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Abstract: (1) Background: Forecasting of energy consumption demand is a crucial task linked directly
with the economy of every country all over the world. Accurate natural gas consumption forecasting
allows policy makers to formulate natural gas supply planning and apply the right strategic policies
in this direction. In order to develop a real accurate natural gas (NG) prediction model for Greece,
we examine the application of neuro-fuzzy models, which have recently shown significant contribution
in the energy domain. (2) Methods: The adaptive neuro-fuzzy inference system (ANFIS) is a flexible
and easy to use modeling method in the area of soft computing, integrating both neural networks
and fuzzy logic principles. The present study aims to develop a proper ANFIS architecture for time
series modeling and prediction of day-ahead natural gas demand. (3) Results: An efficient and
fast ANFIS architecture is built based on neuro-fuzzy exploration performance for energy demand
prediction using historical data of natural gas consumption, achieving a high prediction accuracy.
The best performing ANFIS method is also compared with other well-known artificial neural networks
(ANNs), soft computing methods such as fuzzy cognitive map (FCM) and their hybrid combination
architectures for natural gas prediction, reported in the literature, to further assess its prediction
performance. The conducted analysis reveals that the mean absolute percentage error (MAPE) of
the proposed ANFIS architecture results is less than 20% in almost all the examined Greek cities,
outperforming ANNs, FCMs and their hybrid combination; and (4) Conclusions: The produced results
reveal an improved prediction efficacy of the proposed ANFIS-based approach for the examined
natural gas case study in Greece, thus providing a fast and efficient tool for utterly accurate predictions
of future short-term natural gas demand.

Keywords: neuro-fuzzy; ANFIS; neural networks; soft computing; fuzzy cognitive maps; energy
forecasting; natural gas; prediction

1. Introduction

The increasing technological advancements and the rapid global population growth have led to a
remarkable increase in energy consumption all over the world and especially in the developed and
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developing countries. After all, energy consumption is an index of a society’s economical welfare and
represents the economic development of a city or country [1]. Due to this unexpected boost in energy
consumption over the past few decades, the need for energy demand management became crucial for
achieving economic success that will result in self-sufficiency and economic development [2]. Thus,
energy consumption forecasting is essential, as it predicates an energy efficient policy, the optimization
of usage [3] and energy supplies optimum management. Even though a variety of methods have
been investigated for energy demand forecasting, this is not an easy task, as it is affected by uncertain
exogenous factors such as weather, technological development and government policies [4].

Among all energy resources, natural gas (NG) has received the largest increase in consumption
lately [5], mostly due to its popularity as a clean energy source, with respect to environmental concerns.
In particular, this energy source is characterized by low-level emissions of greenhouse gases in
comparison with other non-renewable energy sources [6,7] and is considered as the cleanest-burning
fossil fuel [8–11]. One fifth of the world’s primary energy demand is covered by NG [7] and is linked
to industrial production, transportation, health, agricultural output and household use.

According to the sharp increase in NG consumption, the forecasting of NG consumption has
attracted great attention since it is essential for project planning, gas imports, tariff design, optimal
scheduling of the NG supply system [12], indigenous production, infrastructures planning and cost
reduction at different levels [7]. Moreover, some noteworthy factors like the need for distribution
planning, especially in residential areas, the increasing demand of NG and the restricted NG network
in many countries, make consumption forecasting on an hourly, daily, weekly, monthly or yearly basis
highly important [13].

Especially in national energy strategy, NG demand forecasting is of high importance and can help
policymakers all over the world to choose certain strategies in this direction. The development of
systems that model NG consumption could assist in good government policymaking. Over the past
decade, there has also been a significant increase in NG consumption in Greece and so the prediction
of demand has become crucial accordingly. In particular, there is a need for further distribution
planning in the Greek territory, especially in residential areas and in cases of high demand, when the
accumulation ability of the network itself is decreased [13].

Selecting appropriate load forecasting methods is the most important step. Various models
have been proposed in the field of energy forecasting so far, and can be divided into three groups:
(i) traditional statistical models such as regression analysis, time series methods and ARIMA [14];
(ii) artificial intelligence (AI)-based methods such as wavelet analysis, artificial neural network (ANN)
methods, neuro-fuzzy, machine learning, gray theory prediction; and (iii) hybrid models, which are
a combination of various forecasting methods [15–23]. As regards the forecasting period horizon,
prediction of demand is classified into three categories: short-term, medium-term and long-term
forecasting. Short-term forecasting is used for hourly, daily and weekly demand predictions and
in regard to NG, it is oriented mainly in system management and balancing, storage capacities
optimization, as well as in making optimum purchasing and operating decisions [24,25]. Medium-term
forecasting deals with seasonal demand prediction (one to several months) and mainly plans the fuel
purchases, while long-term forecasts (more than a year ahead) aim to develop the power supply and
delivery system [26,27].

ANN, genetic algorithm (GA) and fuzzy inference systems (FIS), as artificial intelligence (AI)
techniques, are among those methods that are often used in the energy domain and specifically for
energy demand forecasting, due to their high flexibility and reasonable estimation and prediction
ability. From the relevant literature, there have been several attempts in energy forecasting by ANNs,
like those in [28–32]. ANNs have been applied to forecast electric energy consumption in Saudi
Arabia [33], energy consumption of a passive solar building [34], energy consumption of the Canadian
residential sector [35], the peak load of Taiwan [36], while ANNs have been further explored in [37–41]
for short-term load forecasting. An abductive network machine learning for predicting monthly electric
energy consumption in domestic sector of Eastern Saudi Arabia was proposed in [42]. Moreover,



Energies 2020, 13, 2317 3 of 32

support vector machines (SVMs) and genetic algorithms (GA) were explored in [29,30,43] to predict
electricity load. In [44], SVMs coupled with empirical mode decomposition were used to perform long
term load forecasting. GAs have been used in [45] and [46] to estimate Turkey’s energy demand and
electricity demand in the industrial sector, respectively. In addition, Azadeh et al. have proposed the
integration of GAs and ANNs to estimate and predict electrical energy consumption [47]. A number
of literature reviews have also been performed regarding various energy fields. For example, in [48],
a review of the conventional methods and AI methods for electricity consumption forecasting was
provided, while in [49] the strengths, shortcomings, and purpose of numerous AI-based approaches
in the energy consumption forecasting of urban and rural-level buildings were discussed. In [50],
a review about conventional models, including time series models, regression models and gray models
was conducted with respect to energy consumption forecasting. Moreover, an overview of AI methods
in short term electric load forecasting area was discussed in [51].

1.1. Indicative Related Work on AI Applied in Natural Gas Consumption Forecasting

On the other hand, there are many studies where different AI methods like neural networks,
neuro-fuzzy and other ANN topologies have been investigated and applied in NG demand
forecasting [52–60]. In this context, ANNs were extensively used in [21,54,57,60–69] to investigate
short-term NG forecasts, while in [56] different types of ANN algorithm were explored to forecast gas
consumption for residential and commercial consumers in Istanbul, Turkey. ANNs were also used
in [70] for the daily and weekly prediction of NG consumption of Siberia, using historical temperature
and NG consumption data, in [71] for NG output prediction of USA until 2020, as well as in [72] for the
prediction of NG consumption and production in China from 2008 to 2015, applying the grey theory
along with NNs. Furthermore, a combination of ANNs was applied in [54,55] for the prediction of NG
consumption at a citywide distribution level.

More recent studies presented numerous techniques for NG demand forecasting, including
computational intelligence-based models (ANNs), fuzzy logic and support vector machines [12,73–76].
In this sense, a combination of recurrent neural network and linear regression model was used in [77]
to generate forecasts for future gas demand, whereas a multilayered perceptron (MLP) neural network
was deployed in [78] to estimate the next day gas consumption. A day-ahead forecast was also
examined in [79] by developing a functional autoregressive model with exogenous variables (FARX).
Moreover, machine learning tools such as multiple linear regression (MLR), ANN and support vector
regression (SVR) were devised in [80] to project NG consumption in the province of Istanbul, as well
as in [77] to forecast the residential NG demand in the city of Ljubljana, Slovenia. When considering
AI methods, self-adapting intelligent grey models were also deployed for forecasting NG demand,
as in [81,82].

Regarding neural network algorithms, the multilayer perceptron and the radial basis function
network with different activation functions were trained and tested in [21,63,65], while the authors
of [66] used a multilayer perceptron algorithm for neural network and compared this model with
two time series models. In addition, Taspinar et al. explored daily gas consumption forecasting
through different methods including the seasonal autoregressive integrated moving average model
with exogenous inputs (SARIMAX), multi-layer perceptron ANN (ANN-MLP), ANN with radial
basis functions (ANN-RBF), and multivariate ordinary least squares (OLS) [63]. Different sets of AI
methods were also implemented in the following studies regarding NG consumption. ANNs with
linear regression models were used in [83] for daily prediction, while ANN and Fuzzy ANN models
were investigated in [84] regarding consumption in a certain region of Poland. Finally, it is worth
mentioning that there has been similar research in [12], which proposed the hybrid wavelet-ANFIS/NN
model to compute day-ahead forecasts for 40 distribution nodes in the national NG system of Greece.
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1.2. Related Work on ANFIS in Energy Consumption Forecasting

There are plenty of works in the relevant literature regarding the application of the ANFIS model
in forecasting energy consumption. As regards the electricity domain, ANFIS model was applied
to forecast annual regional load in Taiwan [85] and annual demand in Turkey [86], showing in both
cases that the results are good and the ANFIS model performed better than regression, neural network
and fuzzy hybrid systems. ANFIS was also used in [87] for short-term electricity demand forecasting,
using weekly electricity load data, as well as in [88], to estimate possible improvement of electricity
consumption. Also, for electricity load forecasting, ANFIS was used in [89] to highlight its superiority
to the ANN model, while it was furthermore applied in the field of transportation, forecasting the
corresponding energy demand for the years 2010 to 2030, in the country of Jordan, revealing the
efficiency of the examined model. Another study regarding the energy domain, where the ANFIS
model was applied, is that of [90]. A long-term prediction of oil consumption was studied, further
examining the interrelationship between oil consumption and economic growth in Turkey, for the
years 2012 to 2030.

1.3. Related Work on ANFIS in Natural Gas Consumption Forecasting

Casting a view on the literature that refers to NG consumption forecast, the authors came across
only one study that devised solely an ANFIS model. Specifically, ANFIS was used in [91] in order to
estimate the daily NG demand in Iran, which actually used an extremely small dataset of historical
data for both testing and training (December 2007–June 2008). Models trained on a small dataset tend
to overfit, which results in high variance and very high error on a test set, producing inaccurate results.
In this case, the predicting error decreases monotonically with the size of training set [92]. The rest
of the studies dealt with approaches that combine ANFIS with other methods. For example, in [21],
statistical time series analysis along with ANN and ANFIS methods were applied in order to predict
weekly NG consumption in Turkey. Moreover, an ANFIS-fuzzy data envelopment analysis (FDEA) was
developed in [93] for long-term NG consumption forecasting and analysis. In this study, 104 ANFIS
were constructed and tested and six models were proposed to forecast annual NG consumption.
The same approach was proposed in [94] for accurate gas consumption estimation in South America
with noisy inputs. An ANFIS-stochastic frontier analysis (ANFIS-SFA) approach was formulated in [95]
for long-term NG consumption prediction and analysis. Three patterns of the hybrid ARIMA–ANFIS
model were tested in [2] to predict the annual energy consumption in Iran, using a set of data like
population, GDP, export and import. Finally, a hybrid model of adaptive neuro fuzzy inference system
and computer simulation for the prediction of NG consumption was developed in [96].

1.4. Related Work on Fuzzy Cognitive Maps (FCMs) in Energy and Natural Gas Consumption Forecasting

Moreover, other soft computing techniques, like evolutionary fuzzy cognitive maps (FCMs) have
been applied for the modeling and prediction of time series problems. The dynamic modeling structure
of FCMs inheriting the learning capabilities of recurrent neural networks works properly for modeling
and time series prediction. Salmeron and Froelich further investigated the applicability of FCMs in
univariate time series prediction by proposing an FCM simplification approach with the removal
of nodes and weights [97]. Regarding the task of multivariate time series prediction, Froelich and
Salmeron proposed a nonlinear predictive model based on an evolutionary algorithm for learning
fuzzy grey cognitive maps [98], while Papageorgiou et al. [99] and Poczeta et al. [100] applied a new
type of evolutionary FCM enhanced with the Structure Optimization Genetic Algorithm (SOGA) in
energy for electricity load forecasting. Through the SOGA algorithm, an FCM model can automatically
be constructed by taking into consideration any available historical data. A two-stage prediction
model for multivariate time series prediction, based on the efficient capabilities of evolutionary FCMs
and enhanced by structure optimization algorithms and ANNs, was introduced in [101]. In the first
stage of the prediction model, SOGA-FCM was applied for selecting the most significant concepts and
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defining the relationships between them. Next, that model was fed into the second stage to define the
initial features and weights of the training ANN. This generic prediction approach was applied in four
common prediction problems, one of which dealt with electric power consumption.

In [102], Poczeta and Papageorgiou conducted a preliminary study on implementing FCMs with
ANNs for NG prediction, showing for the first time the capabilities of evolutionary FCMs in this domain.
Furthermore, the research team in [13] recently contacted a study for time series analysis devoted to
NG demand prediction in three Greek cities, implementing an efficient ensemble forecasting approach
through combining ANN, real coded genetic algorithm (RCGA)-FCM, SOGA-FCM, and hybrid
FCM-ANN. In this research study, the advantageous features of intelligent methods through an
ensemble to multivariate time series prediction in NG demand forecasting are explored.

1.5. Research Gap and the Novelty of This Study

Based on the reported literature survey and reviews [7,15], regarding the application of ANN-based
and hybrid forecasting methods, a research gap has been identified in the field of NG day-ahead
demand prediction. The observed gap mainly refers to the lack of model simplicity and flexibility,
the insufficient exploration of certain modelling aspects, and inadequacy to cope with the inherent
fuzziness in data handling. Most of these forecasting methods need a large dataset to be trained and
a relatively large number of features to make accurate predictions. Furthermore, they are complex
in their structure, time consuming and difficult to be used by non-experienced AI users. There has
been hardly any research on successfully applying the ANFIS technique on the field of NG demand
prediction, having performed a deep exploration process for determining the best model configuration,
thus producing a highly accurate model with generalization capabilities.

Considering the aforementioned limitations, this work aims to fill the observed research gap and
seeks to develop an easy to use, robust and flexible ANFIS model, which is at the same time fast,
simple in structure and able to cope with fuzziness. More specifically, the proposed ANFIS architecture
uses as model’s inputs the most important and commonly used input variables according to the
literature [7,15], such as day, month and daily average temperature, along with past NG consumption
data. Moreover, a relatively large dataset was used for both testing and training the model, resulting
in a systematic improvement of the model’s predictive accuracy [92]. The current work pays great
attention to the generalization of the proposed method and tries to properly evaluate the model’s
generalization capabilities in two ways: (i) by applying the model on a city level, where 10 different
cities were properly examined, and (ii) by carrying out an exploration process, where 94 different
models’ configuration sets were examined for each one of the cities that participated in this research.

To sum up, the innovations offered in this paper are as follows, highlighting the contribution of
this work to the research community:

• The creation and demonstration of a simple, fast, robust ANFIS prediction tool to forecast NG
demand using historical time series data. The proposed model is characterized by high flexibility,
especially in large datasets, easiness of use and low execution time requirements.

• The rigorous ANFIS fine-tuning for determining the most appropriate architecture for an enhanced
prediction performance.

1.6. Aim of This Research Work

The motivation of this work is to propose an ANFIS-based forecasting approach with generalization
capabilities for short-term (day-ahead) city-level NG prediction in Greek areas. Also, a comparative
analysis is conducted, applying ANNs, evolutionary FCMs and hybrid combinations of them on the
same dataset to show the capabilities of the proposed ANFIS architecture.

The objectives of the present paper regarding NG demand forecasting, are briefly summarized in
the following:
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(a) To develop a robust ANFIS model to provide accurate short-term forecasts for a number of
cities in Greece, using a relatively large dataset. At the same time, the authors perform model
fine-tuning that can lead to high accuracy in most distribution points. The proposed model is
characterized by high flexibility, easiness of use and low execution time requirements.

(b) To apply FCMs, ANNs and hybrid combinations of them to forecast NG demand in the same
dataset, since these approaches have been proved as efficient techniques for NG demand
forecasting according to the relevant literature.

(c) To assess the performance of these soft computing methods in terms of prediction accuracy using
well-known evaluation metrics.

(d) To compare forecasting accuracy results of the proposed approach with those of the other soft
computing and ANN methods that were examined, and finally decide on which model offers the
best forecasting accuracy.

The outline of this paper is as follows. Section 2 describes the datasets of NG demand, collected
for 10 Greek distribution points, as well as the proposed methodology of ANFIS for NG demand
prediction using a well-defined set of evaluation performance metrics. Section 3 presents the results of
the investigated ANFIS architectures. In the same section, a comparative analysis with other traditional
neural networks and soft computing methods was performed for the same dataset. The discussion
of results, which is also included in Section 3, presents the main outcomes of a meticulous ANFIS
exploration analysis, along with ANFIS advantageous features. These are compared with ANNs and
FCMs, and their overall contribution in NG forecasting is presented. Section 4 summarizes the paper,
presenting future challenges in energy demand forecasting and highlighting further research directions.

2. Materials and Methods

This study aims to develop an ANFIS architecture capable of forecasting short-term NG
consumption demand of the 10 main cities in Greece using the dataset that was provided by the
Hellenic Gas Transmission System Operator S.A. (DESFA) [103]. The developed ANFIS approach
deployed the aforementioned dataset along with other variables like the average daily temperature
data for all the examined cities to accomplish forecasting. The results produced were further compared
with those calculated by ANN and other soft computing techniques like FCM and hybrid-ANN to
prove the prediction performance of the ANFIS prediction tool. Details on the dataset and its features,
as well as the proposed methodology, are provided below. MATLAB M-file environment version
9.3.0.71 (R2017b) was used to program ANFIS networks and develop ANFIS models.

2.1. Dataset

The dataset covers ten different prediction datasets of historical data referring to ten cities all
over Greece (Alexandroupoli, Athens, Drama, Karditsa, Larissa, Markopoulo, Serres, Thessaloniki,
Trikala and Volos) and was linked to the values of gas demand for eight (8) previous years, in total.
It should be mentioned that the time period for each dataset (city) was not the same in duration and
did not correspond to the same years of data with all the other datasets collected. Table 1 depicts the
duration in years that is linked to each dataset collected and used in this case study. The historical
datasets for 15 Greek cities were initially provided by the NG grid company of Greece, DESFA, which
is responsible for the operation, management, exploitation and development of the Greek NG system
and its interconnections. However, the authors, after thoroughly reviewing the available datasets,
decided to include only 10 out of 15 cities in their case study, since these datasets contained less outliers
and missing values than the other 5 datasets that were finally rejected, for data consistency purposes.
For the datasets that were finally included in this work, a preliminary preprocessing phase was
performed, where the insignificant outliers were removed, and any missing values were substituted
with the average real value of the previous two days demand. The real data that were used for ANFIS
modeling, performance evaluation and comparison with other popular forecasting methods were then
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split into training and testing samples. For all cities, the last year of each dataset (from November 2017
up to October 2018) was devoted to testing, whereas the rest of the years were used for training the
developed ANFIS model.

Table 1. Time period referred to in each time-series dataset for all cities.

City Time Period of the Examined Data City Time Period of the Examined Data

Alexandroupoli 2/2013–10/2018 Markopoulo 3/2010–10/2018
Athens 3/2010–10/2018 Serres 6/2013–10/2018
Drama 9/2011–10/2018 Thessaloniki 3/2012–10/2018

Karditsa 5/2014–10/2018 Trikala 9/2012–10/2018
Larissa 3/2010–10/2018 Volos 3/2010–10/2018

In order to properly forecast day-ahead NG consumption demand of Greece, the proper number
and type of input parameters should be selected. So, five factors were carefully considered as input
parameters and the amount of one-day-ahead NG consumption demand of each distribution point
was the output parameter. The prediction model was based on observations of past NG consumption,
weather data, and calendar indicators, which are all among the most important input variables for
prediction of NG consumption [15]. In particular, the dataset contains historical data of NG consumption
of each city’s distribution point, the daily average temperature of the area in Celsius degrees, a month
indicator and a day indicator. As regards the previous NG consumption data, these are linked to
two different input variables: demand of a day before and current day demand. The temperature
data are obtained by the nearest to the distribution gas point meteorological station. Concerning the
calendar indicators (month and day), they need to undergo certain data form preprocessing before
their use. Specifically, two different input indicators need to be considered for each one of the two
variables. We define k = 1,2, . . . , 12 as the month index (1 January, 2 February, . . . , 12 December) and
l = 1,2, . . . , 7 as the day index (1 Monday, 2 Tuesday, . . . 7 Sunday). Following the coding procedure as
presented in [104], the index for the month is scaled to the range [1/12, 1] in which the months of the
year from January to December take successive values of the scaled index. That is, January has the
value of 1/12 and December the value of 1. Similarly, the days of the week take successive values in the
scaled range [1/7, 1], in which Monday and Sunday take the values of 1/7 and 1, respectively. All these
parameters constituting the actual recorded data are briefly presented in Table 2.

Table 2. Input and output parameters.

Type Parameter Unit

Input Demand of a day before MWh
Input Current day demand MWh
Input Daily average temperature Celsius degrees
Input Month indicator K = 1/12, 2/12, . . . , 1
Input Day indicator l = 1/7, 2/7, . . . , 1

Output A day ahead NG demand MWh

All data that compose the investigated dataset underwent a normalization process. This was
necessary because all entries needed to have the same limited range of values so the model produces
meaningful results [105].

The algorithm that was used for data normalization is the Min-Max, which scales the values of
the dataset linearly over a specific range. As described in previous works [13,105], each variable was
normalized to [0,1] before the forecasting model was applied. The normalized variable took its original
value when the testing phase was implemented. Data normalization was carried out mathematically,
as follows:

x(new)
i =

xi − x(min)

x(max) − x(min)
, ∀i = 1, 2, . . . , N (1)
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where x(new) is the normalized value of the variable x, and x(min) and x(max) are, respectively,
the minimum and maximum values of the concerned variable x.

2.2. Methods

2.2.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The adaptive neuro-fuzzy inference system (ANFIS) uses an architecture that is based on both
ANN and fuzzy logic principles and takes advantage of the benefits of both in a single framework.
It can be described by the fuzzy “IF-THEN” rules from the Takagi and Sugeno (TS) type [106] as follows:

Ri : i f x1 = Ai,1 and . . . and xk = Ai,k
then yi = bi,0 + bi,1x1 + bi,2x2 + . . .+ bi,kxk

(2)

where Ai,k is the membership function associated with input variables xk and n is the number of inputs.
A typical ANFIS network is a five-layer structure consisting of the fuzzy layer, the product layer,

the normalized layer, the de-fuzzy layer and the total output layer [3,107,108], as depicted in Figure 1.
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In the first layer, every node i represents a linguistic label and is described by the following
membership function, as given in Equation (3).

Ai,k(xr) = e−(
(xr−vi,k)
σι,κ )

2

, f or r = 1, 2, . . . , i (3)

where Ai,k is the membership function which is considered to be Gaussian and is described by the
center ν and the spread σ.

In the second layer, the firing strength of the rule is computed using multiplicative operator,
as presented in Equation (4). Firing strength is the weight degree of the IF-THEN rule and determines
the shape of the output function for that rule.

wi =
n∏

k=1

Ai,k(xk) (4)

In the third layer, the i-th node calculates the ratio of the i-th rule’s firing strength to the sum of
the firing strength of all rules. This is the normalization layer which normalizes the strength of all rules
and the output of each node is given by Equation (5).

wi =
wi∑

i=1 wi
(5)
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In the fourth layer, each node is an adaptive node with a function given by Equation (6). In
this layer, each node calculates a linear function where its coefficients are adapted by using the error
function of the multilayer feed-forward neural network.

yi = wiyi (6)

In the fifth layer, there is only a fixed node indicated as the sum of the net outputs of the nodes in
Layer 4. It computes the overall output as the sum of all incoming inputs and is expressed by Equation (7).

y =
∑

i

yi (7)

ANFIS uses a hybrid learning algorithm to train the model. The back-propagation algorithm
is used to train the parameters in Layer 1, whereas a variation of least-squares approximation or
back-propagation algorithm is used for training the parameters of the fourth layer [108,109].

2.2.2. Proposed ANFIS Architecture Applied in Natural Gas Consumption Forecasting

In order to develop an efficient ANFIS model for NG demand forecasting, the authors needed to
follow a certain process regarding the design of model’s architecture as well as an exploration process
that will properly configure the input and training parameters of the examined model. Priority was
given to the definition of the FIS architecture before the training of the network [110]. Among various
fuzzy inference system (FIS) models, the Sugeno fuzzy model is the most widely used because of
its higher interpretability and computational ability, that includes embedded optimal and adaptive
techniques [111]. In order to create a fuzzy rule, the input space needs first to be divided. Two methods
are used to divide space, comprised by input variables: the grid partitioning method and the subtractive
clustering method. The main difference between these two functions refers to the way the partition of
the input space is created.

In grid partitioning [109], the input space is divided into a grid-like structure without overlapping
parts. Grid partitioning performs partitioning of the input space using all possible combinations of
membership functions of each variable. This method is used when the number of input variables is
small. For example, for 10 input variables and two membership functions for each input variable,
then the input space is divided into 210 = 1024 specific areas, representing one rule for each specific
area, and the total number of rules is 1024, which is a very complicated structure. Therefore, the grid
partitioning method is mainly used when the number of input variables is small.

On the other hand, the subtractive clustering method divides the input space into appropriate
clusters, even if the user does not specify their number. If the size of the cluster becomes small, then
the number of clusters increases, thus increasing the number of fuzzy rules. A rule is created for each
cluster, whereas different values for parameters, like range of influence, squash factor, accept ratio and
reject ratio, need to be explored for determining an efficient architecture, which will keep the balance
between the total number of ANFIS parameters and the total number of rules.

Considering the above specifications, the authors used the Grid partition option to define the FIS
architecture due to its simplicity, less time-consuming performance as well as it can easily explore the
number and type of membership function (MF). In this stage, the number and type of membership
functions of each input variable, along with the rules and values of parameters that belong to these
functions, were determined using the option of Grid partition.

When implementing an ANFIS architecture, researchers should have in mind that there is one
main restriction: the number of input variables. When these are more than five, then the number of
the IF-THEN rules and the computational time also increase, hindering ANFIS to model output with
respect to inputs [110]. Thus, in this study, five variables were chosen as input parameters, i.e., month,
day, temperature, demand of a day before and demand of current day. As described above, a day-ahead
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consumption demand was selected as the output variable whose value can be produced by choosing
between the option of linear or constant type of MF.

Finding the most efficient ANFIS architecture is a demanding task and entails a rigorous exploration
process. Since our concern focuses on the increment of network’s accuracy and decrement of the errors,
five necessary configurations should be considered in this direction: (i) the number of membership
functions, (ii) types of MF (triangular, trapezoidal, bell-shaped, Gaussian and sigmoid), (iii) types of
output MF (constant or linear), (iv) optimization methods (hybrid or back propagation) and (v) the
number of epochs [112]. For the convenience of readers, these steps are visually represented in the
flowchart in Figure 2.Energies 2020, 13, x FOR PEER REVIEW 10 of 32 
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Figure 2. Flowchart of the proposed adaptive neuro-fuzzy inference system (ANFIS) methodology.

The aforementioned set of configurations needs to be deployed in order to generate FIS and next
to train the ANFIS model. Accordingly, the dataset that included the five input variables (i.e., month,
day, temperature, demand of a day before, demand of current day) was selected to determine the
only output (day-ahead demand). Initially, the training dataset was loaded in the ANFIS tool, as shown
in Figure 3a. The next step was the design of the neuro-fuzzy model using the option “Generate FIS”.
The Grid partition option was selected according to the description above (see Figure 3a). These two
settings, concerning the fuzzy input variables along with their membership functions, are the most
important parts to design the ANFIS. An example of selecting the number and type of MFs is illustrated
in Figure 3b.
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The number and type of membership function were assigned to the input parameters following
the trial-and-error approach. The different types of MF that are offered by the MATLAB ANFIS editor
include the triangular, trapezoidal, generalized bell (Gbell), Gaussian curve, Gaussian combination,
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difference between two sigmoid functions and product of two sigmoid functions (see Figure 3b). Regarding
the type of output MFs, in the Sugeno-type fuzzy system, there are two options: a constant-type conclusion
or a linear-type conclusion function. In the case of linear function, the output y is defined as:

y = k0 + k1 ∗ x1 + k2 ∗ x2 + . . .+ kn ∗ xn (8)

where x1, x2, . . . , xn are the n inputs. In this case, ANFIS needs to define k0, k1, k2 up to kn, and it
is very time consuming to efficiently calculate the outputs when a large number of parameters are
considered. On the other hand, when a constant MF is selected, the algorithm needs to define only one
parameter to provide a reliable forecasted value. Thus, the computational time is really low.

The selected configuration also includes the hybrid optimization method, while the number of
epochs selected to train the model was between 10 and 50. The hybrid optimization method uses the
back propagation learning algorithm for parameters associated with input MF and the least-square
estimation algorithm for parameters associated with output MF; thus, it was selected as the most
proper one [113]. Various sets of ANFIS configurations are presented in Table 3, regarding different
sets of number for MFs, as considered by the authors of this work.
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Table 3. Different configurations of the selected ANFIS architectures regarding constant output membership
function (MF).

ANFIS Run Type of Input MF Number of MFs Type of Output MF Number of Epochs Learning Method

1 trimf 2-2-2-2-2 Constant 10 Hybrid
2 trapmf 2-2-2-2-2 Constant 10 Hybrid
3 gbellmf 2-2-2-2-2 Constant 10 Hybrid
4 Gaussmf 2-2-2-2-2 Constant 10 Hybrid
5 Gauss2mf 2-2-2-2-2 Constant 10 Hybrid
6 pimf 2-2-2-2-2 Constant 10 Hybrid
7 dsigmf 2-2-2-2-2 Constant 10 Hybrid
8 psigmf 2-2-2-2-2 Constant 10 Hybrid
9 trimf 2-2-3-3-3 Constant 10 Hybrid
10 trapmf 2-2-3-3-3 Constant 10 Hybrid
11 gbellmf 2-2-3-3-3 Constant 10 Hybrid
12 Gaussmf 2-2-3-3-3 Constant 10 Hybrid
13 Gauss2mf 2-2-3-3-3 Constant 10 Hybrid
14 pimf 2-2-3-3-3 Constant 10 Hybrid
15 dsigmf 2-2-3-3-3 Constant 10 Hybrid
16 psigmf 2-2-3-3-3 Constant 10 Hybrid
17 trimf 3-3-3-2-2 Constant 10 Hybrid
18 trapmf 3-3-3-2-2 Constant 10 Hybrid
19 gbellmf 3-3-3-2-2 Constant 10 Hybrid
20 Gaussmf 3-3-3-2-2 Constant 10 Hybrid
21 trimf 3-3-3-3-3 Constant 10 hybrid
22 trimf 3-3-3-3-3 Constant 10 backpropa
23 trapmf 3-3-3-3-3 Constant 10 hybrid
24 trapmf 3-3-3-3-3 Constant 10 backpropa
25 gbellmf 3-3-3-3-3 Constant 10 hybrid
26 gbellmf 3-3-3-3-3 Constant 10 backpropa
27 trimf 3-3-3-3-3 Constant 30 hybrid
28 trimf 3-3-3-3-3 Constant 50 hybrid
29 trapmf 3-3-3-3-3 Constant 30 hybrid
30 trapmf 3-3-3-3-3 Constant 50 hybrid
31 gbellmf 3-3-3-3-3 Constant 30 hybrid
32 gbellmf 3-3-3-3-3 Constant 50 hybrid
33 trimf 3-3-4-4-4 Constant 10 hybrid
34 trimf 3-3-5-5-5 Constant 10 hybrid
35 trapmf 3-3-4-4-4 Constant 10 hybrid
36 trapmf 3-3-5-5-5 Constant 10 hybrid
37 gbellmf 3-3-4-4-4 Constant 10 hybrid
38 gbellmf 3-3-5-5-5 Constant 10 hybrid
39 gaussmf 3-3-3-3-3 Constant 10 hybrid
40 gaussmf 3-3-4-4-4 Constant 10 hybrid
41 gaussmf 3-3-5-5-5 Constant 10 hybrid
42 gauss2mf 3-3-3-3-3 Constant 10 hybrid
43 gauss2mf 3-3-4-4-4 Constant 10 hybrid
44 gauss2mf 3-3-5-5-5 Constant 10 hybrid
45 pimf 3-3-3-3-3 Constant 10 hybrid
46 pimf 3-3-4-4-4 Constant 10 hybrid
47 pimf 3-3-5-5-5 Constant 10 hybrid

Regarding the output MFs, constant and linear MF were accordingly investigated after certain
numbers of experiments conducted. From these experiments and for the linear output, it was observed
that the number of rules increases significantly, as well as the computational time, even in the case
of problems with a small number of inputs (see Table A1 in Appendix A). Thus, the linear type
was not considered as an appropriate parameter of output MF since it is extremely time consuming.
In this context, the trial-and-error approach was followed for the selection of the input-output type
of MFs. Figure 4 illustrates an indicative ANFIS model, which was constructed with the following
configuration set: 3-3-3-2-2, gbell MF, constant output MF, 10 epochs, hybrid.



Energies 2020, 13, 2317 13 of 32

Energies 2020, 13, x FOR PEER REVIEW 12 of 32 

 

output type of MFs. Figure 4 illustrates an indicative ANFIS model, which was constructed with the 

following configuration set: 3-3-3-2-2, gbell MF, constant output MF, 10 epochs, hybrid. 

 

Figure 4. Screenshot of the constructed ANFIS model. 

2.2.3. Testing and Evaluation  

The testing process for the ANFIS model was accomplished by using the testing data, which 

were completely unknown to the model. The predictor makes predictions on each day and finally 

compares the calculated predicted value with the real value. For example, considering the city of 

Volos, the predicted values that are illustrated in red in Figure 5 are compared with the real values 

(in blue color). 

 

Figure 5. Screenshot of the testing data configuration. 

In order to evaluate the prediction of NG demand, five well known and commonly used 

statistical indicators were introduced, i.e., mean square error (MSE), root mean square error (RMSE), 

mean absolute error (MAE), mean absolute percentage error (MAPE) and coefficient of determination 

(R2). The mathematical equations of the statistical indicators are described below. 

1. Mean squared error: 

MSE =
1

𝑇
∑(𝑍(𝑡) − 𝑋(𝑡))2
𝑇

𝑡=1

 (9) 

2. Root mean squared error: 

RMSE = √MSE (10) 

3. Mean absolute error: 

Figure 4. Screenshot of the constructed ANFIS model.

2.2.3. Testing and Evaluation

The testing process for the ANFIS model was accomplished by using the testing data, which
were completely unknown to the model. The predictor makes predictions on each day and finally
compares the calculated predicted value with the real value. For example, considering the city of
Volos, the predicted values that are illustrated in red in Figure 5 are compared with the real values
(in blue color).
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In order to evaluate the prediction of NG demand, five well known and commonly used statistical
indicators were introduced, i.e., mean square error (MSE), root mean square error (RMSE), mean
absolute error (MAE), mean absolute percentage error (MAPE) and coefficient of determination (R2).
The mathematical equations of the statistical indicators are described below.

1. Mean squared error:

MSE =
1
T

T∑
t=1

(Z(t) −X(t))2 (9)

2. Root mean squared error:

RMSE =
√

MSE (10)

3. Mean absolute error:

MAE =
1
T

T∑
t=1

∣∣∣Z(t) −X(t)
∣∣∣ (11)
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4. Mean absolute percentage error:

MAPE =
1
T

T∑
t=1

∣∣∣∣∣∣Z(t) −X(t)
Z(t)

∣∣∣∣∣∣ (12)

5. Coefficient of determination:

R =
T
∑T

t=1 Z(t)·X(t) −
(∑T

t=1 Z(t)
)(∑T

t=1 X(t)
)

√
T
∑T

t=1(Z(t))
2
−

(∑T
t=1 Z(t)

)2
·

√
T
∑T

t=1(X(t))2
−

(∑T
t=1 X(t)

)2
(13)

where X(t) is the forecasted value of the NG at the t-th iteration, and Z(t) is the actual value of the
NG at the t-th iteration, t = 1, . . . , T, where T is the number of testing records.

Higher values of R2, i.e., closer to 1, mean better model performance and the regression line fits
the data well. A coefficient of determination value of 1.0 points out that the regression curve fits the
data perfectly.

3. Results

This section presents the exploration analysis results for the various ANFIS architectures as
proposed in Section 2.2.2. Considering the steps proposed in Section 2.2, the initial dataset is split
into training and testing. During the training process, the ANFIS model is designed for each one
of the suggested configurations. After the training process of the ANFIS finishes, NG consumption
demands for the next day (one day ahead prediction) are calculated from the generated FIS. The NG
consumption results only for the city of Athens (as an indicative example) regarding all configurations
tested, are presented in Table 4, whereas Table 5 gathers the best three results of NG consumption
demand obtained from ANFIS for each of the 10 cities. To evaluate the performance of the models,
the statistical indicator mean absolute percent error (MAPE) was used [91]. MAPE is a relative
measurement, independent of scale, and it is the most common performance metric in time series
forecasting, due to being reliable and valid [21].

Table 4. Testing results for the examined ANFIS architectures concerning the city of Athens.

Anfis
Run

Type of
Input MF

Number of
MFs

Type of
Output MF

Number of
Epochs Optimization MSE RMSE MAE MAPE R2

1 trimf 2-2-2-2-2 Constant 10 Hybrid 0.0010 0.0320 0.0192 12.6882 0.9849
2 trapmf 2-2-2-2-2 Constant 10 Hybrid 0.0013 0.0366 0.0245 19.8878 0.9806
3 gbellmf 2-2-2-2-2 Constant 10 Hybrid 0.0011 0.0335 0.0209 14.7498 0.9834
4 Gaussmf 2-2-2-2-2 Constant 10 Hybrid 0.0011 0.0326 0.0201 13.8422 0.9842
5 Gauss2mf 2-2-2-2-2 Constant 10 Hybrid 0.0011 0.0324 0.0197 13.5785 0.9845
6 pimf 2-2-2-2-2 Constant 10 Hybrid 0.0015 0.0389 0.0254 19.5486 0.9782
7 dsigmf 2-2-2-2-2 Constant 10 Hybrid 0.0014 0.0378 0.0244 18.7851 0.9794
8 psigmf 2-2-2-2-2 Constant 10 Hybrid 0.0014 0.0378 0.0244 18.7851 0.9794
9 trimf 2-2-3-3-3 Constant 10 Hybrid 0.0015 0.0388 0.0232 15.8840 0.9774

10 trapmf 2-2-3-3-3 Constant 10 Hybrid 0.0020 0.0448 0.0269 19.2727 0.9698
11 gbellmf 2-2-3-3-3 Constant 10 Hybrid 0.0014 0.0379 0.0227 15.5056 0.9785
12 Gaussmf 2-2-3-3-3 Constant 10 Hybrid 0.0014 0.0379 0.0226 15.7640 0.9784
13 Gauss2mf 2-2-3-3-3 Constant 10 Hybrid 0.0017 0.0410 0.0241 15.8227 0.9747
14 pimf 2-2-3-3-3 Constant 10 Hybrid 0.0130 0.1141 0.0347 21.6717 0.8552
15 dsigmf 2-2-3-3-3 Constant 10 Hybrid 0.0020 0.0448 0.0254 16.7809 0.9698
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Table 4. Cont.

Anfis
Run

Type of
Input MF

Number of
MFs

Type of
Output MF

Number of
Epochs Optimization MSE RMSE MAE MAPE R2

16 psigmf 2-2-3-3-3 Constant 10 Hybrid 0.0020 0.0448 0.0254 16.7809 0.9698
17 trimf 3-3-3-2-2 Constant 10 Hybrid 0.0012 0.0348 0.0210 14.6116 0.9819
18 trapmf 3-3-3-2-2 Constant 10 Hybrid 0.0018 0.0430 0.0297 27.0255 0.9723
19 gbellmf 3-3-3-2-2 Constant 10 Hybrid 0.0013 0.0355 0.0212 14.4247 0.9810
20 Gaussmf 3-3-3-2-2 Constant 10 Hybrid 0.0011 0.0337 0.0198 12.8988 0.9829
21 trimf 3-3-3-3-3 Constant 10 hybrid 0.0021 0.0455 0.0242 15.4964 0.9698
22 trimf 3-3-3-3-3 Constant 10 backpropa 0.0559 0.2365 0.1610 74.9654 0.7447
23 trapmf 3-3-3-3-3 Constant 10 hybrid 0.0031 0.0556 0.0281 21.5814 0.9562
24 trapmf 3-3-3-3-3 Constant 10 backpropa 0.0501 0.2238 0.1527 72.2629 0.7404
25 gbellmf 3-3-3-3-3 Constant 10 hybrid 0.0014 0.0374 0.0217 14.6538 0.9791
26 gbellmf 3-3-3-3-3 Constant 10 backpropa 0.0015 0.0392 0.0265 25.1796 0.9793
27 trimf 3-3-3-3-3 Constant 30 hybrid 0.0016 0.0403 0.0224 13.3194 0.9759
28 trimf 3-3-3-3-3 Constant 50 hybrid 0.0017 0.0417 0.0224 13.2276 0.9745
29 trapmf 3-3-3-3-3 Constant 30 hybrid 0.0029 0.0539 0.0245 17.2238 0.9590
30 trapmf 3-3-3-3-3 Constant 50 hybrid 0.0017 0.0416 0.0233 16.4612 0.9745
31 gbellmf 3-3-3-3-3 Constant 30 hybrid 0.0013 0.0366 0.0213 13.2077 0.9799
32 gbellmf 3-3-3-3-3 Constant 50 hybrid 0.0019 0.0432 0.0236 13.4445 0.9724
33 trimf 3-3-4-4-4 Constant 10 hybrid 0.0023 0.0479 0.0251 15.4225 0.9662
34 trimf 3-3-5-5-5 Constant 10 hybrid 0.0078 0.0884 0.0320 17.3158 0.9006
35 trapmf 3-3-4-4-4 Constant 10 hybrid 0.0021 0.0454 0.0275 23.1769 0.9695
36 trapmf 3-3-5-5-5 Constant 10 hybrid 0.0098 0.1084 0.0450 19.3158 0.8806
37 gbellmf 3-3-4-4-4 Constant 10 hybrid 0.0022 0.0472 0.0256 16.1637 0.9669
38 gbellmf 3-3-5-5-5 Constant 10 hybrid 0.0044 0.0660 0.0307 18.0977 0.9376
39 gaussmf 3-3-3-3-3 Constant 10 hybrid 0.0013 0.0365 0.0212 13.8235 0.9800
40 gaussmf 3-3-4-4-4 Constant 10 hybrid 0.0019 0.0431 0.0241 14.7715 0.9720
41 gaussmf 3-3-5-5-5 Constant 10 hybrid 0.0056 0.0746 0.0314 17.5307 0.9185
42 gauss2mf 3-3-3-3-3 Constant 10 hybrid 0.0017 0.0409 0.0235 16.2626 0.9755
43 gauss2mf 3-3-4-4-4 Constant 10 hybrid 0.0040 0.0632 0.0260 17.3863 0.9407
44 gauss2mf 3-3-5-5-5 Constant 10 hybrid 0.0072 0.0847 0.0290 17.7331 0.9048
45 pimf 3-3-3-3-3 Constant 10 hybrid 0.1224 0.3499 0.0482 26.0901 0.3608
46 pimf 3-3-4-4-4 Constant 10 hybrid 0.0026 0.0510 0.0307 24.7626 0.9615
47 pimf 3-3-5-5-5 Constant 10 hybrid 0.0022 0.0466 0.0285 22.3553 0.9678

Table 5. Testing results for the best three ANFIS architectures of each city based on MAPE value.

City Anfis Run Type of
Input MF

Number of
MFs

Number of
Rules Time (s) MSE RMSE MAE MAPE R2

Alexandroupoli 17 trimf 3-3-3-2-2 72 5 0.0024 0.0494 0.0351 10.5278 0.9638
39 gaussmf 3-3-3-3-3 243 47 0.0031 0.0557 0.0355 10.1556 0.9538
20 gaussmf 3-3-3-2-2 72 5 0.0023 0.0480 0.0341 10.1123 0.9659

Athens 1 trimf 2-2-2-2-2 32 7 0.0021 0.0457 0.0295 20.1799 0.9825
17 trimf 3-3-3-2-2 108 19 0.0026 0.0511 0.0315 19.7972 0.9786
20 gaussmf 3-3-3-2-2 108 19 0.0022 0.0467 0.0306 21.2929 0.9818

Drama 17 trimf 3-3-3-2-2 108 19 0.0026 0.0511 0.0363 6.2547 0.8997
1 trimf 2-2-2-2-2 32 5 0.0026 0.0513 0.0361 6.2235 0.8975

20 gaussmf 3-3-3-2-2 108 13 0.0026 0.0508 0.0371 6.4071 0.8995
Karditsa 17 trimf 3-3-3-2-2 108 12 0.0019 0.0434 0.0242 13.8394 0.9789

1 trimf 2-2-2-2-2 32 4 0.0018 0.0421 0.0236 11.6196 0.9801
4 gaussmf 2-2-2-2-2 32 4 0.0019 0.0431 0.0248 13.3841 0.9792

Larissa 1 trimf 2-2-2-2-2 32 4 0.0012 0.0352 0.0203 10.9568 0.9817
4 gaussmf 2-2-2-2-2 32 4 0.0012 0.0352 0.0204 10.9833 0.9817

20 gaussmf 3-3-3-2-2 108 19 0.0010 0.0314 0.0184 10.5236 0.9858
Markopoulo 1 trimf 2-2-2-2-2 32 5 0.0091 0.0956 0.0728 25.0887 0.6593

4 gaussmf 2-2-2-2-2 32 5 0.0096 0.0980 0.0755 26.7510 0.6364
17 trimf 3-3-3-2-2 108 19 0.0259 0.1609 0.1087 36.7174 0.5126

Serres 1 trimf 2-2-2-2-2 32 5 0.0007 0.0271 0.0176 10.4721 0.9839
4 gaussmf 2-2-2-2-2 32 5 0.0008 0.0279 0.0185 11.2421 0.9831

39 gaussmf 3-3-3-3-3 243 45 0.0008 0.0285 0.0194 12.1163 0.9824
Thessaloniki 17 trimf 3-3-3-2-2 108 13 0.0015 0.0382 0.0229 16.1046 0.9773

20 gaussmf 3-3-3-2-2 108 13 0.0013 0.0363 0.0219 14.1944 0.9795
39 gaussmf 3-3-3-3-3 243 45 0.0021 0.0459 0.0256 15.2032 0.9672

Trikala 1 trimf 2-2-2-2-2 32 4 0.0019 0.0433 0.0232 10.5817 0.9815
4 gaussmf 2-2-2-2-2 32 4 0.0020 0.0450 0.0245 11.1412 0.9800

20 gaussmf 3-3-3-2-2 108 13 0.0028 0.0530 0.0271 11.7631 0.9708
Volos 1 trimf 2-2-2-2-2 32 4 0.0021 0.0459 0.0317 13.2520 0.9564

4 gaussmf 2-2-2-2-2 32 4 0.0021 0.0460 0.0314 13.1629 0.9563
20 gaussmf 3-3-3-2-2 108 12 0.0020 0.0445 0.0323 13.9710 0.9588

The corresponding graphical representation of the results regarding the best three out of 47 total
ANFIS architectures for the city of Athens is illustrated in Figure 6. Also, the best ANFIS model for
each city can be found in Table 6, which provides the most reliable ANFIS architecture results for
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each city. All the results have been previously ranked, based on the minimum value of MAPE and
subsequently the minimum values of MSE, RMSE and MAE. The priority was given to MAPE as one
of the most crucial evaluation metrics, according to the literature [91,96], which was used in this study
to compare various models obtained from ANFIS and other soft computing and neural networks
methods. As a relative and easy to interpret measurement, MAPE is reliable, valid and independent of
scale. The smaller the values of MAPE are, the closer the forecasted values are to the actual values.
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Table 6. The best ANFIS models for all the cities under investigation (10 epochs and hybrid optimization).

Title 1 Anfis Run Type of
Input MF

Number of
MFs

Type of
Output MF Optimization MSE RMSE MAE MAPE R2

Alexandroupoli 20 gaussmf 3-3-3-2-2 Constant Hybrid 0.0023 0.0480 0.0341 10.1123 0.9659
Athens 17 trimf 3-3-3-2-2 Constant Hybrid 0.0026 0.0511 0.0315 19.7972 0.9786
Drama 1 trimf 2-2-2-2-2 Constant Hybrid 0.0026 0.0513 0.0361 6.2235 0.8975

Karditsa 1 trimf 2-2-2-2-2 Constant Hybrid 0.0018 0.0421 0.0236 11.6196 0.9801
Larissa 20 gaussmf 3-3-3-2-2 Constant Hybrid 0.0010 0.0314 0.0184 10.5236 0.9858

Markopoulo 1 trimf 2-2-2-2-2 Constant Hybrid 0.0091 0.0956 0.0728 25.0887 0.6593
Serres 4 gaussmf 2-2-2-2-2 Constant Hybrid 0.0008 0.0279 0.0185 11.2421 0.9831

Thessaloniki 20 gaussmf 3-3-3-2-2 Constant Hybrid 0.0013 0.0363 0.0219 14.1944 0.9795
Trikala 4 gaussmf 2-2-2-2-2 Constant Hybrid 0.0020 0.0450 0.0245 11.1412 0.9800
Volos 4 gaussmf 2-2-2-2-2 Constant Hybrid 0.0021 0.0460 0.0314 13.1629 0.9563

As illustrated in Table 6, ANFIS models appear to perform best mostly when triangular MFs are
used for the input variables: three MFs for the first three input variables (month, day of week and mean
temperature) and two or three MFs for the other two input variables (daily demand for current day
and one day before). Also, constant MFs are selected for the output variable and hybrid optimization
method. The graphical representation of the best ANFIS models for each city is illustrated in Figure 7.
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Figure 7. Forecasting results for three cities considering the best ANFIS method. (a) Testing Alexandroupoli,
(b) testing Athens, (c) testing Drama, (d) testing Karditsa, (e) testing Larissa, (f) testing Markopoulo,
(g) testing Serres, (h) testing Thessaloniki, (i) testing Trikala, (j) testing Volos.

It is worth mentioning that all three most efficient ANFIS architectures with respect to MAPE
values have triangular or gaussian MFs and 2-2-2-2-2 or 3-3-3-2-2 number of input MFs, whereas the
output MF is constant and the learning algorithm is hybrid. In addition, the application of other MFs
combinations does not seem to give results that could be on top of the list. Due to the limitation of the
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total number of parameters that should not exceed the number of training data pairs, the number of
MFs was chosen based on the number of input parameters. Figure 8 shows the exponential increase in
the number of rules when the number of MFs increases, whereas Table A2 in Appendix A gathers the
time and number of rules for all the proposed ANFIS configurations.
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3.1. Comparison with ANNs, FCMs and Hybrid FCM-ANN

To further investigate the performance of the proposed ANFIS architectures, an extensive
comparative analysis between the state of the art ANNs, soft computing methods of FCMs and their
hybrid combination of FCMs with ANNs was performed.

The architecture of the analyzed ANN was a multilayer feed forward network with an input
layer containing five inputs (month, day, temperature, demand of a day before, current demand),
a hidden layer with 10 neurons, and an output layer with one output (a day-ahead demand prediction).
The authors used the sigmoidal activation function in all layers and implemented Levenberg–Marquardt
algorithm to train the network.

The soft computing method of fuzzy cognitive map with evolutionary learning capabilities,
such as the real-coded genetic algorithm (RCGA-FCM) and structure optimization genetic algorithm
(SOGA-FCM) [100], were used for time series modeling and prediction of day-ahead NG energy
demand. For FCM learning, we implemented RCGA-FCM and SOGA-FCM. A short description on the
applied evolutionary-based FCM approaches is given in Appendix B. The implementations of FCMs
differ from ANFIS, even though they both belong to the soft computing family.

In this research study, we used the dynamic model type (Equation (B1)) which is found in
Appendix B, with sigmoidal transformation function. FCMs learned with the use of RCGA and
SOGA algorithm contain five concepts (month, day, temperature, demand of a day before, current
demand) [114].

The applied hybrid approach for time series prediction is based on FCMs and ANNs and was
previously proposed in [18,19]. It allows us to select the most significant concepts for FCM using SOGA.
These concepts are used as the inputs for ANN. In the hybrid approach, we used artificial neural
networks with an input layer with five inputs selected by the SOGA-FCM approach, a hidden layer
with 10 neurons and an output layer with one output (one day-ahead demand prediction). Sigmoidal
activation function and Levenberg–Marquardt learning algorithm were used. All the simulations for
FCMs and hybrid FCM-ANN configurations were performed with the software tool ISEMK [115] which
has been developed for time series forecasting purposes. An analytical description of FCM-based
models and hybrid FCM-ANN can be found in [13,101,102,116], whereas they are used in this work
only for comparison purposes.

In what follows, Table 7 gathers the results of the explored ANN and soft computing models,
which are straightforward compared with our best performed ANFIS configuration, for each one
out of the 10 cities, suggested in this research work. In Figure 9, three indicative graphs of the cities
Alexandroupoli, Athens, and Drama are illustrated regarding the predicted values of NG demand for
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all the best proposed architectures. In Appendix A, the corresponding graphs of the rest of the cities
are presented (see Figure A1).

Table 7. Comparison results among the artificial neural network (ANN), fuzzy cognitive map (FCM),
hybrid FCM-ANN and best ANFIS architectures of each city.

City Method MSE RMSE MAE MAPE R2

Alexandroupoli

RCGA-FCM 0.0047 0.0684 0.0538 17.6233 0.9450
SOGA-FCM 0.0045 0.0672 0.0526 17.1707 0.9484

ANN 0.0042 0.0645 0.0505 16.1131 0.9439
Hybrid FCM-ANN 0.0034 0.0579 0.0427 14.3034 0.9498

Best ANFIS 0.0023 0.0480 0.0341 10.1123 0.9659

Athens

RCGA-FCM 0.0022 0.0473 0.0303 23.5985 0.9676
SOGA-FCM 0.0029 0.0539 0.0337 22.7453 0.9646

ANN 0.0010 0.0323 0.0198 14.2464 0.9844
Hybrid FCM-ANN 0.0014 0.0374 0.0230 17.5418 0.9790

Best ANFIS 0.0026 0.0511 0.0315 19.7972 0.9786

Drama

RCGA-FCM 0.0080 0.0894 0.0749 12.9942 0.8691
SOGA-FCM 0.0056 0.0748 0.0600 10.1766 0.8796

ANN 0.0025 0.0501 0.0357 6.1657 0.9025
Hybrid FCM-ANN 0.0028 0.0526 0.0363 6.2502 0.8941

Best ANFIS 0.0026 0.0513 0.0361 6.2235 0.8975

Karditsa

RCGA-FCM 0.0039 0.0624 0.0379 27.5914 0.9591
SOGA-FCM 0.0488 0.2210 0.1397 50.2112 0.9711

ANN 0.0016 0.0405 0.0245 17.4579 0.9819
Hybrid FCM-ANN 0.0017 0.0407 0.0245 18.4095 0.9817

Best ANFIS 0.0018 0.0421 0.0236 11.6196 0.9801

Larissa

RCGA-FCM 0.0027 0.0515 0.0331 22.2481 0.9638
SOGA-FCM 0.0025 0.0505 0.0328 22.9579 0.9649

ANN 0.0013 0.0355 0.0209 13.2479 0.9812
Hybrid FCM-ANN 0.0013 0.0356 0.0215 13.1974 0.9811

Best ANFIS 0.0010 0.0314 0.0184 10.5236 0.9858

Markopoulo

RCGA-FCM 0.0075 0.0868 0.0726 26.0003 0.6975
SOGA-FCM 0.0078 0.0883 0.0739 26.3345 0.6955

ANN 0.0172 0.1310 0.1048 34.8594 0.4765
Hybrid FCM-ANN 0.0070 0.0836 0.0667 23.7166 0.7094

Best ANFIS 0.0091 0.0956 0.0728 25.0887 0.6593

Serres

RCGA-FCM 0.0017 0.0409 0.0274 16.5199 0.9648
SOGA-FCM 0.0495 0.2225 0.1632 72.9785 0.9772

ANN 0.0008 0.0275 0.0179 10.9948 0.9842
Hybrid FCM-ANN 0.0008 0.0289 0.0190 11.5000 0.9821

Best ANFIS 0.0008 0.0279 0.0185 11.2421 0.9831

Thessaloniki

RCGA-FCM 0.0029 0.0541 0.0339 29.9713 0.9565
SOGA-FCM 0.0029 0.0539 0.0340 30.1471 0.9568

ANN 0.0017 0.0412 0.0262 23.8748 0.9735
Hybrid FCM-ANN 0.0019 0.0441 0.0266 23.8835 0.9696

Best ANFIS 0.0013 0.0363 0.0219 14.1944 0.9795

Trikala

RCGA-FCM 0.0059 0.0770 0.0453 21.9722 0.9528
SOGA-FCM 0.0433 0.2082 0.1287 42.7427 0.9715

ANN 0.0020 0.0443 0.0258 14.1183 0.9804
Hybrid FCM-ANN 0.0019 0.0432 0.0251 13.9034 0.9815

Best ANFIS 0.0020 0.0450 0.0245 11.1412 0.9800

Volos

RCGA-FCM 0.0028 0.0526 0.0397 17.8195 0.9436
SOGA-FCM 0.0027 0.0520 0.0395 17.8988 0.9445

ANN 0.0020 0.0444 0.0319 13.2504 0.9588
Hybrid FCM-ANN 0.0020 0.0446 0.0307 12.7881 0.9587

Best ANFIS 0.0021 0.0460 0.0314 13.1629 0.9563
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Figure 9. Comparison of forecasting results for each city considering all examined methods. (a) Testing
for Alexandroupoli, (b) Testing for Athens, (c) Testing for Drama.

For a deeper analysis of the examined architectures (ANFIS, ANN, FCM, hybrid FCM-ANN),
the authors report on further details regarding the parameters of each model used in this study. The ANN
and FCM models were previously applied for NG demand prediction in several research works, such
as those in [13,101,102,116]. The models were sufficiently described and the hyperparameters were
properly configured to offer optimum performance of the investigated FCM models.

Table 8 depicts the optimum parameters for all cities considering the neural and FCM evolutionary
methods (ANN, RCGA-FCM, SOGA-FCM, Hybrid), compared with the proposed best performed
ANFIS. The average running time is also presented in Table 8, which was calculated for each soft
computing architecture for all models. It is worth mentioning that we have conducted a rigorous
exploratory analysis for all the investigated neuro-fuzzy, soft computing techniques and ANNs, with
different parameters, for training and model optimization, to reach the highest prediction accuracy
with respect to the evaluation metrics.
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Table 8. Parameters and average running time for each architecture.

Architectures Parameters for Athens City Average Running Time

ANN Multilayer feed forward network, six inputs, 10 neurons, one output, sigmoidal activation
function, Levenberg-Marquardt learning, epochs = 20 16–20 s

RCGA-FCM Uniform crossover with probability 0.4, Mühlenbein’s mutation with probability 0.4,
ranking selection, elite strategy, population size 200, maximum number of generations 200 808 s

SOGA-FCM
Uniform crossover with probability 0.4, Mühlenbein’s mutation with probability 0.4,

ranking selection, elite strategy, population size 200, maximum number of generations 200,
learning parameters b1 = b2 = 0.01

799 s

Hybrid FCM-ANN
Multilayer feed forward network, four inputs selected by SOGA-FCM (month,

temperature, demand of a day before, current demand), one hidden layer with 10 neurons,
one output, sigmoidal activation function, Levenberg-Marquardt learning, epochs = 20

811 s

Best ANFIS Triangular mf, 2-2-2-2-2 or 3-3-3-2-2, Constant output, epochs = 10, Hybrid optimization 4–19 s

3.2. Discussion of Results

In this work, several ANFIS architectures were investigated, with respect to all the variables
that were carefully determined in the developed model as reported in Section 2.1 and after different
sets of model configurations were tested. However, only one ANFIS architecture reached the
optimum performance, in terms of forecasting accuracy, considering the minimum value of MAPE and
subsequently the minimum values of MSE, RMSE and MAE values produced. In particular, it emerged
that the optimum ANFIS configuration is 2-2-2-2-2 with triangular MFs for input variables, which
produces the most simple (concerning the number of rules), fast (see Table A2 in Appendix A) and
accurate model for this energy forecasting problem. In general, it is observed that the best results are
produced from the combination of triangular or gaussian MFs regarding the input variables, and the
constant MFs regarding the output layers.

To further discuss the results produced and to show the effectiveness of the proposed forecasting
methodology of ANFIS, the authors conducted a comparative analysis regarding the forecasting
performance between the proposed technique, and other ANN and soft computing methods too, such
as FCM, which were reported in the literature and have already been applied in the specific domain.
The MAPE criterion was used to compare various models from ANN, evolutionary FCM, Hybrid
FCM-ANN and ANFIS. The results are given in Table 7. For example, the MAPE values of RCGA-FCM,
SOGA-FCM, ANN, hybrid and ANFIS models for the city of Alexandroupoli were calculated as 17.62%,
17.17%, 16.11%, 14.30% and 10.11%, respectively. The smaller the values of MAPE are, the closer
to the actual values the forecasted values are. The best result was obtained from the ANFIS model.
The respective figures in the text and in Appendix A have been updated with the new prediction values.

Considering the same dataset linked to only three cities (Athens, Thessaloniki, and Larissa) out
of the ten that participated in our study, a day-ahead NG consumption prediction was investigated
in [117], applying ANN and LSTM approaches and in [102], implementing the SOGA-FCM method
and a hybrid combination of it. Furthermore, an ensemble FCM prediction methodology concerning
the same dataset was presented in [13], in which a recent soft computing technique for time series
forecasting, using evolutionary fuzzy cognitive maps and their ensemble combination was compared
to ANNs, as benchmark forecasting methods. These methods and their results in terms of MSE and
MAE values for three benchmark cities are all gathered in the following table and certain results can
be concluded. The main reason for selecting the statistical indicators MSE and MAE in the following
figure is to accomplish a straightforward comparison with the results published in previous works.

In Figure 10, it can be noted that all methods achieve high accuracy in NG consumption predictions,
using the same dataset. The best ANFIS approach seems to excel over the ensemble and hybrid
methods. Consequently, the proposed ANFIS architecture, which handles the fuzziness of data more
efficiently, outperforms all the other examined methods in most cases, with a rather remarkable
difference. ANFIS is less time consuming and more flexible than ANN, and as it employs fuzzy rules
and membership functions incorporating with real-world systems, it can be used as alternate method
to ANN forecasting.
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benchmark cities.

It is observed that the proposed method exhibits better or similar performance to other well-known
ANN, FCM or hybrid FCM-ANN architectures for the ten cities under investigation. The produced
results highlight the significance and superiority of neuro-fuzzy methods over the other examined
methods in terms of prediction accuracy, when they deal with time series forecasting problems in
energy. This is in accordance with the main advantageous features of ANFIS models, which are their
ability to capture the nonlinear structure of a process, their adaptation capability, and fast training
characteristics. As reported in the literature, ANFIS models are able to cope with the uncertainty
and fuzziness that characterize the energy domain [118,119] when other intelligent methods cannot
tackle them.

The main outcomes of this study can be summarized as follows:

i. The proposed ANFIS method exhibits the best performance when certain configuration settings
are selected for the examined datasets which are linked to ten cities of Greece. The authors
concluded that a certain configuration is best for the examined ANFIS model, after having
conducted a number of experiments and following a trial-and error approach. The best ANFIS
model is based on a distinct architecture that features a 2-2-2-2-2 triangular or gaussian MF.

ii. The proposed ANFIS architecture is superior to the four benchmark and well-known ANN
and FCM methods (ANN, SOGA-FCM, RCGA-FCM, Hybrid FCM-ANN), which have been
efficiently used in NG consumption forecasting. The results presented in Table 7, which gathers
various error indicators and the R2, as prediction accuracy indices for all five architectures,
show that the best ANFIS model holds the best prediction accuracy among all the methods that
were included in this comparative analysis.

iii. The proposed ANFIS model shows significant capacity when applied to forecasting NG demand,
since it exhibits better performance (see Table 7) with less running time (see Table 8) and more
flexibility to handle fuzziness than other well-known ANN and FCM architectures.

4. Conclusions

This study proposes the ANFIS method to predict short-term demand of NG consumption. This
approach is applied on the Greek territory and uses 10 different datasets provided by DESFA, that
regard previous energy consumption historical data, for ten main cities. To decide the model’s proper
architecture, the authors follow an exploration process regarding the best configuration of input and
training parameters. The best ANFIS model is then compared to other well-known ANN and soft
computing models that are commonly used for energy demand prediction purposes. The ANFIS
method demonstrates significant performance in the field of energy demand prediction, outweighing
the traditional ANN and FCM architectures. In addition, the running time of the proposed architecture
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is much less than those of other examined models, making it the right decision for day-ahead demand
forecasting of NG. The findings of this study reveal that the highest forecasting accuracy emerged
when the same model configuration was used for most of the cities, highlighting the generalization
capabilities of the proposed architecture.

This work can be widely used in short-term demand forecasting for other countries too, with
the same or similar input parameters, and can be also useful especially for distribution operators,
providing them with the ability to make long-term planning decisions and apply the correct strategic
policies in this direction. Following the literature, the ANFIS approach can be applied in various other
domains such as medicine, environmental modelling, various energy systems, like solar and wind,
as well as other engineering applications. As can be seen, the ANFIS application area is wide, and as
regards the energy sector, this method finds great applicability due to its high prediction accuracy,
robustness, and easiness to use.

The results show that the proposed algorithm, which was proven to be efficient, fast and robust,
can be adopted by regulatory authorities and decision makers to perform rigorous forecasting of natural
gas demand for the respective case cities and other cities in Greece too. The investigated approach is an
accurate estimation method as it makes efficient short-term predictions in natural gas demand, showing
minor deviations between the real and the predicting values. Since short-term natural gas forecasting
is mostly used for the timely reservation of transport, storage capacity optimization, timely purchase
of natural gas deliveries and capacity allocation, this method becomes critical to determine the energy
policy for Greece and the wider area too, having overall a positive impact in natural gas consumption.

Future work is oriented in developing more advanced neuro-fuzzy models providing explainability
and transparency in prediction tasks in diverse research domains, in order to evaluate the generalization
capabilities of this approach. Furthermore, new forecast combination architectures of efficient deep
learning and regularized recurrent neural networks for time series modelling and prediction in the
energy sector will be investigated.
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Appendix A

Table A1. Different configurations of the selected ANFIS architectures regarding linear output MF.

Type of
Input MF

Number
of MFs

Type of
Output MF

Number of
Rules MSE RMSE MAE MAPE R2 Time (s)

trimf 2-2-2-2-2 Linear 32 0.001195 0.034572 0.019426 11.72180 0.982121 148
trapmf 2-2-2-2-2 Linear 32 0.001358 0.036859 0.020861 12.12378 0.979559 148
gbellmf 2-2-2-2-2 Linear 32 0.001267 0.035603 0.019921 11.46446 0.980963 148

Gaussmf 2-2-2-2-2 Linear 32 0.001298 0.036038 0.020259 11.97794 0.980468 148
Gauss2mf 2-2-2-2-2 Linear 32 0.001406 0.037496 0.020878 11.26382 0.978860 148

pimf 2-2-2-2-2 Linear 32 0.001635 0.040442 0.022176 12.08298 0.975405 148
dsigmf 2-2-2-2-2 Linear 32 0.001423 0.037733 0.021062 11.26721 0.978592 148
psigmf 2-2-2-2-2 Linear 32 0.001423 0.037733 0.021062 11.26722 0.978592 148
trimf 2-2-3-3-3 Linear 108 0.001476 0.038430 0.020941 11.17862 0.977773 328

Gaussmf 2-2-3-3-3 Linear 108 0.002038 0.045149 0.023286 12.71720 0.969241 328
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Table A2. Running time and number of rules for all the proposed ANFIS configurations.

Type of Input MF Number of MFs Type of Output MF Number of Epochs Optimization Number of Rules Time Run

trimf, trapmf, gbell, gauss, pim, sigm 2-2-2-2-2 Constant 10 Hybrid 32 7 s
trimf, trapmf, gbell, gauss, pim, sigm 2-2-3-3-3 Constant 10 Hybrid 108 11 s
trimf, trapmf, gbell, gauss, pim, sigm 3-3-3-2-2 Constant 10 Hybrid 108 19 s

trimf, trapmf, gbell 3-3-3-3-3 Constant 10 Hybrid 243 68 s
trimf 3-3-4-4-4 Constant 10 Hybrid 576 10 min 10 s
trimf 3-3-5-5-5 Constant 10 Hybrid 1125 40 min

trapmf 3-3-4-4-4 Constant 10 Hybrid 576 12min
trapmf 3-3-5-5-5 Constant 10 Hybrid 1125 70 min
gbellmf 3-3-4-4-4 Constant 10 Hybrid 576 12 min 35 s
gbellmf 3-3-5-5-5 Constant 10 Hybrid 1125 50 min
gaussmf 3-3-3-3-3 Constant 10 Hybrid 243 4 min
gaussmf 3-3-4-4-4 Constant 10 Hybrid 576 25 min
gaussmf 3-3-5-5-5 Constant 10 Hybrid 1125 47 min

gauss2mf 3-3-3-3-3 Constant 10 Hybrid 243 4 min
gauss2mf 3-3-4-4-4 Constant 10 Hybrid 576 25 min
gauss2mf 3-3-5-5-5 Constant 10 Hybrid 1125 47 min

pimf 3-3-3-3-3 Constant 10 Hybrid 243 3.5 min
pimf 3-3-4-4-4 Constant 10 hybrid 576 20 min
pimf 3-3-5-5-5 Constant 10 hybrid 1125 42 min
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Figure A1. Comparison of forecasting results for each city considering all examined methods. (a) Testing
for Karditsa, (b) testing for Larissa, (c) testing for Markopoulo, (d) testing for Serres, (e) testing for
Thessaloniki, (f) testing for Trikala, (g) testing for Volos.

Appendix B

Appendix B.1. Fuzzy Cognitive Maps

Fuzzy cognitive maps (FCMs) are an effective tool for modeling and predicting time series.
The structure of the FCM model is based on a directed graph, the nodes of which denote concepts
significant for the analyzed problem, and the links are the causal relationships. Values of concepts can
change over time according to the adopted dynamics model, for example the nonlinear dynamics model:

Xi(t + 1) = F


Xi(t) +

n∑
j = 1
j , i

X j(t)·w j,i


(A1)

where Xi(t) is the value of the i-th concept at the t-th iteration, wj,i is the weight of the causal relationship
between concepts Xj and Xi taking values from the range [−1,1], t is discrete time, i,j = 1, 2, . . . , n, n
is the number of concepts, and F is the transformation function normalizing the factor values to the
range [0,1] or [−1,1]. Fuzzy cognitive maps can be constructed based on expert knowledge or with
the use of machine learning algorithms. The aim of fuzzy cognitive map learning is to determine the
weights of the causal relationships between concepts on the basis of available time series.

An effective method for fuzzy cognitive map learning is the real-coded genetic algorithm
(RCGA) [100]. RCGA defines each individual in the population based on a floating-point vector
containing the causal relationships. Each individual is decoded into a candidate map and evaluated
with the use of proper fitness function. We used the following fitness function:

f itnessp(erorrl) =
1

a·erorrl + 1
(A2)

where a is a parameter, l is the number of generations, l = 1, . . . , L, L is the maximum number of
generations, p is the number of individuals, p = 1, . . . , P, P is the population size, and erorrl is the
learning error that can be in the following form:

erorrl =
1
T

T∑
t=1

(Z(t) −X(t))2 (A3)
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where X(t) is the predicted value of the decision concept at the t-th iteration, Z(t) is the real normalized
value of the decision concept at the t-th iteration, t = 1, . . . , T, and T is the number of learning records.

Another way of learning fuzzy cognitive maps is the structure optimization genetic algorithm
(SOGA) [100,120]. This allows one to simplify the structure of the FCM model by selecting the
most significant concepts and causal relationships during the learning process. In this approach,
the fitness function is based on the modified learning error including an additional penalty for highly
complexity of the candidate fuzzy cognitive map, understood as a large number of concepts and
non-zero relationships, described as follows:

erorr′l = erorrl + b1
nr

n2 erorrl + b2
nc

n
erorrl (A4)

where b1, b2 are the learning parameters, nc is the number of the concepts in the candidate FCM
model, nr is the number of the non-zero relationships between concepts, n is the number of all possible
concepts, and erorrl is the learning error type (Equation (A3)).

In this paper, we also used the hybrid approach for time series prediction based on fuzzy cognitive
maps with the structure optimization genetic algorithm and artificial neural networks [101]. In the first
stage of this approach, the most important concepts are selected with the use of FCMs and the SOGA
algorithm. In the second stage, these concepts are used as inputs for the artificial neural network
in order to increase the prediction accuracy. The above algorithms have been implemented in the
developed ISEMK system [101].
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