with the system relaxation times (e.g., an Umklapp phonon–phonon scattering process relaxation time
in semiconductors [8,9]). The extended irreversible thermodynamic (EIT) can be applied to describe
this kind of heat transfer system, assuming the second order the Taylor series expansion of entropy in
EIT [10,11]. As a consequence, in mid-1990s, the new Dual-Phase-Lag (DPL) model was introduced by
Tzou [12,13].

This model is an advanced version of an approach based on the Fourier–Kirchhoff theory and
includes so-called time lags describing the time needed to change the temperature gradient, as well
as the heat flux density. Each change is reflected by a separate lag value: a temperature time lag (τT)
and a heat flux time lag (τq), respectively. The mathematical description of analyzed model can be
presented in the form of the following system of equations: ∇ ◦ q(x, t) = −cv

∂T(x,t)
∂t + qV(x, t)

kτT
∂∇T(x,t)

∂t + τq
∂q(x,t)
∂t = −k · ∇T(x, t) − q(x, t)

x ∈ Rn, n ∈ N, t ∈ R+ ∪ {0} (2)

The other general approach can be derived by using the General Equation for Non-Equilibrium
Reversible-Irreversible Coupling (GENERIC) equation proposed in 1997 by M. Grmela and
H. C. Öttinger [14–16]. This approach can be useful to obtain a model for the Monte Carlo simulation
of modern nanostructures [17] and also for deterministic approaches [18]. Apart from that, an approach
known as Guyer-Krumhansl-type heat conduction [19,20] can be also used. Moreover, the research
presented by Pop et al. [21], related to heat generation and transportation problems in nanosized
transistors, is also worth considering.

Let us consider, more precisely, one of the most common heat transfer models for electronic
structures—the DPL model (Table 1a—left column), the ballistic-conductive heat transfer model
(Table 1b—left column), and the model proposed in this paper, the DPL model with fractional order of the
temperature function space derivative based on the Grünwald–Letnikov theory (Table 1c—left column).
Suppose also an isotropic medium parameter properties and idempotent equations parameters k > 0,
cv > 0, k21, k12, τT, τq, τQ, etc. To simplify the analysis, the Taylor-series expansions mapping into
a function with time delay is considered, as presented in Equation (3). The terms of higher orders
are neglected.

f (x, t) + τ
∂ f (x, t + τ)

∂t
→ f (x, t + τ) (3)

Then, time delayed PDEs are obtained and presented in the right column of Table 1. In the first
case (Table 1a—right column), the state is appointed by using a gradient of a heat flux (−k·∆T) delayed
by τT-τq. It should be emphasized that results produced by the DPL model are consistent with many
experiments and measurements at nanoscale (for more, see [9]).
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In the case of the ballistic-conductive heat transfer model (Table 1b), the rate of value temperature
T(x, t + τq) change at t+ τq and x is dependent on a gradient of heat flux (−k·∆T) at the current time (t),
increased by a difference of growth rate of the averaged value of temperature (T) over the infinitesimal
neighborhood of point x and the value of temperature (T) in this point, both from the past time (t − τQ):

DT
(
x, t + τq

)
∝ k · ∆T(x, t) ·Dt + |cvk12k21| ·D∆T

(
x, t− τQ

)
(4)

where D(·) is the difference operator (“change in”) corresponding to changes for Dt→0 and also for
k12·k21 ≤ 0. Therefore, the temperature T(x, t + τq) dynamic is additionally intensified by the dynamics
of the rate of heat flux gradient (∂∆T(x, t − τQ)/∂t) in the past time (t − τQ).

The approach proposed in this work is based on the temperature T(x, t + τq) dynamic control,
using the fractional order of Laplace operator (GL∆αx) in the DPL model (Table 1c—right column).
The integral or differential behavior of this operator and time–space discretization scheme is obtained
by the value of parameter αx. The application of the fractional derivative can be interpreted as an
inhomogeneous space for the heat transfer in relation to the local energy distribution (interpreted as
temperature at nanoscale) in infinitesimal neighborhood of considered point. Therefore, the infinitesimal
distance in Laplacian is modulated in relation to the temperature distribution around the considered
point at nanoscale. The physical interpretation of the fractional derivatives is also presented in [22–25].

Table 1. Selected Heat Transfer Model transformed into time delayed Partial Differential Equation.

Heat Transfer Model Derived Time Delayed PDE

(a)

DPL equation [12,13] for τT > τq > 0,
Maxwell–Cattaneo–Vernotte equation [26–28] for τq > 0,
τT = 0 (more details in Vermeersch and De Mey as well as

Kovács and Ván papers [29,30]), and F–K
Equations (1)–(2) for τq = τT = 0: cv

∂T(x,t)
∂t = −∇ ◦ q(x, t)

q(x, t) + τq
∂q(x,t)
∂t = −k · ∇T(x, t) − kτT

∂∇T(x,t)
∂t

cv
∂T(x,t+τq)

∂t = k · ∆T(x, t + τT)
⇓

cv
∂T(x,t+τq−τT)

∂t = k · ∆T(x, t)

(b)

Ballistic-conductive heat transfer model for τq > 0, τQ > 0,
k12·k12 ≤ 0 (more details [30])

cv
∂T(x,t)
∂t = −∇ ◦ q(x, t)

τq
∂q(x,t)
∂t + q(x, t) = −k · ∇T(x, t) − k21 · ∇Q(x, t)

τQ
∂Q(x,t)
∂t + Q(x, t) = k12 · ∇ ◦ q(x, t)

cv
∂T(x,t+τq)

∂t =

= k · ∆T(x, t) − cvk12k21
∂∆T(x,t−τQ)

∂t

(c)

Proposed DPL model [12,13], with fractional order of the
temperature function space derivative based on

Grünwald–Letnikov theory for τq > 0, τT > 0, 2 < αx < 2.5
(more details in [31]):

cv
∂T(x,t)
∂t + τqcv

∂2T(x,t)
∂t2 =

= k · GL∆αx T(x, t) + kτT
∂GL∆αx T(x,t)

∂t

cv
∂T(x,t+τq)

∂t = k · GL∆αx T(x, t + τT)
⇓

cv
∂T(x,t+τq−τT)

∂t = k · GL∆αx T(x, t)

Hence, the proposed model (and proposed time–space scheme) is a link between experimentally
confirmed DPL mesoscopic model with the ballistic heat transport model with dynamic temperature
changes’ intensification useful for quasi 1-D nanostructures and for radiative heat transport without
phonon collisions (e.g., metal nanowires and ultra-thin metal–oxide films).

One of the biggest advantages of the DPL approach is a universality of its application. It can be
used in the case of parabolic partial differential equations, as well as for hyperbolic ones. It means
that the Dual-Phase-Lag model can successfully replace the classical model based on parabolic
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Fourier–Kirchhoff differential equation. Of course, the DPL approach also has some disadvantages.
For example, it is characterized by a bigger complexity than F–K model, what results in longer time
needed for computational simulation results, especially in the case of complex structures. However,
this issue will not be investigated in this paper.

The crucial achievement described in this paper is the application of the Grünwald–Letnikov
fractional space-derivative in Dual-Phase-Lag heat transfer model to more accurate modeling of
delays and modulation of Laplacian in relation to the temperature distribution around the considered
point. This approach seems to be beneficial to represent real heat transfer behavior at the nanoscale.
The proposed solution is more accurate than the F–K heat transfer model. The computation time
reduction is also obtained in comparison to the DPL model. Mentioned features will be demonstrated
by using a special test nanostructure developed in microelectromechanical system (MEMS) technology.

The structure of the paper is as follows. Primarily, a description of investigated real test structure
is prepared. Then, analyses related to mathematical modeling of the temperature distribution
inside the test structure are included. The structure’s discretization method is considered, as well.
Key components of authors’ approach, i.e., DPL model approximation scheme and heat transfer
enhancement (including Grünwald–Letnikov fractional derivative and its application), are described
in Sections 2.3 and 2.4. Next, simulation results are demonstrated and compared to real measurements
described in [32,33]. Finally, results are discussed, and the research is summarized.

1.2. MEMS Test Structure Description

The MEMS test nanostructures were manufactured in the Polish Institute of Electron Technology.
The structure consists of two parallel platinum resistors, which have lengths equal to 10 µm.
The cross-sectional area of each resistor is a 100 nm square. Moreover, the distance between both
resistors is also equal to 100 nm. They are placed on a thin layer of silicon dioxide, with a thickness of
100 nm. All layers are stacked on a 0.5 mm thick silicon wafer. A more detailed structure description
can be found in Janicki et al. [33].

The test structure was bonded to a metal-core PCB characterized by high thermal conductivity.
Moreover, the structure was connected to a biasing circuit, using high-frequency coaxial cables that
were mounted to a tiny Hirose U.FL connector attached to the silicon die. Real photos of the analyzed
structure, as well as the control circuit, are included in Janicki et al. [32,33].

During the measurement process, one of platinum resistors played a role of a heater, while the
second one served as a temperature sensor. A detailed description of the measurement process of the
test structure and obtained results is presented in [32,33].

2. Mathematical Description of Proposed Methodology

2.1. General Description

Thermal simulation was performed for the two-dimensional cross-sectional area of the investigated
structure in the middle of the resistors’ length. To obtain the temperature simulation results, the DPL
model, Equation (2), was used. In order to make the analysis more effective, the system of Equation (2)
was transformed to an equivalent form, presented below, for two-dimensional space [34]:

cv · τq ·
∂2T(x,y,t)

∂t2 + cv ·
∂T(x,y,t)

∂t − k · τT ·
∂∆T(x,y,t)

∂t − k · ∆T(x, y, t) = qV(x, y, t)
x, y ∈ R, t ∈ R+ ∪ {0}

(5)

The Laplacian of a temperature function ∆T was approximated by using the Finite Difference
Method (FDM) according to the following formulas:

∆T(x, y, t) =
∂2T(x, y, t)

∂x2 +
∂2T(x, y, t)

∂y2 , x, y ∈ R, t ∈ R+ ∪ {0} (6)
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∂2T(x, y, t)
∂x2 ≈

T(x + ∆x, y, t) − 2 · T(x, y, t) + T(x− ∆x, y, t)

(∆x)2 , x, y ∈ R, t ∈ R+ ∪ {0} (7)

∂2T(x, y, t)
∂y2 ≈

T(x, y + ∆y, t) − 2 · T(x, y, t) + T(x, y− ∆y, t)

(∆y)2 , x, y ∈ R, t ∈ R+ ∪ {0} (8)

Thus, considering the same difference between nodes in both axes, i.e., ∆x = ∆y, Laplacian ∆T can
be approximated in the following way:

∆T(x, y, t) ≈ T(x+∆x,y,t)+T(x,y+∆x,t)−4·T(x,y,t)+T(x−∆x,y,t)+T(x,y−∆x,t)
(∆x)2 ,

dla x, y ∈ R, t ∈ R+ ∪ {0}
(9)

On the basis of this methodology, the authors’ method for structure discretization and FDM
matrices generation was proposed. Moreover, taking into consideration the proposed approximation,
the DPL equation, in the form of Equation (5), has become an ordinary differential equation of a time
variable. Finally, the prepared matrix system of equations was solved for different points of time,
using a class of Backward Differentiation Formulas (BDF) [35–38].

In the following subsections, the structure discretization, as well as the proposed discretization
scheme for DPL model describing the temperature distribution in the cross-sectional area of investigated
test structure, is characterized in detail.

2.2. Structure Cross-Sectional Area Discretization

Primarily, the investigated cross-sectional area of the structure, as presented in Figure 1, was discretized
by using two-dimensional discretization mesh characterized by the following formulas [34]:

qk(t) = q(x, y, t), x = i · ∆x, y = j · ∆y (10)

Tk(t) = T(x, y, t), x = i · ∆x, y = j · ∆y (11)

i ∈ {1, 2, . . . , nx}, j ∈ {1, 2, . . . , ny}, k ∈ {1, 2, . . . , nx ·ny}

where nx and ny describe a number of discretization nodes in the x-axis and y-axis, respectively.
On the other hand, the product nx·ny reflects the entire number of nodes used to discretize the
structure’s cross-section.
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Nodes are numbered from the left to the right side, along the x-axis. After reaching the last
point in a single row, the next part of the structure, being the nearest row from the top of the current
row, was taken into consideration and numbered in the same way. Thus, node no. 1 was placed in
the left bottom corner of the structure, while the node with the highest possible number, equal to
nx·ny, was located in the top right corner. The graphical representation of used discretization mesh
for analyzed cross-section of the test structure, as well as the way mesh nodes were numbered,
is demonstrated in Figure 2. It is also worth highlighted that the distance between nodes in both
dimensions was set to 10 nm.
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2.3. Dual-Phase-Lag Approximation Scheme for Test Structure

In order to obtain the solution of temperature distribution problem inside the investigated
cross-sectional area of the structure, the Dirichlet boundary conditions were considered at the
bottom, while left, right and the top parts have been modeled using Neumann boundary conditions.
Described situation can be characterized by the following equations:

Tk(t) = 0, t ∈ R+ ∪ {0},
k ∈ {1, 2, 3, . . . , nx}

(12)

qk(t) = 0, t ∈ R+ ∪ {0},
k ∈

{
nx + 1, 2 · nx + 1, . . . ,

(
ny − 1

)
· nx + 1

}
∪

{
nx, 2 · nx, . . . ,

(
ny − 1

)
· nx

}
∪

∪

{(
ny − 1

)
· nx + 1,

(
ny − 1

)
· nx + 2, . . . , ny · nx

} (13)
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Considering imposed boundary conditions and the FDM assumptions, the DPL model can be
explained by the following system: M · T̈(t) + D · Ṫ(t) + K ·T(t) = b · u(t)

y(t) = cT
·T(t)

t ∈ R+ ∪ {0} (14)

where index T means a transposition, while T, Ṫ, and T̈ are nx·ny-element vectors reflecting the
temperature function and its first and the second time derivatives, respectively. Moreover, taking into
account the way of nodes numbering, matrices Idiag, MFDM, M, D, K, and cT; vectors cv, k, τq, τT, b,
and y; and the function u(t) may be reflected as indicated below:

Idiag, MFDM, M, D, K, cT
∈ Rnx·ny ×nx·ny ,

cv, k, τq,τT b, y ∈ Rnx·ny × 1,
u ∈ R

MFDM =



−3 1 0
. . . 1 0 0

. . . 0 0 0

1 −4 1
. . . 0 1 0

. . . 0 0 0

0 1 −4
. . . 0 0 1

. . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0 0
. . . −4 1 0

. . . 1 0 0

0 1 0
. . . 1 −4 1

. . . 0 1 0

0 0 1
. . . 0 1 −4

. . . 0 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0
. . . 1 0 0

. . . −3 1 0

0 0 0
. . . 0 1 0

. . . 1 −3 1

0 0 0
. . . 0 0 1

. . . 0 1 −2



(15)

M = diag
(
τq

)
◦ diag(cv) ◦ Idiag (16)

D = diag(cv) ◦ Idiag −
1

(∆x)2 · repmat(τT) ◦ repmat(k) ◦MFDM (17)

K = −
1

(∆x)2 repmat(k) ◦MFDM (18)

b = a ·
[

0 · · · 0 1 · · · 1 0 · · · 0
]T

, a ∈ R+ (19)

c = Idiag (20)

where Idiag is an identity matrix, operator ◦ reflects matrices multiplication resulting in a Hadamard
product, and matrix function diag (·) creates a diagonal matrix from a vector, while Matlab repmat
function replicates a given vector and composes a matrix of required dimensions. It is also worth
highlighting that non-zero values in vector b are observed only in the case of mesh nodes characterizing
a heating area.
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The system in Equation (14) of differential equations of the second order was equivalently
transformed into the following system of the linear first-order equations [39]: E · Ṫ(t) = A ·T(t) + B · u(t)

y(t) = cT
·T(t)

t ∈ R+ ∪ {0} (21)

where T and Ṫ are 2·nx·ny-element vectors. The first part of vector T consists of elements of vector T,
while its second part includes elements of Ṫ. On the other hand, the first and the second parts of the
vector Ṫ consists of elements of vectors Ṫ and T̈, respectively. Moreover, matrices E, A, B, and CT can
be represented in the following way [39,40]:

E =

[
Idiag Θ

Θ M

]
, A =

[
Θ Idiag
−K −D

]
, B =

[
Θ1

b

]
, C =

[
c Θ
Θ c

]
(22)

where Θ and Θ1 are null matrices. Moreover, we get the following:
E, A, CT

∈ R2·nx·ny × 2·nx·ny , B ∈ R2·nx·ny × 1, I, Θ ∈ Rnx·ny ×nx·ny , Θ1 ∈ Rnx·ny × 1

Thus, the full authors’ approximation scheme for the DPL model in two-dimensional
Euclidean space is described by the system in Equation (21), including explanations formulated
in Equations (15)–(22) and boundary conditions in Equations (12) and (13). The final solution of
temperature-distribution changes over time in the analyzed cross-section of the test structure, based on
the prepared approximation scheme, is determined by using the BDF method of a variable order
between 1 and 5.

2.4. Heat Transfer Enhancement

The considered test structure was analyzed, including the surrounding air environment.
Furthermore, platinum resistors’ separation distance d = 100 nm in the benchmark structure is
comparable to the surrounded air mean free path length Λ ≈ 65 nm. Therefore, the heat flow can be
approximated by the following equation [41]:

qair =
kair

〈d + aΛ〉
(TPt,A − TPt,B) (23)

where a is used to describe the interaction between the gas molecules and the solid walls [42], typically a = 1,
and <·> stands for ensemble average. The final equivalent air conductance between the mentioned
resistors was estimated by using the following simplified formula (compare with value in Table 2):

kair,eqv,PtA−PtB = kair
d

〈d + aΛ〉
≈ 0.961 kair ≈ 0.961 · 0.0263 W/(mK) (24)

The photon tunneling and the radiative heat transfer between platinum resistor parallel
surfaces were also analyzed. The photon tunneling was neglected due to the small amount
of heat flux transport (Sz)

evamescant
max = 2.2 · 10−19W/m2 (calculated for vacuum environment) in

comparison to the main heat flux Pt-SiO2 qPt_SiO2,cond≈19.3 MW/m2 and the heat conduction through
qPt_Pt,cond ≈ 0.917 qPt-SiO2,cond >> (Sz)

evamescant
max in the air for the steady state [43,44]:

(Sz)
evamescant
max ≈

k2
B · (TPtA + 273.15K)

24}b2

[
W/m2

]
(25)

where b is an inter-atomic distance b ≈ 39.12 nm for Pt, kB means the Boltzmann constant, and } is the
reduced Planck constant. Moreover, the radiative heat transfer (qSB rad) was also neglected, due to the
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insignificant emitted energy from warmer (TPtA) to colder platinum resistor (TPtB) parallel surfaces
qPt-SiO2, cond / qSB rad ≈ 8.3·1025:

qSB rad ≈ 5.6693 W
m2( K

100 )
·

(√
2− 1

)
·

{(TPtA+273.15K
100

)4
−

(TPtB+273.15K
100

)4
}

and 72 ≤ qSB rad ≤ 146W/m2 for TPtA ≈ 59K and 4.7K ≤ TPtB ≤ 31K
(26)

Moreover, considering investigation presented above, some additional changes in the proposed
model are needed. Thus, for the air area between resistors’ surfaces and for contact areas between
platinum and silicon dioxide, a fractional order of the temperature-rise function space derivative
has been employed, according to the theory described in [31,45]. This theory, based on the
Grünwald–Letnikov definition of the fractional derivative, allows us to establish the following
formula reflecting the temperature-rise function’s improvement for the central difference of the FDM
scheme [31,45]:

GLDαx
0,sT(s) =

1
(∆s)α ·

round(αx,0)∑
k=0

(−1)k Γ(αx+1)
Γ(k+1)·Γ(αx−k+1)T

(
s− k · ∆s + αx·∆s

2

)
,

forαx ∈ R+, ∆s→ 0
(27)

where ∆s is the mesh nodes distance, α is investigated fractional order, Γ is the special gamma function,
and round(m,n) is the function rounding the value m to n digits. Considering fractional order of
derivative, we needed approximating investigated function values in points between nodes of a
discretization mesh. The mentioned approximation depends on function values in neighboring mesh
points. Thus, the right-hand-side part of Equation (27), being an investigated approximation, can be
reflected by using the following equations [45]:

1
(∆s)αx ·

2∑
k=0

(−1)k Γ (αx+1)
Γ (k+1)·Γ (αx−k+1)T

(
x− k · ∆x + αx·∆x

2 , t
)
· 1 =

=
( αx

2 −1)·T (x+2·∆x,y,t)+(2− αx
2 −αx·( αx

2 −1))·T (x+∆x,y,t)
(∆x)αx +

+

(
αx ·(αx−1)

2 ·( αx
2 −1)−αx·(2− αx

2 )
)
·T (x,y,t)+

(
(2− αx

2 )·
αx ·(αx−1)

2

)
·T (x−∆x,y,t)

(∆x)αx

+
( αx

2 −1)·T (x,y+2·∆x,t)+(2− αx
2 −αx·( αx

2 −1))·T (x,y+∆x,t)
(∆x)αx +

+

(
αx ·(αx−1)

2 ·( αx
2 −1)−αx·(2− αx

2 )
)
·T (x,y,t)+

(
(2− αx

2 )·
αx ·(αx−1)

2

)
·T (x,y−∆x,t)

(∆x)αx

for αx ∈ (2, 2.5), ∆x→ 0

(28)

Table 2. Considered material parameters’ values [46].

Layer Material k [ W
m·K ] ρ [ kg

m3 ] cp [ J
kg·K ]

1 (wafer) Silicon (Si) 148 2330 712
2 (oxide) Silicon dioxide (SiO2) 1.38 2220 745
3 (heater) Platinum (Pt) 71.6 21,450 133

4 (thermometer) Platinum (Pt) 71.6 21,450 133
5 (ambient) Air 0.0263 * 1.1614 1.007

* See Section 2.4.

The formula above replaces the classic approximation of the Laplacian described by Equation (9).
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3. Thermal Simulation and Results Analysis

3.1. Material Characterization and Initial Simulation Results

A thermal simulation of the test structure was prepared by using MathWorks®Matlab environment
and proposed author’s approximation scheme for the DPL model. The used computational node
includes 4-core, 8-threads Intel® Core™ i7 2.6 GHz (3.6 GHz in Turbo mode) CPU, 32 GB DDR4
memory supported by 265 GB of swap file. In order to obtain simulation results, parameters’ values
presented in Table 2 were taken into consideration.

The most problematic issue is related to establishing parameters of the air layer, being an ambient
of investigated test structure. In particular, the air between two platinum resistors is crucial in presented
investigation. Moreover, the contact layer between platinum resistors and the oxide layer also needs
special consideration. In order to emphasize the problem, a sample analysis of temperature rises over
the time were prepared for different values of the DPL model parameters, as well as for different values
of a thermal conductivity for the mentioned part of the air layer.

The first part of the simulation process does not include the investigation demonstrated in
Section 2.4. Two sets of reference DPL model parameters were considered during the simulation
process:

• τT = 60 ps, τq = 3 ps (all layers)
• τT = 2.6 ps, τq = 0.0916 ps (platinum resistors) and τT = 60 ps, τq = 3 ps (all remaining layers).

The results, as demonstrated in Figures 3 and 4, were additionally normalized in order to make
their analysis easier. The normalization was prepared in the following way:

Tnorm
k (t) =

Tk(t)
max

t, k

{
Tk(t)

} k ∈
{
1, 2, . . . , nx · ny

}
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in Section 2.4).

As it can be seen, the average temperature rise inside the heater is less than 95% of the maximal
recorded temperature rise, while the temperature rise in the platinum sensor is characterized by a
slightly more than 61% of the highest observed temperature rise. Differences in temperature rise values
yielded for analyzed sets of DPL model parameters are observed between 1 ps and 1 ns.

Time shifts between observed lines in Figures 3 and 4 were plotted in Figure 5. In order to
show differences between results, excluding and including air conductivity investigation presented in
Section 2.4, a time shift analysis over the time, demonstrated in Figure 6, was carried out. In this figure,
“new kair” means the thermal conductivity of the air layer between platinum resistors calculated based
on the analysis shown in Section 2.4. As a comparison, the simulation results obtained for both DPL
time lags equal to zero for the air layer are also included.

Taking into consideration the sensitivity of yielded results to even small changes of the air
layer material parameters, in the second part of the simulation, values, calculated considering the
investigation described in Section 2.4, were employed only.

3.2. Final Simulation Results and Comparison to Real Measurements of the Test Structure

The analysis in the previous subsections shows that there is a need for calculation of the proper
material parameters for the air layer, especially between platinum resistors of the test structure.
Moreover, results of further research suggest using the fractional order of the space derivative of the
temperature rise function for the investigated region, as well as this one between platinum resistors
and the silicon dioxide, according to the theory described in Section 2.4. Taking into consideration
these facts, the simulation of the temperature distribution in the cross-sectional area of the real test
structure was carried out.
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It was assumed that differences between mesh nodes are equal to 10 nm in both axes. Furthermore,
values of DPL model time-lag parameters were calculated according to the theory presented in
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Zubert et al. [8]. Thus, for Platinum resistors, heat-flux time lag was set at approximately 550 ps,
while the considered value of the temperature time lag was equal to 15.6 ns. In the case of other
materials, investigated parameters were equal to 18 and 480 ns, respectively. Simulation results
and their comparison to the real measured data (collected and described in [32,33]) are presented
in Figures 7 and 8, for the transient and steady state analyses, respectively. Moreover, in Figure 7,
simulation results received by using the classical F–K model are also included, for comparison purposes.
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In Figure 7, the results for the heated platinum resistor were marked by dashed and dotted lines,
while those ones obtained for the temperature sensor were plotted with dashed lines. Moreover, outputs
for the heater and thermometer were marked by the red and blue curves, respectively. On the other
hand, measurement data (collected and described in Janicki et al. [32,33]) were plotted, using green
lines, while results obtained by using the F–K model were marked by the black color.

The maximal temperature rise above the ambient temperature was observed at the top surface
of the heat source, i.e., in the first platinum resistor (layer 3). Its value is nearly 60 K. On the other
hand, the temperature rise recorded at the surface of the temperature sensor, i.e., the second platinum
resistor (layer 4), is about 6 K, which states approximately 10% of the temperature rise observed in the
heat source.

Both of the investigated temperature rises coincide almost exactly with measurements of the
real structure (green curves in Figure 7). Parameter αx allows for changing the result curves’ slopes,
while DPL model parameters τq and τT cause the curves to shift over the time. The mentioned change
is proportional to the parameters’ values.

In order to check the quality of the obtained results for used the discretization mesh and mesh
nodes distances (10 nm), which were described in Section 2.2, the simulation curves’ fitting to the
measured one was considered. Each curve was plotted based on 703 points logarithmically distributed
over the time. Then, such metrics as coefficient of determination (R2), root mean squared error (RMSE),
sum of squared estimate error (SSE), and mean squared error (MSE) were calculated. Moreover,
to assess the goodness of recognition as a volatility over the time, a Pearson correlation coefficient
(corr) was also considered. Determined metrics values are presented in Table 3.

Table 3. Evaluation of goodness of fitting of simulation results to real data.

Temperature Distribution Simulation MSE RMSE SSE R2 Corr

Heater 8.5837·10−4 0.0293 0.6034 0.9572 0.9973
Thermometer 9.5540·10−5 0.0098 0.0472 0.9554 0.9748

As it can be seen, both the heater and thermometer curves are characterized by relatively small
values of MSE, RMSE, and SSE values. Moreover, the coefficient of determination and correlation
coefficient suggest a proper recognition of a shape of the measured curve by a simulated one. Generally,
it can be stated that calculated metrics (MSE, RMSE, SSE, coefficient of determination, and correlation
coefficient) for the simulation fitting to the real data confirm highly accurate simulation results.
This situation clearly shows that the proposed approach based on the theory described in Section 2
allows for the production of outputs reflecting the real thermal phenomena observed at the nanoscale.
Moreover, as it was shown in Figure 7, the classical F–K model should not be used in the case of
electronic nanosized structures.

4. Conclusions

This paper includes the investigation of the heat transfer problems at the nanoscale. A new
approach to the heat transfer modeling in modern nanosized structures was considered. It combines the
DPL model and the Grünwald–Letnikov fractional derivative. A combination of these mathematical
tools allows for the preparation of a complex approach using the Finite Difference Method to temperature
distribution determination at the nanoscale, with a high level of accuracy, as is confirmed by the
measurement of a real test structure.

An important novelty described in this paper is the use of a DPL model with a fractional order space
derivative of a temperature function based on the Grünwald–Letnikov derivative operator. This operator,
as well as the proposed time–space discretization schema, is a bridge between experimentally confirmed
DPL mesoscopic model with the ballistic heat transport model with dynamic temperature changes’
intensification useful for quasi 1-D nanostructures and for radiative heat transport without phonon
collisions. This solution allows for the consideration of such physical behaviors like time needed for a
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heat flux or temperature gradient changes. Thus, a modeling of a heat diffusion can be investigated by
making realistic assumptions, which was not possible in the case of the F–K model use and real relaxation
thermal properties of material at mesoscopic scale. The research has shown that the proposed GL DPL
model is more realistic than the commonly used Fourier–Kirchhoff model.

The manuscript describes also proposed an approximation scheme of a modern DPL heat transfer
model based on the Finite Difference Method approach prepared for the two-dimensional cross-section
of the real test nanometric electronic structure manufactured at the Institute of Electron Technology in
Warsaw. The investigation has shown that there is a possibility to effectively implement a prepared
algorithm that allows for the determination of a temperature distribution inside real nanoscale electronic
structures, based on proposed an approximation scheme.

Thermal simulation has provided results which coincide almost exactly with the real measurements.
It means that prepared methodology is highly accurate and allows modeling of the heat transfer
problems by using a modern approach based on the use of the Dual-Phase-Lag model. The considered
thermal model is an appropriate methodology for heat-diffusion modeling, especially at the nanoscale.

In the future, the reduction of the DPL model order reduction methodology will be considered
in order to save simulation time, decrease a computational power requirements [47], and make the
simulation process more efficient.
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Nomenclature

Symbol Description SI Unit
Latin symbols

T Temperature rise distribution in analyzed area in relations to ambient temperature K
a Constant describing an interaction between gas molecules and solid walls -
b Inter-atomic distance m
cp Specific heat of a material for a constant pressure (cp) J

kg·K

cv
Volumetric heat capacity being a product of a specific heat of a material for a constant pressure
(cp) and its density (ρ)

J
m3·K

} Quotient of Planck constant and the value of 2·π J·s

k Material thermal conductivity W
m·K

kB Boltzmann constant
J
K

q Heat flux density W
m2

qV Volume density of internally generated heat W
m3

∆s Mesh nodes distance m
t Time variable s

x
Space variable

x =

{
[x1, x2, . . . , xn]

T, x ∈ Rn, n ∈ N\{1}
x, x ∈ R

mn
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Symbol Description SI Unit
Greek symbols

αx Order of a fractional Grünwald–Letnikov space derivative -
Λ Molecule’s mean free path length m
ρ Material density kg

m3

τT Temperature time lag s
τq Heat flux time lag s

Matrix and vectors
1 Vector including only 1 values -
a × b Matrix dimensions; a reflect number of rows, b is the number of columns -

Derivatives
∂ Derivative symbol -
f First derivative of function f -
”
f Second derivative of function f -

GLDα
0,s Fractional Grünwald–Letnikov derivative of order α around point 0 for s variable -

Mathematical operators
D(·) Difference operator corresponding to changes for Dt→0 -

Multiplication operator -
∇ Nabla operator -
∆ Laplace operator -

GL∆αx Fractional order of Laplace operator -
∇ ◦ Divergence operator in orthogonal Euclidean space -
∪ Sets’ union operator -
T Transposition operator -

Sets and spaces
{a1, a2, a3, . . . , an} Finite set of elements -
(a, b) Open interval between a and b -
span{a,b} Linear subspace generated by vectors a and b -

Functions
〈·〉 Ensemble average -
dαe Rounding of α value to the smallest integer number higher or equal to α -
diag(·) Matrix function creating a diagonal matrix from a vector -
repmat(·) Matrix function replicating a given vector and composing a matrix of required dimensions -
round(α,k) Rounding of α value to kth digit after decimal point -
max

s

{
f (s)

}
Maximum of the set including f function values -

Γ(·) Special Gamma function -
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