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Abstract: Underground pumped-storage hydropower (UPSH) is a promising technology to manage
the electricity production in flat regions. UPSH plants consist of an underground and surface reservoirs.
The energy is stored by pumping water from the underground to the surface reservoir and is produced
by discharging water from the surface to the underground reservoir. The underground reservoir
can be drilled, but a more efficient alternative, considered here, consists in using an abandoned
mine. Given that mines are rarely waterproofed, there are concerns about the consequences (on the
efficiency and the environment) of water exchanges between the underground reservoir and
the surrounding medium. This work investigates numerically such water exchanges and their
consequences. Numerical models are based on a real abandoned mine located in Belgium (Martelange
slate mine) that is considered as a potential site to construct an UPSH plant. The model integrates
the geometrical complexity of the mine, adopts an operation scenario based on actual electricity
prices, simulates the behavior of the system during one year and considers two realistic scenarios
of initial conditions with the underground reservoir being either completely full or totally drained.
The results show that (1) water exchanges may have important consequences in terms of efficiency
and environmental impacts, (2) the influence of the initial conditions is only relevant during early
times, and (3), an important factor controlling the water exchanges and their consequences may be
the relative location of the natural piezometric head with respect the underground reservoir.
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1. Introduction

The development and use of renewable and carbon-free energies is needed to meet the Paris
Agreement goal of limiting the temperature increase due to climate change below 2 ◦C [1]. However,
some renewable sources of energy, such as photovoltaic or wind energy, are not perfectly efficient
because they are variable, and their production does not match the demand. This fact does not contribute
to extend the use of renewable energies [2]. In this context, energy storage systems (ESS) become essential
to increase the efficiency and encourage the use of intermittent renewable energies [3]. These systems
allow storing the excess of energy generated during low demand periods and producing electricity
when the demand increases [4,5]. The most widely used ESS is pumped-storage hydropower (PSH) [6]
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because of its high capacity to store and produce electricity. PSH plants consist of two reservoirs located
at different elevations. The excess of energy generated during low demand periods is used to pump
water from the lower to the upper reservoir, thus storing the energy in the form of potential energy,
and electricity is produced when the demand increase by discharging water from the upper reservoir into
the lower one through turbines. PSH has some drawbacks mainly linked to reservoirs creation, such as
impacts on landscape, land use, environment and society (relocations may be needed) [7,8], but its main
limitation is the topography, since the reservoirs must be located close to each other and at different
elevations. Therefore, PSH cannot be used in relatively flat areas. Contrary, underground pumped
hydropower storage (UPHS) is a potential alternative to store and manage the electricity production
in regions whose flat topography does not allow using PSH. UPHS plants consist of two reservoirs
from which the lower one is underground while the upper one may be located at the land surface or
at shallow depth [9]. The concept of UPSH is not new [10] and numerous authors have investigated
its suitability as ESS in different countries such as Singapore [7], USA [11,12], South Africa [13–16],
The Netherlands [17,18], Germany [19–21], Belgium [22,23] or Spain [24]. In addition, different
aspects related with UPSH, such as the influence of pressure inside the underground reservoir on the
efficiency [25,26], the waves heights as a result of the particular geometry of underground reservoirs [27]
or the stability of the underground infrastructures [28], have been considered. However, given the
range of possible reservoir configurations and soil properties, more investigation is needed about
the water exchanges between the underground reservoir and the surrounding medium and their
associated consequences.

The underground reservoir can be drilled, but, to reduce the costs, a suitable option is to use
abandoned mines. Theoretically, impacts on landscape, land use and environment produced by UPSH
are lower than those produced by PSH. Moreover, UPSH could contribute to the economic development
of local communities after the cessation of mine activities if abandoned mines are used. However,
given that mines are rarely waterproofed, water exchanges will occur between the underground
reservoir and the surrounding medium, which is saturated most of the times. The consequences of
water exchanges, and thus, the interaction between UPSH and the surrounding medium, is one of
the most challenging aspects of this technology because water exchanges may impact the natural
distribution of groundwater [29], its quality [30–32], and the efficiency of the UPSH plant [33]. Although
previous investigations have addressed those issues, most of them are based on synthetic scenarios
under ideal conditions and during short periods of time, which minimizes the representativeness of
the obtained results. Thus, investigation based on real mines considered for the construction of UPSH
plants is needed involving numerical simulation of long periods of time and taking into account most
of the geometrical complexities inherent to underground mines.

The objective of this work is to investigate the evolution of the water exchanges between the
underground reservoir and the surrounding medium and how they may affect the groundwater
behavior around the UPSH plant and the hydraulic head inside the underground reservoir. The main
novelties of this paper are that (1) it is based on a real mine that has been chosen as a potential location
where constructing a future UPSH plant [34]; (2) the geometrical complexity of a real mine is considered;
(3) contrary to the previous studies, the system behavior is modelled and studied during a long period
of time; (4) the considered operation scenario is based on actual electricity price curves to avoid
no-realistic sinusoidal or other regular operation scenarios; and (5), two different initial conditions
related with the previous activities developed to prepare the mine to be used as an underground
reservoir are considered. In sum, this work provides an overall view of the interaction between UPSH
plants and groundwater in a real site and considering realistic assumptions. However, main findings
can be extrapolated qualitatively to other mines used as underground reservoirs for UPSH. In general
terms, the interaction between other underground reservoir and groundwater should be similar.
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2. Materials and Methods

2.1. Problem Statement

The numerical model is constructed taking as reference the Martelange slate underground mine.
This mine is located in southeast Belgium, specifically, in the Ardennes region (Figure 1) and its
exploitation was abandoned in 1995.
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Figure 1. Geographical location of the mine in Martelange that is considered as possible underground
reservoir for underground pumped-storage hydropower (UPSH) and is modelled in this study.

The mine was exploited following the ‘room and pillar’ mining method and consists of
9 underground adjacent rooms (from now on called chambers—CH) connected by galleries.
Approximately, the size of the chambers is 15 m (width) by 45 m (long) and their heights vary
ranging from 110 m to 70 m (the heights decrease from east to west as shown in Figure 2). Heights
are variable since the top of all chambers is located at the same depth (at 40 m below the surface)
while the depths of the bottoms increase from west to east direction (Figure 2). The increment from
one chamber to the adjacent one in the east to west direction is of 5 m. Thus, the bottoms are 110,
115, 120, 125, 130, 135, 140, 145 and 150 m deep for chambers CH9, CH8, CH7, CH6, CH5, CH4, CH3,
CH2 and CH1, respectively. In addition, there is a 170-m-deep extraction shaft that links the mine to
the surface located close to CH1 [23,34]. The volume of mine water that can potentially be used to
store and produce electricity is approximately 400,000 m3. This volume is calculated by considering
that (1) the 10% of its maximum capacity is not pumped to avoid the total dry of the underground
reservoir, and (2) the hydraulic head inside the underground reservoir does not exceed its elevation
in natural conditions. In addition to its high capacity, this potential UPSH plant could reach a mean
effective hydraulic head difference of 215 m if the surface reservoir is constructed strategically at 500 m
in the northwest direction [34]. Finally, it is important to consider for the assessment of the water
exchanges that the natural piezometric head is located near the top of the chambers, thus, after the
cessation of the mining activities, the mine is flooded. From this point forward, the term “hydraulic
head” refers to the water head inside the underground reservoir whilst “piezometric head” refers to
the groundwater head.

Geologically, the mine is located in a fractured slate formation that belongs to the ’Formation de La
Roche’ of the lower Devonian age in the Ardennes anticlinorium in southeast Belgium. More accurately,
those slates dated of the Praguian age (Lower Devonian) when the transgressive seas of the lower
Devonian were at their maximum. Clays and silts were first transformed in claystones and siltstones,
and then in phyllites due to metamorphism. They have undergone multiple phases of deformation
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metamorphism, now forming dark fractured slates with a locally thin bed of quartzites. The main slate
cleavage (schistosity) is not parallel to the bedding plane but was induced orthogonally to the main
stress conditions during metamorphism phases. The slate has a low hydraulic conductivity and the
relative continuity of the groundwater flow can only be assumed because of the multiple fractures.
However, locally, isolated aquifer compartments cannot be excluded.
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F-CI and the red dotted line shows the initial piezometric head of scenario E-CI.

2.2. Numerical Model

2.2.1. Code

The groundwater numerical model is developed using the finite element numerical code
SUFT3D [35,36]. This code uses the Control Volume Finite Element (CVFE) method to solve the
groundwater flow equation based on the mixed formulation of Richard’s equation proposed by
Celia et al. [37]:

∂θ
∂t

= ∇·K(θ)∇h +∇·K(θ)∇z + q (1)

where θ is the water content [-], t is the time [T], h is the pressure head [L], z is the elevation [L], q is
a source/sink term [T−1], and K is the hydraulic conductivity tensor [LT−1], which is given by

K = KrK
S

(2)

where K
S

is the saturated permeability tensor [LT−1] and Kr is the relative hydraulic conductivity [-]
that varies between a value of 1 for the full saturation of the pores by water to a value of 0 when
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the water phase is considered immobilized [38]. The value of Kr in the transition band between the
saturated and unsaturated zones evolves according with the following equations [39]:

θ = θr
(θs − θr)

(hb − ha)
(h− ha) (3)

Kr(θ) =
θ− θr

θs − θr
(4)

where θs is the saturated water content [-], θr is the residual water content [-], hb is the pressure head
at which the water content is the same as the residual one [L], and ha is the pressure head at which
the water content is lower than the saturated one [L]. The value of Kr between the saturated and
unsaturated zones evolves linearly as can be deduced from Equations (3) and (4). This fact does
not noticeably affect the results since they are focused on the saturated zone, while it minimizes
convergence errors that occur when using other more complex equations to define the transition
between the saturated and unsaturated zones.

SUFT3D is chosen because it is specifically designed for integrating underground cavities, such as
the underground mines, in a groundwater numerical model. This fact allows improving the modelling
of the groundwater dynamics affected by the presence of underground cavities. The underground
cavities, in this case the underground chambers of the Martelange slate mine, are modelled as linear
reservoirs taking advantage of the Hybrid Finite Element Mixing Cell (HFEMC) method. The HFEMC
method [35,36], which is implemented in the SUFT3D code [40–42], is a flexible method combining
advantages of black-box models together with physically based and spatially distributed models.
Basically, the HFEMC method allows dividing the domain into different subdomains according to their
nature. The subdomains can behave as porous medium or as linear reservoirs. The unmined areas are
discretised with finite elements and the groundwater flow equation in variably saturated porous media
(Equation (1)) is solved for computing the spatially distributed piezometric head. The underground
cavities (i.e., mine chambers) are discretized as single mixing cells and modelled as linear reservoirs.
These linear reservoirs are equivalent to a box model technique where only a mean hydraulic head is
calculated. In terms of hydraulic behaviour, the linear reservoirs are equivalent to zones discretised
with finite elements with a very high hydraulic conductivity and a porosity of 1. Groundwater exchange
between linear reservoirs and porous medium varies linearly as function of the water level difference
between them [43] according to an internal dynamic Fourier BC [36] defined as follows:

Qi = α′A
(
haq − hur

)
(5)

where Qi is the exchanged flow [L3T−1], haq is the piezometric head in the aquifer [L], hur is the
hydraulic head in the underground reservoir [L], A is the exchange area [L2] and α′ is the exchange
coefficient [T−1]. Note that the water velocity inside each mixing cell is neglected. In the present study,
despite that the whole mine could have been modelled as a single, linear reservoir; each chamber was
modelled as an individual linear reservoir. This particularity does not affect the results and will allow
using the model in future works for analysing the volume of exchanged water through each chamber or
for assessing the system behaviour considering that less chambers are used as underground reservoir.

Another reason for choosing SUFT3D is that it allows implementing virtual connections. A virtual
connection, also called “by-pass” allows connecting non-adjacent subdomains modelled as linear
reservoirs. These virtual connections are governed by a first-order transfer equation (Equation (5)) that
can be switched on or off using a specific threshold depending on the difference of the hydraulic head
between the two connected linear reservoirs.

Qvr = αvr
(
hSDj − hSDi

)
(6)
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where Qvr is the flow between reservoirs, αvr is the exchange coefficient of the virtual connection
[L2T−1], hSDj and hSDi are the hydraulic head inside each one of the connected linear reservoirs. Firstly,
a virtual connection is adopted to extract water when the 100% of the underground reservoir is filled,
which occurs when the elevation of the hydraulic head in natural conditions is exceeded. This virtual
connection links the underground with a small “fake” subdomain totally isolated and located at a corner
of the modeled domain. The virtual connection is commonly switched-off and it is only activated when
the hydraulic head reaches the elevation of the natural hydraulic head. A very high value (106 m2/d) is
adopted for αvr to ensure that the needed volume of water is immediately extracted to avoid exceeding
the elevation of the hydraulic head in natural conditions. Secondly, a virtual connection is used at each
one of the nine chambers to avoid a hydraulic head lower than their bottoms. In this case, the adopted
value for αvr is also very high (106 m2/d) to ensure that water could flow between chambers without
any constraint. The virtual connection is steadily switched-on and it is deactivated only when the
hydraulic head is at the bottom of a chamber. This virtual connection allows disconnecting individually
each chamber from the operation shaft when the hydraulic head is too low.

2.2.2. Model Characteristics

The main characteristics of the model are as follows:

• Underground reservoir: The underground reservoir consists of nine underground chambers (CH1
to CH9) linked by galleries located at their bottoms. Each pair of contiguous chambers are linked
with one gallery. In addition, a rectangular prism, which links the underground reservoir to the
surface, is added adjacent to the CH1 (Figures 2 and 3) to conceptually represent the shaft through
which water is pumped and discharged (from now called operation shaft).

• Model dimensions: The modeled domain consists in a square with a side of 2200 m and a height of
180 m (Figures 2 and 3). The chambers (i.e., the underground reservoir) are located in the middle
of the domain, approximately, at a distance of 1000 m from the external boundaries of the model.
This distance is enough to minimize the influence of the external boundaries on the groundwater
dynamics around the underground reservoir.

• Spatial discretization: The mesh is made up of prismatic 3D elements and is divided vertically in
29 layers. The horizontal size of the elements decreases towards the underground reservoir (from
150 m near the external boundaries to 5 m in the center of the domain) (Figure 3). The number of
elements and nodes is 64,844 and 38,680, respectively.

• Temporal discretization: The simulation period covers one year and the simulation time step is
15 min. Induced piezometric head oscillations are relatively large and convergence problems arise
in the limit between the saturated and unsaturated zone if time steps are larger than 15 min.

• Hydraulic parameters: The hydraulic parameters used in the model are typical of slate mines
and are representative of the known underground properties at the considered mine site [44,45].
The hydraulic conductivity is 10−7 m/s, the specific storage coefficient is 10−4 m−1, the saturated
water content is 0.05 and the residual water content is 0.01.

• Boundary conditions (BCs): Pumping from and discharge into the underground reservoir are
simulated by prescribing the flow at the bottom of the operation shaft (Neuman BC). An internal
dynamic Fourier BC, which is head-dependent [35], is implemented to simulate the groundwater
exchanges between the underground reservoir (chambers and operation shaft) and the surrounding
medium. Regarding the external boundaries, the piezometric head is prescribed (Dirichlet BC) at
an elevation with respect the bottom of the model of 121 and 120 m on the upgradient (W) and
downgradient (E) sides, respectively. As a result, the underground reservoir is practically flooded
(saturated) in natural conditions and groundwater flows from W to E with a hydraulic gradient of
4.6·10−4. The boundary conditions adopted at the external boundaries are maintained constant
through the simulations. This fact is a simplification since the piezometric head at the Martelange
site oscillates slightly seasonally [46]. However, seasonal oscillations are small enough to not alter
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the results noticeably. Finally, no-flow BCs are adopted at the top and the bottom of the model
and at the N and S boundaries.

• Modeling approach: The domain, except the linear reservoir, is modeled as a porous medium,
thus the fractured medium is replaced by an Equivalent Porous Medium (EPM) approach.
Although the EPM approach does not allow modelling individual fractures [47] it is suitable
for estimating the global behaviour of such a system and computing the main trends. Several
studies have demonstrated the efficiency of the EPM approach for modelling fractured aquifers,
among others, [48,49]. In addition, the presence of multiple fractures in the study site induces the
continuity of the groundwater behavior like in a porous medium.
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2.2.3. Initial Conditions—Scenarios

Two different scenarios that differ in the initial conditions are simulated (F-CI and E-CI) (Figure 2).
In scenario F-CI, it is assumed that the piezometric head before the start of the UPSH plant is located at
the top of the underground reservoir, thus, it is undisturbed. This situation mimics the initial conditions
after a long period of inactivity of the plant, during which the piezometric head returns to its natural
position. In E-CI, the underground reservoir is empty, and the piezometric head is located at its bottom.
This scenario aims to represent the initial conditions after a dewatering for undertaking rehabilitation
works, which would be probably needed for adapting the mine to an underground reservoir. The initial
conditions of E-CI are computed by prescribing the head at the bottom level of the operation shaft
until steady state hydrogeological conditions are reached. The computed steady state pumping rate
for dewatering the mine is about 110 m3/d.

2.2.4. Operation Scenario

The objective of this study was not to define the best operation scenario of an UPHS plant, but to
look for the response of the system with realistic operation conditions. Therefore, in order to have
a pumping–discharge frequency more realistic than sinusoidal or other regular cycles, it was decided to
build the operation scenario from electricity price curves. Three 14-day hourly electricity price curves
during winter, summer and spring 2013 in Belgium were used. They typically show low electricity
price during the night and two peaks in electricity price during the day (around noon and in the
evening). The process to derive the pumping-discharge frequency was as follows:

1. Two realistic constraints were adopted. These consisted of (1) establishing the duration of pumping
and discharge phases to 5 h, and (2) assuming that the usable volume of the underground reservoir
is completely emptied and filled once a day. Therefore, there are 14 h per day during in which no
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operations are carried out and the system is in the same condition at the beginning of every day
(underground reservoir filled at maximum).

2. Frequencies were defined on an hourly basis to maximize economic benefit of the plant operation,
i.e., to maximize the balance between electricity cost during pumping and money income when
discharging. Every hour, a choice was made between three possibilities (pumping, discharge
or no-operation) in order to get at the end of the day 5 h of pumping, then 5 h of discharge and
14 h of no-operation. Pumping, discharge or no-operation hours are not necessary consecutive.
For each day, the cheapest 5 h are selected for pumping, and the most expensive 5 h for discharge.

Figure 4 displays the 14-day electricity price curves and the derived operation scenarios. It is
possible to appreciate that pumping occurs during low cost periods while generation (discharging)
matches the peaks in electricity price.
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Figure 4. Fourteen-day electricity price curves (black line) and operation scenarios (red line) of three
seasons: (a) winter, (b) spring-autumn, and (c) summer. Letters D and P refer to discharge and
pumping phases.

The scenario for each season was completed by repeating the 14-day curves and the annual curve
by assuming that the electricity price curve for autumn is analogous to that of spring. Simulations start
the first day of winter (i.e., 21 December) to avoid interruptions within the same season. Considering
that the maximum pumping/discharge phase duration during a day is 5 h and that during this phase the
usable volume of the underground reservoir is completely filled or emptied, pumping and discharge
rate is about 24 m3/s.

Note that operation scenario was defined neglecting the water exchanges between the underground
reservoir and the surrounding porous medium because they were not previously known. In fact,
a groundwater numerical model like that presented in this paper is needed to estimate the water
exchanges. Water exchanges between the underground reservoir and the surrounding medium may
modify the hydraulic head inside the underground reservoir, and therefore, the underground reservoir



Energies 2020, 13, 2353 9 of 21

may be filled or emptied at a different velocity than when water exchanges are neglected. This fact can
give rise to two delicate situations:

1. The underground reservoir is filled faster than when water exchanges are neglected, and therefore,
water cannot be discharged despite it is required given the defined pumping–discharge frequency.

2. The underground reservoir is emptied faster than when water exchanges are neglected. In this
case, water cannot be pumped despite it is required by the defined pumping–discharge frequency.
In the modeled case, this situation only arises at the beginning of the scenario E-CI when an initial
pumping is not allowed because the underground reservoir is totally filled. During the rest of
the simulations, this situation never arises again since inflows of water from the surrounding
medium into the underground reservoir are always higher than outflow.

This means that although pumping or discharge periods are required considering the evolution of
the demand (i.e., electricity price), if the capacity of the underground reservoir is exceeded, they are
not carried out. Consequently, the operation scenario is slightly varied from that defined using the
evolution of the electricity price, given that the amount of exchanged water cannot be known in
advance. The modification of the operation scenario is automatically done by the numerical model
by using internal BCs. Water discharge is avoided when the underground reservoir is totally filled
by introducing an internal BC that consists in a virtual connection. This BC ensures the maximum
capacity of the underground reservoir is not exceeded. Similarly, an internal BC is implemented at
each one of the 9 chambers to avoid a hydraulic head lower than their bottoms. Figure 5 displays the
evolution of pumping and discharge rates during the 10 first days of the simulations for scenarios
F-CI (Figure 5a) and E-CI (Figure 5b). Negative values mean that water is pumped while positive
ones mean that water is discharged. The discharge in F-CI is lower than 24 m3/s during some periods
because the underground reservoir is filled, and thus, the internal BC flows out a part of the discharged
water. Despite the same operation scenario is considered, scenario F-CI starts with a pumping because
the underground reservoir is initially filled while scenario E-CI starts with a discharge because the
underground reservoir is empty and water cannot be pumped.
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Figure 5. Effective operation scenario for (a) scenario F-CI, where the underground reservoir is initially
full of water, and (b), scenario E-CI where the underground reservoir is initially dewatered.

3. Results and Discussion

3.1. Piezometric Head Evolution

Figures 6 and 7 show the piezometric head evolution at three observation points located at
different distances from the underground reservoir (Figure 2) in the upgradient and downgradient
directions, respectively. Piezometric head computed for the F-CI and E-CI scenarios are displayed in
blue and red colors, respectively. The piezometric head is calculated taking as reference the bottom
of the model; thus, the units are meters above the bottom of the model. Observation points located
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on the upgradient side (Figure 6) are located at 5, 15 and 100 m from the underground reservoir and
at a depth of 105 m (75 m above the bottom of the model), while those located downgradient are
located at 5, 15 and 105 m from the underground reservoir, and also, at a depth of 105 m (Figure 2).
The nearest chamber to the upgradient observation points is CH9 while CH1 is the closest one to
downgradient observation points. The comparison between Figures 6 and 7 shows that the response of
the piezometric head is the same in the upgradient and downgradient directions. The only difference
is the mean elevation of the piezometric head at each observation point that depends on the prescribed
BC in the outer boundaries of the model. The mean piezometric head decreases from upgradient to
downgradient, and for this reason, it is slightly higher in Figure 6 than in Figure 7. Note that some
values are missing during early times at some observation points, especially in Figure 7a,b. This means
that the elevation of the piezometric head is lower than that of the observation point (i.e., 105 m depth).

In both scenarios, there is a period of time between 180 and 270 days during which the behavior
of the piezometric head is different. During that period, the mean piezometric head decreases and the
magnitude of the oscillations increases. This increase is difficult to appreciate in the figures, especially
at those showing the piezometric head evolution at the upgradient side. Table 1 summarizes the
difference between maximum and minimum piezometric heads during the winter, spring/autumn
and summer periods considering the F-CI scenario. Results concerning the four closer observation
points to the underground reservoir are shown (2 at the upgradient and 2 at the downgradient side).
This particular behavior is a consequence of the operation scenario during the summer period when
no-operation periods between pumping and discharge are generally longer than in other seasons,
which agrees with the fact that sunset occurs later in summer. The mean piezometric head decreases
more than in other seasons because during the long no-operation periods between pumping and
discharge, the hydraulic head inside the underground reservoir is at a low elevation for longer periods
compared to other seasons. As a result, during this period, groundwater flows from the surrounding
medium towards the underground reservoir, and the head decreases accentuating the consequences of
pumping. This behavior is the result of the low hydraulic conductivity of the surrounding medium and
the volume of the underground reservoir. A long time, during which the piezometric head decreases
because water is flowing into the underground reservoir, would be needed after a pumping period
to fill the volume of pumped water. Given that this time is longer than the non-activity period,
the piezometric head decreases during it. If the hydraulic conductivity would be high, a shorter time
would be needed to fill the pumped volume of water, and once the hydraulic head had reached the
same level than the piezometric head, both of them would slowly increase during the rest of the
non-activity period. The magnitude of the oscillations increases because (1) more water enters into
the underground reservoir during the no-operation periods after pumping increasing the drawdown,
and (2), the hydraulic head inside the underground reservoir reaches a higher elevation during the
discharge periods than in other seasons because the additional inflow during no-operation periods fills
partially the underground reservoir.

Table 1. Difference between maximum and minimum piezometric heads during the winter, spring/autumn
and summer periods considering the F-CI scenario.

Location Upgradient Downgradient

Distance from the reservoir 5 m 15 m 5 m 15 m

Winter 17.82 m 3 m 18.7 m 5 m
Spring/Autumn 17.2 m 3 m 19.2 m 6 m

Summer 18.27 m 4 m 29.3 m 8 m

The piezometric head oscillations are indeed a consequence of the pumping and discharge
operations, but oscillations are only clearly observed close to the underground reservoir since the
hydraulic conductivity of the surrounding rocks is relatively low. Thus, the impact of UPSH on
surrounding aquifers decreases with low values of hydraulic conductivity since the distance at which
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groundwater oscillations occur decreases as the hydraulic conductivity is reduced. The magnitude
of the oscillations increases towards the underground reservoir in both scenarios. The magnitude of
the oscillations calculated at the observation points located at 5 m from the underground reservoir is
always higher in scenario F-CI than in scenario E-CI at the beginning of the simulation. This fact is
a consequence of the elevation and evolution of the piezometric head. Given that the mean piezometric
head around the underground reservoir is lower in scenario E-CI than in F-CI, the saturated thickness,
and thus, the transmissivity are also lower. Therefore, the effects of the hydraulic head oscillations in
the underground reservoir are more transmitted to the surrounding rocks in scenario F-CI than in E-CI.
This difference decreases with time because the saturated thickness around the underground reservoir
increases in E-CI and so does the transmissivity. At the observation points located at 15 m, it seems
that the magnitude of the oscillations is always higher in F-CI than in E-CI. In this case, the saturated
thickness is more dependent on the global evolution of the aquifer and more time is needed in scenario
E-CI to reach the same saturated thickness than in scenario F-CI.Energies 2020, 13, x FOR PEER REVIEW 11 of 21 
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Figure 6. Piezometric head evolution at three observation points located at the upgradient side of the
underground reservoir and at 105 m depth. Results of F-CI scenario are displayed in blue while those
of E-CI scenario are plotted in red. The observation points are located at 5 (a), 15 (b) and 100 m (c) from
the underground reservoir. The piezometric head is calculated taking as reference the bottom of the
model, thus, the units are meters above the bottom of the model.

Results also show that the piezometric head tends to decrease in F-CI and to increase in E-CI. It is
possible to deduce that the piezometric heads of both scenarios tend to converge, and therefore, the final
piezometric head will be the same. In addition, the final piezometric head will oscillate around a lower
elevation than that in natural conditions. This fact contrasts with previous studies which suggest that
the piezometric head after a long operation period tends to reach a pseudo-steady state and oscillates
around the elevation of the piezometric head under natural conditions [29]. The difference with respect
to the previous studies is a direct consequence of the relationship between the natural piezometric head
and the geometry of the underground reservoir. The natural piezometric head is located at the top of
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the underground reservoir, and therefore, when the hydraulic head reaches that level, the underground
reservoir is totally filled and additional water discharge in the underground reservoir is avoided.
Thus, the hydraulic head inside the underground reservoir, and therefore the piezometric head in
the surrounding medium, is never higher than that in natural conditions. Consequently, given that
the elevation of the natural piezometric head is only reached at the end of some pumping periods,
the piezometric head must oscillate around an elevation lower than that in natural conditions. In other
words, the overall inflow towards the underground reservoir is larger than outflow since most of the
time the hydraulic head in the underground reservoir is located below the elevation of the natural
piezometric head, which is only reached at the end of some pumping periods. Thus, if inflow is
larger than outflow, the mean piezometric head—when the pseudo steady state is reached in both
scenarios—must be the same and lower than that in natural conditions. Pujades et al., [29] considered
an open pit mine and they did not constrain the maximum elevation of the hydraulic head inside the
lower reservoir. Therefore, overall inflow was equal to the outflow and the piezometric head oscillated
around its elevation in natural conditions when the pseudo-steady state was reached. If the elevation
of the natural piezometric head was lower than that considered in the simulations but higher than 50%
of the reservoir volume used for energy storage, the mean piezometric head after a long operation
period would be less decreased, and if the natural piezometric head was located just at an elevation
corresponding to 50% of the reservoir volume used for energy storage, the mean piezometric head
when the pseudo-steady state was reached would be equal to that in natural conditions.
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Figure 7. Piezometric head evolution at three observation points located at the downgradient side of
the underground reservoir and at 105 m depth. Results of F-CI scenario are displayed in blue while
those of E-CI scenario are plotted in red. The observation points are located at 5 (a), 15 (b) and 105 m (c)
from the underground reservoir. The piezometric head is calculated taking as reference the bottom of
the model, thus, the units are meters above the bottom of the model.
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Although the global decrease of the piezometric head F-CI is driven by the water exchanges
(i.e., more water enters into the underground reservoir than flows out), the behavior of the piezometric
head in scenario E-CI also depends on other factors. In this case, the piezometric head increases
because groundwater enters through the external boundaries of the model to recover the depressed
piezometric head produced by the initial pumping.

The piezometric head difference between both scenarios should be zero when the pseudo
steady state is reached. At the observation points located far from the underground reservoir
(Figures 6c and 7c), it is clearly observed that the difference between scenarios decreases constantly
and much more time than the simulated year is needed to reach the pseudo steady state and become
equal. However, it seems that the piezometric head difference between both scenarios is stabilized at
the end of simulations at observation points located close to the underground reservoir (Figure 6a,b and
Figure 7a,b). If the piezometric head difference between scenarios is analyzed at an observation point
located close to the underground reservoir (Figure 8), it is observed that it follows a decreasing trend.
Figure 8 shows the piezometric head difference between the two simulated scenarios in an observation
point located 15 m from the underground reservoir at the upgradient side (Figure 6b). Positive values
mean that the piezometric head is higher in F-CI than in E-CI. The piezometric head difference between
the two examined scenarios is large at the beginning of the simulations, which agrees with the initial
conditions, and subsequently, it decreases because the piezometric head recovers (i.e., increases) in
E-CI and decreases in F-CI, but the lowering rate decays with time. In fact, the decrease after a long
period of time can only be appreciated using a logarithmic scale (Figure 8b). This behavior is consistent
with the aquifer dynamics where after a hydraulic perturbation, the recovery rate decreases with time,
and after an initial abrupt response, a long period of time is needed to reach unperturbed conditions.
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Figure 8. Difference of the piezometric head evolution between scenarios F-CI and E-CI in an observation
point located at 15 m upgradient from the underground reservoir and at 105 m depth. (a) Results are
plotted with linear axis; (b) shows the piezometric head difference evolution with logarithmic axis.

3.2. Hydraulic Head Evolution

Figure 9 shows the hydraulic head evolution inside the chambers (CH1 to CH9) during the
first five simulated days for both scenarios. The minimum hydraulic head reached in each chamber
during the pumping periods is different because the bottoms of the chambers are located at different
elevations. As previously explained, an internal boundary condition ensures that the hydraulic head
inside a specific chamber is not lower than the elevation of the bottom of the chamber. Therefore, as the
depth of the bottoms increases gradually from CH9 to CH1 in steps of 5 m, the minimum hydraulic
heads are 70, 65, 60, 55, 50, 45, 40, 35 and 30 m for chambers CH9, CH8, CH7, CH6, CH5, CH4, CH3,
CH2 and CH1, respectively.
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Figure 9. Hydraulic head evolution inside the chambers for scenarios (a) F-CI and (b) E-CI.

The hydraulic head evolves equally in chambers CH1 to CH3 (except at the beginning of E-CI)
because pumping is not allowed when the volume of water inside the underground reservoir is lower
than the 10% of its maximum capacity. Consequently, the minimum hydraulic head reached during
pumping periods is about 43 m, which is higher than the elevation of the bottoms of CH1, CH2 and
CH3. The largest differences between scenarios are observed at the beginning of the simulations and
are consequence of the different initial conditions, but after one simulated day, the hydraulic head
evolves in the same way in both scenarios. A more detailed calculation of the hydraulic head evolution
inside the chambers is provided by Kitsikoudis et al., [50] since in this study water velocity inside the
chambers is neglected and it is assumed an instantaneous repartition of the water volumes in every
chamber. The hydraulic head evolution inside the chambers is only shown to illustrate the influence of
water exchanges.

Influence of water exchanges on the hydraulic head can be observed in periods during which
water is not pumped nor discharged, especially when the hydraulic head is located at the top or at
the bottom of the underground reservoir. When the hydraulic head is located at the top, it decreases
slightly because water flows from the underground reservoir towards the surrounding medium. On the
contrary, when the hydraulic head is located at the bottom, it increases because water is entering from
the surrounding medium. Although it is difficult to be seen in Figure 9, when the hydraulic head is at
the top of the underground reservoir, it decreases faster in scenario E-CI than in F-CI, which agrees with
the initial conditions. The mean piezometric head in the surrounding medium is lower in E-CI than in
F-CI (Figures 6 and 7), and thus, the hydraulic gradient from the underground reservoir towards the
surrounding medium is larger in E-CI than in F-CI when the hydraulic head is at the top. As a result,
more water flows out in E-CI than in F-CI. Differences between scenarios are difficult to appreciate,
and they can even be neglected, since they are related with the progressive recovery of the piezometric
head after the initial simulated pumping in E-CI and this recovery is relatively slow. This fact can
be also appreciated in Figures 6c and 7c, where it is observed that the piezometric head far from the
underground reservoir recovers very slowly in E-CI.

3.3. Water Exchanges

Figure 10 shows the evolution of total volume of water (in m3) that is exchanged between
the underground reservoir and the surrounding medium for scenarios F-CI (blue) and E-CI (red).
Total volume refers to the difference between the water that enters into the underground reservoir
(inflow) and water that flows towards the surrounding medium (outflow). Thus, positive values mean
that volume of water flowing into the underground reservoir is greater than what is flowing towards
the surrounding medium.
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Figure 10. Total volume of exchanged water (m3) for the F-CI (blue) and E-CI (red) scenarios.
Total volume of exchanged water refers to the difference between water that enters into the underground
reservoir and water that flows towards the surrounding medium. Positive values mean that, globally,
more water is entering into the underground reservoir while negative values occur when outflow is
higher than inflow.

The total volume of water entering into the underground reservoir is higher than that flowing out
because, as explained previously, the hydraulic head inside the underground reservoir cannot exceed
the elevation of the natural piezometric head that is located at the top of the underground reservoir.
Consequently, the mean piezometric head around the underground reservoir is lower than that in
natural conditions, and thus, groundwater from the surrounding medium tends to flow towards the
reservoir. The only exception occurs during the first simulated days of scenario E-CI. During this
period of time, the piezometric head is so low (below the bottom of the operation shaft and below
most of the chambers) that water can only flow out the underground reservoir. After this initial period,
inflow becomes increasingly important with respect to outflow and after 100 days the ratio between
inflow and outflow is apparently equal to that occurred in scenario F-CI. This fact is deduced from the
curves in Figure 10, which have a similar slope after the initial period. Thus, the total volume of water
exchanged evolves in the same manner.

The mean piezometric head around the underground reservoir decreases in scenario F-CI.
Therefore, the hydraulic gradient between the surrounding medium and the underground reservoir is
lower after pumping periods and higher after discharge periods than those occurred during initial
times when the piezometric head is located at a higher elevation. As a result, it would be reasonable
to expect that inflow decreases and outflow increases, and thus, that the total volume of exchanged
water tends to stabilize. However, the total volume of exchanged water increases constantly indicating
that outflow is always lower than inflow. This fact is related with the elevation of the piezometric
head in natural conditions that is prescribed at the outer boundaries and controls the water exchanges.
Given that there is a depression of the piezometric head around the underground reservoir, water from
the aquifer is mainly flowing towards the reservoir, and therefore, inflow is always higher than outflow
and the difference between them does not decrease. For the same reason, inflow is higher than outflow
in E-CI despite the piezometric head around the underground reservoir is relatively low. The elevation
of the piezometric head in natural conditions, and therefore the elevation of the piezometric head
far from the underground reservoir, is the same in scenario E-CI than in scenario F-CI. Therefore,
given that the piezometric head is depressed around the underground reservoir, water mainly flows
towards the underground reservoir. Only when the elevation of the mean piezometric head is equal to
that in natural conditions, inflow is be equal to outflow.
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The fact that inflow is larger than outflow also has implications in the efficiency and the
environmental impacts. After one year of simulation, inflow exceeds outflow by 110,000 and 180,000 m3

for the E-CI and F-CI scenarios, respectively. These volumes are negligible compared to the total
volume of pumped and discharged water during a year. However, they may be relevant for the
efficiency and the environment. If inflow exceeds outflow, and therefore, if more water is pumped
than discharged, less water compared to the pumped water volume can be discharged to produce
electricity affecting the global efficiency of the UPSH plant. In addition, a quantity of pumped water
should be released into surface water bodies. Considering the poor quality of mine water, discharges in
surface water bodies will impact the quality of nearby stream water resources. Specifically, the surplus
pumped water could be released into the small river “La Sûre” that flows very close to the mine
of Martelange. The quality of mine water at Martelange is unknown at this stage, but problems
when releasing into surface water bodies the surplus pumped water may arise due to the presence
of Marcasite. Marcasite is an iron sulfide (FeS2) that is commonly involved in acid mine drainage
related issues [51] since it is dissolved by oxic water. Specifically, the dissolution of marcasite reduces
the pH of water (i.e., increases the acidity). In the context of an UPSH, water is continuously aerated
because of pumping and discharge processes, and thus, the content of dissolved oxygen in mine water
increases [31]. As a result, Marcasite may be dissolved, thus deteriorating the quality of water in and
around the underground reservoir. Thus, the release of surplus pumped water into surface water
bodies would affect their quality in a similar way that observed in acid drainage contexts [52,53].
Optionally, the discharged water could be treated before discharge, however, the treatment would
imply an additional cost, and therefore, it would also influence the global efficiency of the UPSH plant.
Note that as previously stated, after an initial period, the ratio between inflow and outflow is equal in
both scenarios. Thus, except during this initial period, the initial conditions do not affect substantially
the issues related to the excess of pumped water.

As explained previously, inflow is higher than outflow because the natural elevation of the
piezometric head is close to the top of the underground reservoir. If the natural piezometric head
was lower, the difference between outflow and inflow would decrease and so would their associated
consequences on the efficiency and the environment. This behavior can be better understood by
considering the similarities of the simulated system with a long-duration pumping test, obviously
with a coarse resolution and neglecting the oscillations. In this case, given that the piezometric head
decreases around the pumping well, groundwater continuously flows towards it. Concerning the
initial conditions, they have an impact on the total volume of exchanged water, and therefore, on the
efficiency and the environment. However, their relevance is relative since main differences concerning
the total water exchanges only occur at the beginning of the UPSH operation and afterwards the
total water exchanges evolve in the same way independently of the considered scenario, as shown
in Figure 10.

Figure 11 displays the evolution of water exchange rate for scenarios F-CI (blue) and E-CI (red).
Inflow rates are positive while outflow rates are negative. Maximum inflow rate is 0.37 and 0.36 m3/s
for F-CI and E-CI scenarios, respectively, while maximum outflow rate is −0.4 and −0.35 m3/s for F-CI
and E-CI scenarios, respectively. The mean inflow rate (0.07 and 0.06 m3/s for F-CI and E-CI scenarios,
respectively) is higher than the mean outflow rate (0.06 and 0.05 m3/s for F-CI and E-CI scenarios,
respectively), which agrees with the evolution of the total exchanged water (Figure 10). Outflow rates
are higher than inflow rates at the beginning of the E-CI scenario, when the piezometric head in the
surrounding medium is depressed and water can only flow out, and between the days 180 and 270,
which is the period when the operation scenario is derived from the summer electricity price curve.
During the summer period, high outflow is reflected in the increase of the magnitude of the piezometric
oscillations (Figures 6 and 7) as noted previously.
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The most interesting aspect of water exchange rates is that inflow and outflow rates are
systematically lower in E-CI than in F-CI. This fact is not reflected in the total volume of exchanged
water (Figure 10) because the difference between inflow and outflow rates is the same in both scenarios.
The reason for which inflow and outflow rates are lower in E-CI than on F-CI may be related to the
evolution of the saturated thickness around the underground reservoir.

4. Conclusions

This paper investigates the groundwater exchanges induced by UPSH and their associated
consequences by considering an abandoned underground slate mine located in Belgium that has been
considered as a potential site to install a UPSH plant. Water exchanges and their consequences are
assessed during a long period of time (one year), under the influence of pumping-discharge frequencies
based on actual electricity price curves and considering two realistic initial conditions. Specifically,
this paper evaluates the evolution of the total exchanged water, the inflow and outflow rates from the
underground reservoir, and how the water exchanges modify the piezometric head in the surrounding
medium and the hydraulic head inside the underground reservoir. Even if this paper is more realistic
than previous ones in terms of geometry, simulation time, pumping–discharge frequencies and initial
conditions, the hydrogeological complexity is still simplified as the hydrogeological information is
not yet available. However, this investigation can be considered as a very useful study during the
tender phase and to direct future investigational needs. If the mine of Martelange is finally selected for
constructing an UPSH plant, boreholes and geophysical studies developed during the project phase
will provide more information to improve the numerical model and its predictions. Note that despite
the lack of knowledge regarding the hydrogeological conditions, realistic hydraulic parameters are
chosen based on the geological materials and bibliographic information.

The impacts on the piezometric head consist of oscillations due to the pumping and discharge
periods and a general lowering of the piezometric head. Piezometric head oscillations are especially
relevant close to the underground reservoir, but they decrease with increasing distance from the
underground reservoir. The distance at which oscillations are not observed is related to the adopted
value of hydraulic conductivity that in the case of Martelange is relatively low. The average piezometric
head is affected by the specific relation between the natural piezometric head and the top of the
underground reservoir. If the natural piezometric head was lower and if discharge was not constrained
when the hydraulic head inside the underground reservoir was reaching the same elevation of the
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natural piezometric head, the general drop of the piezometric head would be lower or may even
be eliminated.

The influence of water exchanges on the hydraulic head in the underground reservoir is relatively
small but enough to limit the discharge of some of the pumped water.‘The water that cannot be
discharged should be released into surface water streams, which could affect the quality of nearby
surface water resources. In addition, efficiency is impacted since some of the energy used for pumping
cannot be recovered discharging water into the underground reservoir. This effect would be mitigated
if the natural piezometric head were much deeper than the top of the underground reservoir because
water exchanges would be equilibrated.

The initial conditions influence the water exchanges mostly during early stages. If the underground
reservoir is initially empty, inflow and outflow rates are lower than when the underground reservoir is
initially filled. However, the total volume of exchanged water evolves in the same way independently
of the initial conditions. Differences between inflow and outflow rates when the initial conditions
are varied are a consequence of the saturated thickness of the surrounding medium, and therefore
of the transmissivity. The transmissivity is lower when an initial dewatering is considered since the
piezometric head around the underground reservoir, and therefore the saturated thickness, is lower
than when the underground reservoir is initially filled. This effect disappears when the pseudo-steady
state is reached since the piezometric head is the same independently of the initial conditions. The initial
conditions also influence the evolution of the piezometric head and the hydraulic head inside the
underground reservoir, but as mentioned previously, their influence decreases with time.

The two most important factors controlling the water exchanges seem to be the values of the
hydraulic parameters and the relative position of the natural piezometric head with respect to the
top of the underground reservoir. The considered value of hydraulic conductivity is here relatively
low as it is representative of the old slate mine of Martelange. More investigation is required to
establish the influence on the water exchanges of possible hydraulic conductivity spatial variability
and other hydraulic parameters. Pujades et al., [29] investigated the influence of hydraulic parameters
in the system behavior; however, it was done considering a very simple numerical model. Therefore,
a sensitivity analysis in a realistic numerical model, as the one developed for this work, would be
advisable in future investigations. Similarly, more investigation is needed to ascertain how water
exchanges evolve depending on the elevation of the natural piezometric head. This information will
be meaningful for the selection of potential abandoned underground mines for construction of future
UPSH plants.

It is important to highlight that the numerical model herein considers an equivalent homogeneous
porous medium that is obviously a simplification of the actual fractured medium. More complexity
has not been included because in this phase of the project, more information is not available. For this
reason, it is necessary to consider that the model has a certain degree of uncertainty. However, given
that the characteristics chosen for the homogeneous medium are in agreement with the existing data,
the model allows estimating the main trends of the system behavior. In fact, in case of heterogeneities
or fracturing, it is expected that the system behavior does not change considerably since the volumes
of exchanged water will be similar to the homogeneous case. However, only local changes may be
expected since most groundwater exchange will occur through the most permeable zones, thus, through
preferential channels, and the piezometric head may evolve differently around these areas.
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