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Abstract: Research on the development of plants grown for energy purposes is important for ensuring
the global energy supply and reducing greenhouse gas emissions, and simulation is an important
method to study its potential. This paper evaluated the marginal land that could be used to grow
sugarcane in the Guangxi Zhuang Autonomous Region. Based on the meteorological data from 2009
to 2017 in this region and field observations from sugarcane plantations, the sensitivity of the APSIM
(Agricultural Production Systems sIMulator) model parameters was analyzed by an extended Fourier
amplitude sensitivity test, and the APSIM model was validated for sugarcane phenology and yields.
During the process of model validation, the value of the determination coefficient R2 of the observed
and simulated values was between 0.76 and 0.91, and the consistency index D was between 0.91
and 0.97, indicating a good fit. On this basis, the APSIM sugarcane model was used to simulate the
sugarcane production potential of the marginal land on a surface scale, and the distribution pattern
of sugarcane production potential in the marginal land was obtained. The simulation results showed
that if sugarcane was planted as an energy crop on the marginal land in Guangxi, it would likely
yield approximately 42,522.05 × 104 t of cane stalks per year. It was estimated that the sugarcane
grown on the marginal land plus 50% of the sugarcane grown on the cropland would be sufficient to
produce approximately 3847.37 × 104 t of ethanol fuel. After meeting the demands for vehicle ethanol
fuel in Guangxi, 3808.14 × 104 t of ethanol fuel would remain and could be exported to the ASEAN
(Association of Southeast Asian Nations).

Keywords: APSIM sugarcane model; energy potential; marginal land; sensitivity analysis

1. Introduction

Since 2011, China has been the largest energy consumer in the world. Due to the rapid growth of
its population and GDP (gross domestic product), the foreign dependence rates for oil and natural
gas are approximately 61% and 33%, respectively [1]. The long-term exploitation and utilization of
fossil energy in China, especially coal and oil, has caused a large amount of greenhouse gas emissions,
which will inevitably impact the ecological environment in China and that of the rest of the world [2].
Therefore, China will face two major problems in the future, namely, fossil energy shortages and
environmental pollution. To meet energy needs and ensure sustainable development, China is in
urgent need of bioliquid fuels, including ethanol liquid fuel [3,4]. However, due to the Sino–US trade
war, China has not imported US ethanol fuel since July 2018. The ethanol fuel imports of China are
severely constrained, and the demand is high. Therefore, the bioliquid ethanol fuel industry is still
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the focus of future biomass energy development in China. Since 2007, China has issued a series of
policies emphasizing the developmental needs and plans for ethanol fuel from non-grain plants [5,6].
In this context, Guangxi vigorously promotes the industrialization and development of non-grain
ethanol fuel plants, such as cassava and sugarcane. Due to its subtropical climate conditions and
rich biological resources, Guangxi has been at the forefront of the non-grain biomass energy industry
in China. In November 2019, Zhanjiang Customs of Guangdong Province reported that 3062.17 t
of ethanol fuel was exported by a bioenergy company to Vietnam and was issued a China-ASEAN
(Association of Southeast Asian Nations) Certificate of Origin. China signed the ASEAN Free Trade
Agreement in 2002 [7], and this was the first zero-tariff export of Chinese ethanol fuel producers to the
international market. As a bridgehead to the ASEAN, the non-grain ethanol fuel industry in Guangxi
will be further developed through border trade.

Although the development and utilization of biomass energy in China has started late,
its development has been relatively fast. Research on distribution, selection, cultivation, improvement,
and processing technology and equipment for biomass energy crops has made great achievements
which will benefit the further development of biomass energy in China [8–10]. Sugarcane is a high
biomass crop, which has many advantages as a biomass energy crop, such as a high yield per unit area,
high light energy storage efficiency, and a relatively low processing cost. Therefore, it is necessary to
study the production potential and energy efficiency of sugarcane.

Few studies have evaluated the potential bioenergy that can be produced from sugarcane.
At present, there are two main methods of sugarcane yield prediction, namely, by remote sensing data
combined with a geographic information system (GIS) and secondly by model evaluation. Cervi et al.
used a spectral ratio of remote sensing data for vegetation assessment, i.e., the normalized difference
vegetation index, in order to estimate the spatial yield of sugarcane [11]. Singels et al. used a land
surface energy balance algorithm (SEBAL) to estimate the biomass yield of sugarcane from remote
sensing data [12]. Yawson et al. used satellite remote sensing data and geographic information systems
to assess sugarcane yield supply potential [13]. These studies only focused on the spatial distribution of
potential bioenergy and failed to study the potential effects of land use and climate change. Lisboa et al.
developed a prediction model of sugarcane yield based on a normalized difference vegetation index
(NDVI) and leaf tissue nutrient concentration data to help the Brazilian sugarcane sector monitor crop
yield changes [14]. Based on the statistical analysis of the data, Satiro et al. established a model to predict
sugarcane yield from soil properties [15]. Dias et al. used three different sugarcane simulation models
(FAO (Food and Agriculture Organization) agroecological Zone, DSSAT (Decision Support System
for Agrotechnology Transfer)/CANEGRO and APSIM (Agricultural Production Systems sIMulator)
sugarcane) to estimate potential and water-restricted yields and production gaps for 30 locations in
Brazil [16]. These studies provide a point-scale accurate estimation of sugarcane yield by establishing
mathematical models, but it is difficult to achieve surface-scale simulations. Other researchers have
considered land and water properties in order to assess sugarcane growth potential. Rodriguez et al.
assessed the potential for biofuel crop expansion by combining the water footprint, water availability,
and land availability [17]. Sanches et al. used soil attributes to estimate sugarcane yield, and their
research showed that the soil ECa (apparent electrical conductivity) in sugarcane fields when mapped
by electromagnetic induction sensors could reflect the potential yield well [18]. However, these studies
have failed to consider the sustainable development of bioenergy. The main objective of this paper is
to simulate and evaluate the production potential of the sugarcane as an energy crop on the marginal
land of the Guangxi Zhuang Autonomous Region by combining an APSIM sugarcane model and GIS
spatial analysis technology.

2. Methods and Data

In this study, eight years of meteorological, soil, and field observation data were collected for the
APSIM model parameter sensitivity analysis, parameter calibration, and verification and surface scale
simulation. See Section 2.2 for details concerning the data. On this basis, the paper first extracts the
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marginal land suitable for sugarcane cultivation in Guangxi, and then performs parameter sensitivity
analysis, parameter calibration, and model validity verification of the APSIM sugarcane model. Then,
the APSIM sugarcane model is used to simulate sugarcane production on marginal land on a surface
scale. Finally, the distribution of sugarcane production potential on the marginal land in Guangxi is
obtained, and the sustainable development of bioenergy from sugarcane is analyzed. The analysis
framework for the potential production of bioenergy from sugarcane is shown in Figure 1.
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Figure 1. Analysis framework used in the current study for the potential production of bioenergy from
sugarcane. The meanings of the abbreviations maxT, minT, Radn, and Rain refer to the maximum
temperature, minimum temperature, solar radiation, and rainfall, respectively. The abbreviations BD,
AirDry, DUL, and LL refer to the bulk density, air-dried soil moisture content, field capacity and wilting
coefficient, respectively.

2.1. Study Sites

As the region with the highest proportion of sugarcane planting area in China [19], the Guangxi
Zhuang Autonomous Region was chosen here to study the growth potential of sugarcane as an energy
crop with the APSIM model. The study area is located in Southern China (see Figure 2) and exists at a
low altitude and has a subtropical monsoon climate [20]. The area of cultivated land in Guangxi is
about 59,724 km2, of which 8864 km2 is planted with sugarcane, and the area of unused land (mainly
including shrub forest land, sparse forest land, and grassland) is about 85,938 km2. The introduction
of the extraction of marginal land suitable for sugarcane cultivation from unused land is located in
Section 2.2.1. In the following research, the existing cultivated and unused land in Guangxi will be
combined to analyze the potential of sugarcane as an energy crop.
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2.2. Methodology and Data Sources

The data used in this study are the marginal land suitable for sugarcane growth and the
inputs for running the APSIM model, including information on the soil, weather, crop variety, and
field management.

2.2.1. Marginal Land Data

The Department of Science and Technology of the Ministry of Agriculture of China has defined
the marginal land for energy crops as winter fallow fields and wastelands. Suitable wasteland refers to
open forest land, natural grassland, shrublands, and unused land that is suitable for cultivating energy
crops [21].

The quantity and spatial distribution of land resources that are suitable for growing non-grain
ethanol fuel raw sugarcane in China were extracted by a multi-factor comprehensive evaluation method
and socioeconomic factor limitation method that considers the growth characteristics of sugarcane.
The specific technical methods are as follows [22]:

(1) According to the principle of avoiding biofuel development that competes with people for food
and that which competes with grain for land, as issued by the Ministry of Agriculture in 2007,
arable land was excluded.

(2) To protect the ecological environment and prevent the destruction of ecosystems, land types such
as nature reserves, landscape, historical sites, and protected zones were excluded.

(3) Taking into account the development needs for animal husbandry in China, the high- and
medium-coverage grasslands of the five pasture areas in China were excluded.

(4) According to the characteristics of land resources suitable for energy crop development, land
use types such as swamp land, water bodies, and construction land were excluded. Land use
types suitable for the cultivation of energy crops include shrub forest land, sparse forest land,
grassland, mudflats, saline-alkali land, and bare land.

(5) Based on the relevant literature [23], the growth characteristics of sugarcane were analyzed
(see Table 1) and an index system of the natural conditions for sugarcane growth was established.
Setting the lower limit of sugarcane requirements for soil, temperature, moisture, slope, and
other conditions, the GIS technology was used to extract the land resources that were suitable for
sugarcane planting.
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Table 1. Sugarcane growth conditions based on the relevant literature [23].

Factor Unit Suitable Conditions

Slope <25
Soil organic matter content % ≥2

Soil type - Loam or sandy loam
pH - ≈4.5–8.0

Duration of sunshine h ≥1195
Cumulative temperature in base 10 ◦C ◦C ≈6500–8000

Jointing stage to maturity - ≈18–25
Average annual air humidity % Approximately 60%

Annual precipitation mm ≈800–1200

Temperature

Germination ◦C ≥13
Germination to seedling ◦C ≈20–25

Seedling stage to leaf stage ◦C ≈20–30
Leaf stage to jointing stage ◦C ≈25–28

Referring to the above steps, the marginal land resources suitable for planting sugarcane in
China were extracted (see Figure 3). The marginal land resources suitable for planting sugarcane
in the Guangxi Zhuang Autonomous Region were obtained by the cutting operation of the ArcGIS
(https://developers.arcgis.com/) software, as shown in Figure 4.
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2.2.2. Field Observation Data

This study uses field observation data from Ruan [24] to calibrate the crop variety parameters.
The sugarcane variety tested in the field was Guitang 32 (Guitang 02-208) cultivated by the Sugarcane
Research Institute of the Guangxi Academy of Agricultural Sciences. The female parent of this variety
is Yuetang 91-976 and the male parent is Xintaitang 1. Guitang 32 is an early-maturing sugarcane
cultivar. It grows vigorously and needs sufficient basic fertilizer for cultivation. Its suitable planting
time is from late February to mid-March [25].

The field test period was from 2015 to 2017, and there were four test plots. For each plot,
the planting area was 6 m wide and 20 m long, and the plot area was 120 m2. Each plot was planted
with five rows, the row spacing was 1.2 m, and the planting density was 105,000 buds·ha−1. The field
management measures for each plot were the same and 300 kg·ha−1 of nitrogen fertilizer was used
during the whole growth period. The base and topdressing fertilizers were applied at a 1:1 ratio,
while the potash (330 kg·ha−1) and phosphate (150 kg·ha−1) fertilizers were applied once, with the
base fertilizer. The other field management measures were the same as those used in conventional
agricultural production, and there was no irrigation during the growth period.

Field observations included the crop growth period, the leaf area index of each growth stage,
the dry weight of the aboveground part, the yield of the sugarcane stem, etc. The sugarcane growth
records are shown in Table 2.

After the completion of the model crop variety parameter calibration, the parameters of the APSIM
sugarcane model needed to be verified, so more sugarcane field observation records were needed. In
this study, the sugarcane field observation data from Zu et al. [26] were used to verify the results of the
model parameter calibration, mainly to verify the sugarcane stalk yield and the phenological period of
the sugarcane. Model calibration and validation data can be seen in Table 3.
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Table 2. Growth parameters measured at the sugarcane field experiment from 2015 to 2017.

Plant Type Sowing
Date

Emergence
Date

Cane Appearance
Date Harvest Date Leaf Area

Index
Dry Weight

(t·ha−1)
Cane Stem

Yield (t·ha−1)
Sugar Dry

Weight (t·ha−1)

Plant 2015-02-03 2015-04-27 2015-07-24 2015-12-28 6.15 50.43 119.65 10.32
Ratoon 2015-12-28 2016-02-22 2016-06-29 2017-01-06 5.45 45.75 118.53 9.24
Plant 2015-03-15 2015-05-23 2015-08-08 2016-01-17 5.96 42.84 110.76 8.98
Plant 2015-04-16 2015-06-27 2015-07-08 2016-02-22 4.77 49.56 115.77 9.11
Plant 2016-02-28 2016-05-06 2016-07-30 2017-01-06 5.24 52.18 116.34 10.03

Table 3. Model calibration and validation data [24,26].

Site Plant Year Plant Type Sugarcane Stalk Yield
(t·ha−1)

Phenological Period

Sowing
Date

Emergence
Date

Cane Appearance
Date

Harvest
Date

Calibration

Nanning 2015 Plant 119.65 2015-02-03 2015-04-26 2015-07-24 2015-12-28
Nanning 2015/2016 Ratoon 118.53 2015-12-29 2016-02-22 2016-06-29 2017-01-06

Laibin 2009/2010 Ratoon 62.83 2009-11-11 2010-03-03 2010-06-14 2010-11-10
Shatang 2010 Ratoon 77.23 2010-02-26 2010-05-10 2010-07-20 2010-12-20
Guigang 2010/2011 Ratoon 66.21 2010-11-21 2011-04-14 2011-06-30 2011-11-30
Yizhou 2011/2012 Ratoon 54.43 2011-12-03 2012-04-16 2012-06-06 2012-11-10

Pingguo 2011/2012 Ratoon 68.77 2011-12-11 2012-03-28 2012-06-14 2012-11-10

Validation

Laibin 2010/2011 Ratoon 61.76 2010-11-11 2011-04-18 2011-06-22 2011-11-10
Laibin 2011/2012 Ratoon 67.71 2011-11-11 2012-04-10 2012-06-06 2012-11-07

Pingguo 2009/2010 Ratoon 49.97 2009-11-11 2010-03-17 2010-06-23 2010-11-20
Pingguo 2011 Plant 39.47 2011-02-27 2011-04-17 2011-06-30 2011-12-10
Shatang 2011/2012 Ratoon 82.50 2011-12-21 2012-04-16 2012-06-14 2012-11-20
Shatang 2012/2013 Ratoon 83.00 2012-11-21 2013-03-18 2013-06-14 2013-11-20
Guigang 2009/2010 Ratoon 62.79 2009-11-20 2010-04-03 2010-06-18 2010-11-20
Guigang 2011/2012 Ratoon 71.74 2011-12-01 2012-03-30 2012-06-06 2012-11-20
Yizhou 2009/2010 Ratoon 60.25 2009-10-21 2010-03-10 2010-06-20 2010-11-10
Yizhou 2011 Plant 53.78 2011-02-23 2011-04-14 2011-07-02 2011-12-02

Nanning 2015 Plant 110.76 2015-03-15 2015-05-23 2015-08-08 2016-01-17
Nanning 2016 Plant 116.34 2016-02-28 2016-05-06 2016-07-30 2017-01-26
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2.2.3. Meteorological Data

The APSIM sugarcane model requires daily meteorological data as an input. The time span
needs to cover the entire growth period of the crop. The meteorological file in the APSIM model
contains 10 data items, including the site name, latitude, and eight meteorological data items
(see Table 4). The daily solar radiation, maximum temperature, minimum temperature, and precipitation
were obtained by interpolating the meteorological station data through the ANUSPLIN version
4.3 software [27]. The data from 2009 to 2017 were collected from the National Meteorological Science
Data Sharing Service Platform (http://data.cma.cn/).

Table 4. Meteorological file data items of the APSIM (Agricultural Production Systems sIMulator)
sugarcane model.

Name Definition Unit Remarks

Site - -
Latitude - Decimal

Tav Annual average temperature ◦C

Amp Monthly average temperature
annual amplitude

◦C

Year - -
Day - -

Radn Solar radiation (MJ·m−2) Non-negative
Maxt Maximum temperature (◦C)
Mint Minimum temperature (◦C)
Rain Rainfall (mm) Non-negative

2.2.4. Soil Profile Data

The soil profile data used in this paper mainly include soil hydrological properties and soil
nitrogen. Soil hydrological properties include the saturated water content, field capacity, permanent
wilting coefficient, and air-dried soil moisture content of each soil profile. Soil nitrogen properties
include the nitrate nitrogen content, ammonia nitrogen content, pH value, and organic carbon content
(see Table 5). In the process of model calibration and verification, soil parameters were derived from
field observation data [24]. In the process of model surface scale simulation, soil hydraulic parameters
were obtained from the database of soil hydraulic parameters established by Dai et al. [28], and soil
nitrogen parameters used the soil nitrogen values of field observation data. The soil profile attribute
data are divided into seven layers at depths of 4.5, 9.1, 16.6, 28.9, 49.3, 82.9, and 138.3 cm.

Table 5. Soil characteristic parameters of the APSIM sugarcane model.

Name Description Unit

Depth Layer depth cm
AirDry Air-dried soil moisture content cm3

·cm−3

BD Bulk density g·cm−3

LL15 Permanent wilting coefficient cm3
·cm−3

DUL Field capacity cm3
·cm−3

SAT Saturated water content cm3
·cm−3

NO3 Nitrate nitrogen content ppm
NH4 Ammonia nitrogen content ppm
pH Potential of hydrogen -
OC Organic carbon content %

http://data.cma.cn/
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2.3. APSIM Module

2.3.1. APSIM and Sugarcane Module

The APSIM model is a comprehensive mechanistic model that was developed by CSIRO
(Commonwealth Scientific and Industrial Research Organisation) and APSRU (Agricultural Production
System Research Unit) in 1991 to simulate the biophysical processes of agricultural production systems.
The APSIM sugarcane model is a built-in sugarcane module in the APSIM model. It can interact with
the soil, agricultural residue, and agricultural management modules to automatically simulate the
water, fertilizer, and nutrient cycling between soil and sugarcane crops.

2.3.2. Model Localization Settings

The APSIM model used in this paper was version 7.10. The input parameters include three aspects,
namely, the meteorological, soil, and crop variety parameters.

Meteorological Data

The meteorological data used in the study were obtained from the National Meteorological
Information Center and the APSIM meteorological data files were processed in R and Python.

Soil Data

The soil parameters for the process of parameter adjustment and model validation were derived
from the data collected from the experimental sites [24], as shown in Table 6. See Table 5 for the
description of the parameters in Table 6.

Table 6. Soil properties observed in the field experiment.

Depth
(cm)

BD
(g·cm−3)

AirDry
(cm3

·cm−3)
DUL

(cm3
·cm−3)

LL15
(cm3

·cm−3)
SAT

(cm3
·cm−3)

OC (%) pH NH4
+-N

(ppm)
NO3−-N
(ppm)

0–10 1.51 0.08 0.32 0.11 0.36 1.57 5.56 75.16 87.59
10–20 1.52 0.08 0.31 0.11 0.35 2.28 5.65 122.0 62.45
20–30 1.54 0.09 0.30 0.12 0.34 2.75 6.33 59.65 86.03
30–45 1.63 0.10 0.28 0.13 0.31 2.88 5.81 72.16 97.77
45–60 1.59 0.10 0.28 0.15 0.32 2.12 5.78 103.64 45.92
60–90 1.55 0.14 0.28 0.15 0.32 1.66 5.71 128.37 55.99
90–130 1.55 0.14 0.27 0.15 0.31 1.46 6.01 132.43 44.87

Crop Variety Data

This study used the Australian sugarcane variety Q138 because this variety is suitable for planting
in high temperature and rainy areas, featuring good vitality and strong adaptability. The crop variety
parameters of the APSIM sugarcane model and the default values of Q138 are shown in Table 7.

2.4. Simulation of Sugarcane Production Process

The APSIM model was spatially expanded by GIS technology to achieve surface-scale simulation
of sugarcane on the marginal land in Guangxi. According to the scheme in Section 2.2.1, the surface
vector data (polygon shapefile format) of the marginal land suitable for sugarcane planting were
obtained in the ArcGIS (version 10.3.1) software. Since the APSIM model can only perform point
simulation, it is necessary to convert the surface into points. Therefore, the “raster extracted by mask”
and “raster resample” GIS technologies were used to rasterize the marginal land (into raster format).
Python (version 3.7.4) and R (version 3.6.1) [29] were used to process the meteorological and soil data
and connect these attributes to the grid point of the marginal land. Program modules such as “etree”,
“pandas”, and “data.table” were utilized in this process. Then, “raster to point” GIS technology was
used to transform the raster data into point vector data (point shapefile format). As a consequence, the
surface simulation of the APSIM model in the study area was transformed into tens of thousands of
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point simulations. The Python programming language was used for data formatting, batch operation,
and model output sorting during the model operation. Finally, the “vector to raster”, “hierarchical
rendering”, and “thematic map drawing” GIS technologies were used to visualize the running results
of the model. The technical process of the model space extension is shown in Figure 5.

Table 7. Default values of sugarcane variety parameters for the Q138 sugarcane variety in the
APSIM model.

Name Description Unit Default Value

cane_fraction Percentage of daily biomass allocated to cane stems % 0.70
sucrose_delay Sugarcane sugar accumulation delay factor g·m−2 600.0

min_sstem_sucrose Minimum cane stalk biomass before sugar accumulation begins g·m−2 1500
min_sstem_sucrose_redn Minimum sugarcane stem accumulation reduced under stress g·m−2 10

tt_emerg_to_begcane Accumulated temperature from emergence to jointing ◦C·d 1900
tt_begcane_to_flowering Accumulated temperature from jointing to flowering ◦C·d 6000
tt_flowering_to_crop_end Accumulated temperature from flowering to maturity ◦C·d 2000

green_leaf_no The maximum number of green leaves before plant maturation - 13.0
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2.5. Global Sensitivity Analysis Method

The sensitivity analysis method used in this paper was the extended Fourier amplitude sensitivity
test (EFAST), which was proposed by Saltelli et al. in 2006 [30]. The algorithm is briefly introduced as
follows [30]:

Model y = f (x1, x2, . . . , xk) can be converted to y = f (s) by an appropriate conversion function,
and a Fourier transform is performed on the y = f (s) as follows:
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where iV−  is the sum of the contribution variances of all parameters excluding the i-th parameter ix . 

2.6. Sensitivity Analysis 

The APSIM models use many cultivar parameters to simulate crop growth. These parameters 
usually cannot be directly measured and need to be calibrated when the crop model is applied to a 
new environment or a new cultivar. Sensitivity analysis can quantify the impact of the model input 
parameters on the model output, thereby simplifying the calibration for new cultivars. We performed 
sensitivity analysis on eight crop variety parameters. The description and range of selected 
parameters are shown in Table 8. The variety parameters were obtained from the APSIM official 
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where Ai and Bi are the Fourier amplitude, Ns is the number of samples, and i is the Fourier change

parameter, where i ∈
−

Z =
{
−

Ns−1
2 , . . . ,−1, 0, 1, . . . ,+Ns−1

2

}
.

The spectral curve of the Fourier series is defined as Λi = A2
i +B2

i , and by calculating the frequency
ωi, the variance of the model output result caused by the change of the input parameter xi is given
as follows:

Vi = 2
+∞∑
i=1

Λiωi (4)

The total variance of the model output is thus decomposed into the following:

V =
k∑

i=1

Vi +
k∑

i=1

k∑
j=1

Vi j + . . .+ Vi, j,...,k (5)

where Vi is the independent variance caused by the change of the i-th input parameter xi, Vi j is the
coupling variance caused by the interaction between the i-th input parameter xi and the j-th parameter
x j, and by analogy, Vi, j,...,k is the variance contributed by the interaction of all input parameters, and k
is the number of parameters. After data normalization, the first sensitivity index Si of the parameter xi
is defined as follows:

Si =
Vi
V

(6)

The total sensitivity index STi of the parameter xi is defined as follows:

STi =
V −V−i

V
(7)

where V−i is the sum of the contribution variances of all parameters excluding the i-th parameter xi.

2.6. Sensitivity Analysis

The APSIM models use many cultivar parameters to simulate crop growth. These parameters
usually cannot be directly measured and need to be calibrated when the crop model is applied to
a new environment or a new cultivar. Sensitivity analysis can quantify the impact of the model
input parameters on the model output, thereby simplifying the calibration for new cultivars. We
performed sensitivity analysis on eight crop variety parameters. The description and range of selected
parameters are shown in Table 8. The variety parameters were obtained from the APSIM official
website (http://www.apsim.info/) and Mao et al. [31]. The upper and lower limits of the crop variety
parameters were set to be ±50% according to the default value of the model here, and all variables
are subject to a uniform distribution. The additional input parameters for the model, such as the
meteorological data, soil data, and crop management (e.g., seeding, fertilization) data, can be found in
Section 2.2 of this paper.

Table 8. Upper and lower limits of sugarcane variety parameters for the sensitivity analysis.

Name Unit Lower Limit Upper Limit Distribution

cane_fraction % 0.1 0.99 Uniform
sucrose_delay g·m−2 300 900 Uniform

min_sstem_sucrose g·m−2 750 2250 Uniform
min_sstem_sucrose_redn g·m−2 5 15 Uniform

tt_emerg_to_begcane ◦C·d 1000 3000 Uniform
tt_begcane_to_flowering ◦C·d 3000 9000 Uniform
tt_flowering_to_crop_end ◦C·d 1000 3000 Uniform

green_leaf_no - 5 20 Uniform

http://www.apsim.info/
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In this study, four outputs of the model were considered, namely, the sugarcane stem dry weight,
sugarcane stem fresh weight, sucrose dry weight, and leaf area index. The specifications of the output
indicators are shown in Table 9.

Table 9. Explanation of the selected output indicators for the parameter sensitivity analysis.

Name Description Unit Remarks

cane_wt Sugarcane stem dry weight g·m−2 1 t·ha−1 = 100 g·m−2

canefw Sugarcane stem fresh weight t·ha−1

sucrose_wt Sucrose dry weight g·m−2 1 t·ha−1 = 100 g·m−2

lai_sum Leaf area index m2
·m−2

We used the SIMLAB software for parameter sensitivity analysis [32]. We set the simulation
number at N = 3000 for the sensitivity analysis in order to attain a stable convergence. Therefore, a total
of 24,000 (3000 × 8) simulations were run, with eight cultivar parameters and four output indexes.
The sensitivity analysis was operated using the following steps:

(1) In the statistical preprocessing module of SIMLAB software, input the range and distribution of
eight crop variety parameters, use Monte Carlo method to sample all parameters 3000 times, and
get the parameter sample set;

(2) Python is used to input the generated parameter sample set into the configuration file of APSIM
sugarcane model, then run APSIM model from the command line, and 3000 model output results
are obtained;

(3) The output of the previous step is input to the model processing module of SIMLAB, and the
sensitivity analysis results of each parameter are calculated by EFAST method.

A “trial and error method” was used in this study to modify the sugarcane variety parameters.
When the results of the model simulation were close to the field observation data to a greatest extent,
the adjusted parameters can be set as the most appropriate parameters of the research area.

3. Results and Analysis

3.1. Sensitivity Analysis

Figure 6a shows that for cane_wt, the first three parameters with the largest first sensitivity index
were green_leaf_no, cane_fraction, and tt_emerg_to_begcane, with values of 46.58%, 20.72%, and 8.16%,
respectively, and the values of other parameters were less than 1%. The first three parameters with
the largest global sensitivity index were the same as the first sensitivity index, with values of 68.93%,
59.22%, and 25.50%, respectively. The global sensitivity index of min_sstem_sucrose_redn was also
large, ranking fourth with value of 9.52%, and the remaining parameters were less than 1%. According
to Figure 6b, the sensitivity analysis results of canefw were almost the same as that of cane_wt.
The first three parameters with the largest first sensitivity index were green_leaf_no, cane_fraction,
tt_emerg_to_begcane, with values of 51.19%, 25.56%, and 3.85%, respectively. The first three parameters
with the largest global sensitivity index were the same as the first sensitivity index, with values of
67.76%, 52.24%, and 16.97%, respectively. The global sensitivity index of min_sstem_sucrose_redn
was also large, ranking fourth with value of 6.86%, and the remaining parameters were less than
1%. According to Figure 6c, for sucrose_wt, the first four parameters with the largest first sensitivity
index were min_sstem_sucrose, green_leaf_no, cane_fraction, tt_emerg_to_begcane, with values of
46.27%, 11.50%, 6.51% and 2.12%, respectively, and other parameters were less than 1%. The first
four parameters with the largest total sensitivity index were the same as the first sensitivity index,
with values of 67.19%, 32.20%, 25.79%, 15.28%, respectively, and other parameters were less than 1%.
Figure 6d shows that for lai_sum, the first three parameters with the largest first sensitivity index
were cane_fraction, green_leaf_no, tt_emerg_to_begcane, with values of 60.85%, 30.18%, and 8.85%,
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respectively, and other parameters were less than 1%. The first three parameters with the largest global
sensitivity index were the same as the first sensitivity index, with values of 65.80%, 31.62%, and 13.79%,
respectively. The global sensitivity index of min_sstem_sucrose_redn ranked fourth with value of
1.71%, and the remaining parameters were less than 1%.
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In conclusion, four sugarcane yield outputs (the dry weight of the sugarcane stalk, the fresh weight
of the sugarcane stalk, the dry weight of sugarcane sugar, and the leaf area index) were most sensitive to
the maximum number of green leaves before plant maturation (green_leaf_no), the percentage of daily
biomass allocated to cane stems (cane_fraction), and the accumulated temperature from emergence to
jointing (tt_emerg_to_begcane). The dry weight of sugarcane sugar was particularly sensitive to the
minimum cane stalk biomass before sugar accumulation began (min_sstem_sucrose).

3.2. Model Parameter Calibration

The results of the model parameter calibration based on the field observation data are shown in
Table 10.

Table 10. Values of crop variety parameters after model parameter calibration.

Name New Planting a Ratoon b

cane_fraction 0.9 0.9
sucrose_delay 565.62 0

min_sstem_sucrose 1338.70 1500
min_sstem_sucrose_redn 15 10

tt_emerg_to_begcane 1700 1900
tt_begcane_to_flowering 5000 6000
tt_flowering_to_crop_end 1230.83 2000

green_leaf_no 90 90
a: The values of crop variety parameters for newly planted sugarcane after calibration. b: The values of crop variety
parameters for ratoon sugarcane after calibration.

3.3. Model Validation

Figure 7 shows a linear regression graph and residual analysis graph of the observed and simulated
values. The determination coefficient (R2), the root mean square error (RMSE), and the consistency
index (D index) between observed and simulated values [33] were used as statistical indicators here.
In Figure 7a–c, the points in the linear regression graphs fall evenly on both sides of the 1:1 line. For
the sugarcane fresh weight, emergence date and jointing date, the values of R2 are 0.91, 0.76 and 0.89,
the values of the RMSE are 9.32, 15.54 and 13.81, respectively, and the values of D are 0.97, 0.91 and
0.97. The confidence intervals of the residuals in Figure 7d–f all include zero, which indicates that the
model performed correctly. In general, the model simulates the fresh weight yield of sugarcane and
the phenological period well. The model validation results show that the parameters of the sugarcane
varieties are ideal and that the simulation results of the APSIM model are reliable to a certain extent.

3.4. Model Simulation

The results for the sugarcane biomass on the marginal lands in the Guangxi Zhuang Autonomous
Region of China are shown in Figure 8. The simulated sugarcane fresh weight yield in the marginal
lands is ≈24.7–137.3 t·ha−1, and the sugarcane fresh weight yield is distributed from low to high along
the northeast to the southwest. However, the yield is nonuniformly distributed, which fully reflects
the topography and meteorological factors. This is also in line with previous research on the climate
divisions for sugarcane planting in the Guangxi Zhuang Autonomous Region [34].
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3.5. Fuel Ethanol Production Potential

The relevant literature shows that the conversion rate of sugarcane stem yield to ethanol fuel
production is 12:1 [35,36] and that 50% of sugarcane produced in cropland can be used for ethanol
production after meeting the demands of the sugar industry [37]. Therefore, the spatial distribution
of sugarcane ethanol production could be estimated according to the administrative divisions of the
Guangxi Zhuang Autonomous Region, as shown in Table 11. The total sugarcane output of Guangxi
Zhuang Autonomous Region can be obtained by summing the sugarcane produced on the marginal
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land and cropland, as shown in Figure 9. Table 11 shows that the total area of marginal land in the
Guangxi Zhuang Autonomous Region is 53,124 km2, accounting for 22.36% of the total area. The total
yield of sugarcane on marginal land is 42,522.05 × 104 t. The total yield of ethanol is estimated to
be 3847.37 × 104 t when combining marginal land ethanol with cropland ethanol. According to the
Guangxi Statistical Yearbook [19], the number of cars owned in Guangxi is 590.4 × 104, the consumption
of gasoline is 392.29 × 104 t, and replacing 10% of gasoline with ethanol fuel requires 392.29 × 103 t of
ethanol fuel. After deducting vehicle ethanol fuel, there are still 3808.14 × 104 t of ethanol fuel that can
be exported to the ASEAN.Energies 2020, 13, x FOR PEER REVIEW 17 of 20 
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Table 11. Statistics of sugarcane-based ethanol energy potential in cities of Guangxi Zhuang Autonomous Region.

District District Area
(km2)

Marginal Land
Area (km2)

Sugarcane Stem
Fresh Weight
Yield (104 t)

Sugarcane Yield
of Cropland (104

t)

Ethanol from
Marginal Land

(104 t)

Ethanol from
Cropland (104 t)

Total Ethanol
(104 t)

Baise 36,201 9188 9771.00 257.29 814.25 10.72 824.97
Beihai 3989 1984 142.08 236.14 11.84 9.84 21.68

Chongzuo 17,332 4616 5613.28 2558.86 467.77 106.62 574.39
Fangchenggang 6239 556 688.30 301.08 57.36 12.55 69.90

Guigang 10,602 1248 997.06 227.40 83.09 9.48 92.56
Guilin 27,667 2628 1412.89 29.06 117.74 1.21 118.95
Hechi 33,476 12,232 9104.59 296.07 758.72 12.34 771.05

Hezhou 11,753 4108 739.33 12.41 61.61 0.52 62.13
Laibin 13,382 3932 2853.74 1108.72 237.81 46.20 284.01

Liuzhou 18,597 4108 2537.78 618.33 211.48 25.76 237.25
Nangling 22,099 4368 4646.96 1163.60 387.25 48.48 435.73
Qinzhou 10,897 1280 1492.07 317.08 124.34 13.21 137.55
Wuzhou 12,572 1372 996.57 11.02 83.05 0.46 83.51

Yulin 12,824 1504 1526.38 155.69 127.20 6.49 133.69
Total 237,630 53,124 42,522.05 7292.76 3543.50 303.87 3847.37

Note: The first column is the subordinate city name in Guangxi. The second column is the area of each city. The third column is the marginal land area in each city. The fourth column is the
sugarcane cane yield from marginal land in each city as calculated by the ArcGIS software. The fifth column is the sugarcane yield from cropland in Guangxi, as per the Guangxi Statistical
Yearbook. The sixth column is the estimated ethanol of sugarcane planted on the marginal land, which is obtained by multiplying the sugarcane yield by the sugarcane ethanol conversion
rate. The seventh column is the estimated ethanol of sugarcane planted on the farmland, which is obtained by multiplying 50% of the sugarcane yield by the sugarcane ethanol conversion
rate. The eighth column is the estimated total ethanol of each city, which is obtained by summing the sixth and seventh columns.
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4. Discussion

Guangxi is a pilot region in China that vigorously promotes the development of the non-grain
biomass energy industry [38]. The results of this study show that the average yield of sugarcane on
marginal land is about 80 t·ha−1, and that on cultivated land is about 82 t·ha−1 (calculated by dividing
the total output by the total area), which indicates that Guangxi has great potential for planting
sugarcane as an energy crop, as Guangxi has a large amount of unused shrub forest lands, sparse
forest lands, and grasslands suitable for planting sugarcane [39], and the local climate is also suitable.
Moreover, the distribution of sugarcane production in marginal land in Guangxi (Figure 8) indicates
that the sugarcane production potential in marginal land in southwestern Guangxi is large. Considering
the scattered distribution of unused land, ecological safety, and other factors, the development of
sugarcane as a non-grain biomass energy should be prioritized in the marginal land in the west
and southwest.

This paper uses a surface-to-point method to predict sugarcane yield in marginal land by
combining the APSIM sugarcane model and GIS spatial analysis technology, which not only overcomes
the difficulty of unpredictable yields in marginal land but also considers the hydrothermal conditions
and physiological characteristics of sugarcane when compared with other research [24,40–42]. However,
there are some limitations that need to be addressed in this study. First, due to the vast amount
of land and the varying environmental conditions in the study area, the crop growth model was
verified by only a limited number of sites, and the accuracy of the parameters thus cannot be ensured.
Secondly, this study has not taken into account all the impact factors on the growth and development
of sugarcane in the APSIM sugarcane model, such as the impact of pests and other disasters caused by
meteorological factors in the real production process. In addition, this paper creates a spatial resolution
problem when the GIS spatially expands the crop growth model. It is unknown at what resolution
the model can be extended spatially and at what resolution the effect is best. Therefore, the feasibility
and optimal parameters for the spatial expansion of the crop growth model should be further studied.
Furthermore, regarding the feasibility of planting sugarcane on marginal land, due to the high planting
density, long growing period, poor soil conditions of the planting area, and the large amount of rainfall
in Guangxi, the large-scale utilization of idle forest land, grassland, and other unused land to plant
sugarcane can cause serious soil and water loss, and even lead to the risk of landslides over time.
Moreover, if sugarcane is planted on a large scale, the lack of adequate management measures will
inevitably lead to a decline in soil fertility and thus a decline in soil production potential. Therefore, it
is necessary to further evaluate the impact of sugarcane cultivation on the ecological environment in
subsequent studies.

5. Conclusions

This study assessed the production potential of sugarcane as an energy crop in the Guangxi
Zhuang Autonomous Region. First, the marginal land resources suitable for sugarcane were extracted.
Next, a sensitivity analysis, a calibration, and a verification of the APSIM model were carried out to
confirm its applicability. Finally, the growth process of sugarcane was simulated for the study area.

The results show that the APSIM sugarcane model simulates the sugarcane stem yield and
phenological period of sugarcane in Guangxi Zhuang Autonomous Region well, and that the related
statistical graphics and indicators also perform well. Assuming that sugarcane is planted as an energy
crop on the marginal lands of the study region, approximately 42,522.05 × 104 t of sugarcane stems
can be harvested each year. It is estimated that the sugarcane produced on the marginal land plus
50% of the sugarcane from croplands can produce about 3847.37 × 104 t of ethanol fuel. After meeting
the demands for vehicle ethanol fuel in Guangxi, 3808.14 × 104 t of ethanol fuel remain that can be
exported to the ASEAN.

Due to the many uncertainties mentioned in Section 4, the next step should be to consider more
factors that affect the sustainable development of sugarcane bioenergy, including ecological security,
the technology to produce bioenergy from sugarcane, energy efficiency, and the increase of greenhouse
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gas efficiency. In general, the sustainable development of sugarcane bioenergy should be analyzed in
conjunction with life cycle assessments and biogeochemical process models.
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