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Abstract: This study explores the degree and change of informational efficiency of the European
Union (EU) carbon emission trading market using an asymmetric multifractal detrended fluctuation
analysis (A-MF-DFA) method, which allows asymmetry. For this purpose, we analysed the daily
price series of the European Emissions Market, which is operated according to the European Union
Emissions Trading Scheme. This carbon market is the most active and has the largest trading
volume. The data covers the period (from 4 August 2005 to 31 December 2019). The main results
are summarised as follows. First, there is a multifractal feature in the price return movements of the
EU carbon trading market, which behaves differently in the upward and downward periods of the
market. Second, the informational efficiency of the carbon emission market has changed over time,
with Phase I having the lowest informational efficiency and Phase III having the highest informational
efficiency. These results indicate that informational efficiency has increased as the carbon emission
market matures. Third, from the result of the market deficiency measure (MDM), Phase I showed the
lowest market efficiency, whereas Phase III showed the highest efficiency. During Phase III, the MDM
values of the upward period were higher than that of the downward period, implying higher market
inefficiency during the upward period.

Keywords: carbon emissions market; greenhouse gas; informational efficiency; asymmetry;
A-MF-DFA method

1. Introduction

As one of the global efforts to counter global warming and climate change, an international
cooperation system has been created to reduce emissions of greenhouse gases, including carbon
dioxide. The carbon emission allowance market was established from the results of several international
conferences on climate change. It operates by optimally allocating and trading carbon dioxide emissions
among potential pollutants. In other words, this market was introduced in accordance with the goal
of controlling global carbon emissions by utilising the efficient pricing mechanism of an organised
exchange. As this system uses a centralised transaction method, it aims to achieve the target level of
carbon emission reduction with minimal economic loss.

However, to achieve the target that this system expects, it is necessary to assume that the price of
carbon emission allowance is effectively determined in the market. Efficiency in this study refers to
informational efficiency, whereby all information related to price formation is reflected quickly and
sufficiently in price. If the price of an emission right is being determined in an inefficient market,
this means that it is difficult to properly manage risk to cope with changes in the emission price
from a market participant’s point of view and due to technology that can reduce carbon emissions by
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companies that use a large number of fossil fuels. This may result in delaying investment in technology
for carbon emission reduction. This means that if the transaction price of carbon emission allowance is
determined inefficiently, it is difficult to effectively realise the goals pursued by the system.

According to this practical need, the degree of informational efficiency of the carbon credit trading
market has attracted the attention of market participants, market managers, and policymakers, and it
has been studied as an important empirical analysis target in academia. Empirical studies are centred
on the EU Allowance Unit (EUA, of one tonne of CO2) price of the European Emissions Market, which
is operated according to the European Union Emissions Trading Scheme (EU ETS), which is the largest
and most active carbon trading market. For example, Miclaus et al. [1], Krishnamurti and Hoque [2],
Daskalakis [3], and Gregoriou et al. [4] report empirical results that show that the EU carbon trading
market is efficient. On the other hand, Daskalakis and Markellos [5], Lu and Wang [6], Crossland
et al. [7], and Aatola et al. [8] report research results indicating that the carbon emission market is
inefficient. Meanwhile, Montagnoli and de Vries [9], Charles et al. [10], Niblock and Harrison [11],
and Yang et al. [12] report that the carbon emission trading market is efficient only in some periods.

It is believed that the previously mentioned research did not lead to any consistent conclusions
for the following reasons. First, it is possible that the degree of market efficiency changes depending
on the analysis target and the analysis time. The EU ETS has updated its system several times in the
past 20 years, and, as a result, it is possible that the efficiency of EUA price movements has changed.
For this reason, the results of the empirical analysis may differ depending on the period of the sample.
Second, the results of the empirical analysis may be different due to differences in analysis methods.
In particular, the efficiency of the carbon market may be different when EUA prices rise and fall. In this
study, we contribute to the research area and strictly examine the informational efficiency of the carbon
market and its changes by paying attention to these two aspects.

The main results of the analysis are as follows. First, there are multifractal characteristics in
the price movement of the carbon credit market, and these characteristics are different in the market
ups and downs. Second, the informational efficiency of the carbon credit market has changed over
time. Third, the informational efficiency of the carbon credit market has experienced continuous
improvement. Fourth, during Phase III, the inefficiency in the upward period was higher than that of
the downward period.

The remaining sections of this paper are as follows. The literature review is presented in Section 2.
The current status and institutional changes in the EU ETS are given in Section 3. The methodology
used in this study is presented in Section 4. The sample data and empirical findings are explained in
Section 5. The conclusions of the study are summarised in Section 6.

2. Literature Review

For the EU ETS system to effectively reduce carbon emissions, the premise that the carbon credit
market must be operated efficiently is required. In this regard, several studies have conducted an
empirical analysis to determine whether the movement of the EUA price is efficient. These studies can
be grouped into three main strands.

The first strand corresponds to those studies that found evidence that the movement of carbon
credit market prices is informationally efficient. For example, by using the event study method,
Miclaus et al. [1] reported that the EU ETS emissions’ market was efficient during Phase I. Krishnamurti
and Hoque [2] performed a regression analysis based on the put-call parity approach and reported that
the carbon emission options market was efficient for the 2008–2010 period (part of Phase II). The results
of technical analysis by Daskalakis [3], who used methods to predict emissions prices between 2008
and 2011 (part of Phase II), showed that as the market matured it became weakly efficient after 2010.
Gregoriou et al. [4] reported that the EU ETS emissions market was efficient during 2005–2012 (Phase I
and Phase II), based on the fact that the spread of spot and futures prices is a stable time series.

The second strand is the studies that report that the EU carbon market is not efficient. For example,
using a methodology that predicts the daily yield movements of emission prices during Phase I,
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Daskalakis and Markellos [5] found that this market cannot be viewed as a weak-form efficient market.
They explained that this was because the market was a new-born market that was not mature and did
not allow for short selling and banking of credits. Using the variance ratio test, Lu and Wang [6] found
that the EU ETS emission market was inefficient in 2005–2010 (part of Phase I and Phase II). However,
they reported that efficiency was improved in Phase II compared with Phase I. Crossland et al. [7] used
the EUA daily spot price data from the EU ETS between February 2008 and June 2011 (part of Phase II)
and found the creation of momentum in the movement of carbon credit prices. This means that the
EUA market is not efficient. Aatola et al. [8], using a technical analysis technique, found that investing
could yield excess returns in 2007–2010 (part of Phase II). This means that the EU ETS market was not
informationally efficient during that period.

The third strand consists of the studies in which the EU ETS market is efficient only occasionally.
For example, employing a variance ratio test, Montagnoli and de Vries [9] and Charles et al. [10] found
that the EU ETS market was not efficient during Phase I and was efficient during Phase II. Similarly,
Yang et al. [12] used several variance ratio tests to find that the EU ETS market was not efficient during
either Phase I or Phase III and was efficient only during Phase II. Niblock and Harrison [11] analysed
the predictability of the daily price of the EU ETS emission market during Phase II (2008–2012) and
reported that the carbon market was inefficient during the global financial crisis, but it became more
efficient after the crisis.

The empirical studies on informational efficiency in the carbon emission allowance market listed
previously have not reached a consistent conclusion. This is because empirical studies use different
analytical methods and different samples. In this study, we use a sample period that is divided into
sub-samples based on the institutional changes in the EU ETS and employ a recently developed
technique, the asymmetric multifractal detrended fluctuation analysis (A-MF-DFA) method introduced,
to analyse the informational efficiency of the carbon market.

3. Institutional Changes in the EU ETS

An ETS is a system that allows transactions of quotas after allocating the Assigned Count Unit to
countries with obligations to reduce greenhouse gas emissions. The allocation of allowances is divided
basically into “Cap and Trade” and “Baseline and Credit.” The Cap and Trade method sets emission
limits and allocates allowances to trade them. The EU ETS and Chicago Climate Exchange are typical
markets for Cap and Trade. The Baseline and Credit method establishes the reference emissions and
allows the residuals to be traded with each other if they are released below the baseline. The Clean
Development Mechanism and the Joint Implementation on the Kyoto Protocol are typical markets for
Baseline and Credit [13,14].

An ETS has advantages in terms of system flexibility, measurement of performance, recycling of
resources, and management of overall emissions when compared with a carbon tax, another policy
to reduce greenhouse gas emissions. In particular, it is easy to manage overall emissions explicitly
with an ETS, and it has the advantage of attracting the development of greenhouse gas reduction
technologies while effectively achieving the reduction targets set by society as a whole through the
trading of allowances, which is used as a means to reduce greenhouse gas emissions in many advanced
countries. On the other hand, there is also the downside movement problem of unstable emission
prices and the lack of optimal resource allocation if there is a restriction on the smooth operation of the
trading market, which can result in social losses. Therefore, efficient operation of the trading market
is important.

Under the Kyoto Protocol, the EU was obliged to reduce greenhouse gas emissions by 8% over
Phase I. To facilitate greenhouse gas reduction, the European Commission (EC) announced its plan to
introduce an ETS by 2005. Through the discussion process within Europe, the EC agreed to introduce
the Cap and Trade-based ETS in 2003 and, in 2004, approved additional guidelines to link the EU ETS
with the Kyoto Protocol’s international allowances. Between 2005 and 2007, Phase I was conducted
for 25 EU members. Starting in 2008, Phase II was expanded to 31 member countries, including new
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members [15]. Phase III is in operation between 2013 and 2020, and Phase IV is scheduled to run from
2021 to 2030. The key features of each phase are summarised in Table 1.

Table 1. Key features of the EU Emissions Trading System (EU ETS).

Phase Period Key Features

Phase I 2005–2007

A 3-year pilot of learning by doing to prepare for Phase II
Covered only CO2 emissions from power generators and

energy-intensive industries
Almost all allowances were given to businesses for

free—approximately 95%
The penalty for non-compliance was €40 per tonne

No transfer of allowances

Phase II 2008–2012

Participation of 31 members—Implementing full-scale greenhouse
gas reduction

Nitrous oxide (N2O) emissions from the production of nitric acid
included by a number of countries—Some 6.5% lower compared

to 2005
The proportion of free allocation fell slightly, to approximately 90%

Several countries held auctions
The penalty for non-compliance was increased to €100 per tonne

Transfer of allowances
The aviation sector was brought into the EU ETS on 1 January 2012

Phase III 2013–2020

A single, EU-wide cap on emissions applies in place of the
previous system of national caps

More sectors and gases included—CO2, N2O, PFC, etc.
Auctioning is the default method for allocating allowances instead

of free allocation
Transfer of allowances

Phase IV 2021–2030
Strengthening the EU ETS—Reduced emissions by an average of

2.2% annually from 1.74% at present
Introducing Market Stability Reserve (MSR)

Source: Reprint with permission [14–16]; 2020, European Environment Agency European Commission.

The EU assessed that it was able to secure accurate data by establishing a process for monitoring,
reporting, and verifying emissions of companies subject to the ETS, along with the infrastructure to
freely trade emissions across the EU during Phase I–II. Transactions during Phase I rose to 321 million
tonnes in 2005, 1.1 billion tonnes in 2006, and 2.1 billion tonnes in 2007, according to the World Bank’s
annual carbon market report. The EU ETS established a key position in the international carbon market
during Phase II, and EU emissions’ trading accounted for 84% of the global carbon markets in 2010.

During Phase III, the EU has successfully demonstrated that pricing and trading allowances
through the EU ETS have been effective in reducing emissions. In addition, the EU ETS system predicts
that greenhouse gas emissions will be reduced by more than 8% compared to the beginning of Phase
III and by 21% in 2020 [14].

In 2018, the EU amended the EU ETS to achieve its 2030 emissions’ reduction target before entering
Phase IV. The revised Directive ((EU) 2018/410), which took effect in April 2018, focuses on increasing
annual emissions reduction rates to 2.2% from 2021 and strengthening the Market Stability Reserve
(MSR) that the mechanism established by the EU to reduce the surplus of emission allowances in the
carbon market and to improve the EU ETS’s resilience to future shocks. In response, the EU predicts
that greenhouse gas emissions will be further reduced by 43% in 2030 when Phase IV, which applies to
the revised system, ends [16].

Table 2 shows that, during 2005–2018 (i.e., Phase I–III), the traded volume of allowances in the EU
ETS generally increased, and the actual amount of emissions mainly decreased. Based on the above
figures, we can expect that changes and development in the EU ETS system would have contributed to



Energies 2020, 13, 2171 5 of 14

actual emissions’ reductions. However, it is also necessary to analyse the impact of these changes on
the informational efficiency of the carbon market.

Table 2. EU ETS allowances and emissions.

Year
Allowances (Mt CO2-Eq)

Emissions (Mt CO2-Eq)
Freely Allocated Auctioned or Sold

2005 2096.4 0.0 2014.1
2006 2071.8 6.8 2035.8
2007 2153.2 1.7 2164.7
2008 1957.9 53.1 2119.7
2009 1972.0 79.3 1879.7
2010 1997.9 91.9 1938.8
2011 2016.6 92.9 1904.4
2012 2054.0 125.0 1867.0
2013 1013.3 1108.4 1908.2
2014 939.4 617.8 1813.8
2015 878.9 632.7 1802.9
2016 838.5 715.3 1750.5
2017 786.7 951.2 1754.6
2018 745.4 915.8 1682.0

Source: Reprint with permission [17]; 2020, European Environment Agency.

4. Methodology

There are several methods for assessing the informational efficiency of the financial market.
The multi-fractal fluctuation detrended analysis (MF-DFA) approach has been used frequently in
recent studies [18–20]. However, the general MF-DFA method has a weakness resulting from the
excessively restrictive assumption that the rising and falling dynamics of the price in a time series
are symmetric. In this study, we use the asymmetric-MF-DFA (A-MF-DFA) method, which allows
asymmetric behaviours for the upward and the downward price movements in the time series [21–23].

Figure 1 shows the overall process of the A-MF-DFA method. Assuming a time series X ={
x(t) : t = 1, 2, · · · , N

}
with length N, the A-MF-DFA method generally proceeds as follows:

(1) Step 1: Constructing the Profile

The profile Y =
{
y(t) : t = 1, 2, · · · , N

}
represents the magnitude of the local fluctuation and is

defined as the following Equation.

y(t) =
∑t

j=1
(x( j) − x), j = 1, 2, · · · , N (1)

where x( j) and x represent the j-th value and the mean of the X, respectively. So, the profile y(t)
represents the cumulative sum of the deviation from first to t-th in the time series.

(2) Step 2: Segmenting the Time Series (X) and its Profile (Y)

We divide the time series (X) into Nn
(
= N

n

)
non-overlapping segments with length n, where N

n is
the largest integer less than N

n . Peng et al. [24] suggest n from 5 to N/4. If N is not a multiple of n, then
the length of the last segment is shorter than n. To consider this remainder of X, we also divide from
the opposite end of X. That way, we get 2Nn segments from X. Equally, we repeat this procedure for Y,
resulting in 2Nn segments.

The X j =
{
x j, k, k = 1, · · · , n

}
and Y j =

{
y j, k, k = 1, · · · , n

}
represent the j-th segment for X and

Y, respectively, and are defined as follows:

x j,k = x(( j− 1) × n + k)
y j,k = y(( j− 1) × n + k), for j = 1, 2, · · · , Nn, k = 1, 2, · · · , n

(2)
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x j,k = x(N − ( j−Nn) × n + k)
y j,k = y(N − ( j−Nn) × n + k), for j = Nn + 1, Nn + 2, · · · , 2Nn, k = 1, 2, · · · , n

(3)

(3) Step 3: Determining the Local Trend and Constructing the Fluctuation Function

The local trend of the profile segment Y j =
{
y j, k, k = 1, · · · , n

}
can be identified from the linear

fit Y j(k) as follows:
Y j (k) = ay j + by j × k, j = 1, 2, · · · , 2Nn (4)

where k represents the horizontal position. The fluctuation function of the profile segment Y j is
computed using:

F2( j, n) =
1
n

∑n

k=1

(
y j,k −Y j(k)

)2
(5)

Also, we estimate the linear fit X j(k) = ax j + bx j × k for X j, which represents the local linear trend

for the time series segment X j =
{
x j, k, k = 1, · · · , n

}
. We consider the sign of bx j as the linear trend X j.

(4) Step 4: Construct q -Order Average Fluctuation Functions

As the traditional MF-DFA method does not consider the trend of the time series, it uses the
general average fluctuation functions, as follows:

Fq(n) =

 1
2Nn

2Nn∑
j=1

[
F2( j, n)

]q/2


1/q

(6)

On the other hand, the A-MF-DFA method makes q-order average fluctuation functions depending
on the linear trend of X j to consider asymmetric characteristics in the time series. For q = 2, the standard
MF procedure is retrieved [18]. We only consider the sign of bx j which is the slope of X j(k), to identify
the linear trend of X j. That is, if bx j > 0, then X j has a positive trend, otherwise, it has a negative trend.
The directional q -order average fluctuation functions are defined as follows:

F+
q (n) =

 1
M+

2Nn∑
j=1

sign
(
bxj

)
+1

2

[
F j(n)

]q/2


1/q

, M+ =
2Nn∑
j=1

sign
(
bxj

)
+1

2

F−q (n) =

 1
M−

2Nn∑
j=1

−

(
sign

(
bxj

)
+1

)
2

[
F j(n)

]q/2


1/q

, M− =
2Nn∑
j=1

−

(
sign

(
bxj

)
−1

)
2

(7)

where F+
q (n) and F−q (n) represent the q -order fluctuation function with a positive trend and a negative

trend, respectively. For all j from one, to 2Nn, if bx j , 0 for all j = 1, · · · , 2Nn, then M+ + M− = 2Nn.

(5) Step 5: Calculating the Generalised Hurst Exponent

If a power-law relationship is captured in a time series, it means that the time series has a
long-range correlation, i.e., long memory. Then the scaling satisfies

Fq(n) ∼ nH(q), F+
q (n) ∼ nH+(q), F−q (n) ∼ nH−(q) (8)

where H(q), H+(q), and H−(q) represent the scaling exponents of the overall, upward, and downward
periods, respectively. The scaling exponents of the fluctuation functions are derived from the
logarithmic form of Fq(n), F+

q (n) and F−q (n) versus q. These scaling exponents are called the
generalised Hurst exponents.

H(2) is the Hurst exponent corresponding to the scaling exponent of F2(n), which indicates the
autocorrelation (q = 2) within the time horizon [25]. If H(2) equals 0.5, the time series follows a random



Energies 2020, 13, 2171 7 of 14

walk process. That is, there are not any correlations in the behaviour of the time series. If H(2) is under
0.5, the correlation of the time series is an anti-persistent process. It means that an increase (decrease)
is likely to be followed by another decrease (increase). Whereas, if H(2) is above 0.5, the correlations
of the time series are long-term persistent, that is, an increase (decrease) is likely to be followed by
another increase (decrease) [18,22,25,26].

The time series is multifractal if H(q) varies depending on q. Additionally, if H+(q) , H−(q),
the correlations of the time series are asymmetric. This means that the correlations for the upward and
the downward periods are different. The q indicates the magnitude of the fluctuation, that is, the large
(small) q represents the large (small) fluctuation. So, if q > 0, H(q), H+(q), and H−(q) represent the
scaling dynamics of overall, upward, and downward for large fluctuations, respectively. Generally,
the scaling exponents of the multifractal time series tend to decrease as q grows.
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Figure 1. The flowchart of the asymmetric multifractal detrended fluctuation analysis
(A-MF-DFA) algorithm.

5. Data and Results

5.1. Sample Data

To analyse the informational efficiency of the EU ETS market, EEX-EUA (European Energy
Exchange-EU Allowances) spot price data are collected from Thomson Reuters. We use daily price
data from 4 August 2005 to 31 December 2019, but we exclude data from 30 June 2007 to 15 January
2009 from the sample for estimation. During this period, there was little trading—due to institutional
reasons that the transfer of emission trading was not allowed from Phase I to Phase II—resulting in
a EUA price close to zero Euro (€0). In the A-MF-DFA analysis of this study, the whole sample period
is divided into three sub-periods according to institutional changes: Phase I from 4 August 2005 to
29 June 2007, Phase II from 16 January 2009 to 31 December 2012, and Phase III from 1 January 2013
to 31 December 2019. The EUA price data are shown in Euro/ton. We obtain return series using first
differences of logarithmic values of the price data.

Figure 2 shows the movement of the EUA price for each phase. In this figure, the movement
of the EUA price shows that the price was traded at approximately €20–€30 in the early period of
Phase I, but the price fell to near €0 at the end of Phase I due to the institutional characteristics that
the overallocated emission in 2006 did not transfer to the next phase, Phase II. At the beginning of



Energies 2020, 13, 2171 8 of 14

Phase II, where the system was supplemented for carry-over issues, prices rose again to €10–€15,
but they plunged below €10 from 2011 as the European financial crisis depressed real economic activity
and reduced carbon emissions. This trend continued into early Phase III, with transactions taking
place at approximately €5–€10. However, EUA prices have risen sharply, and they were trading at
approximately €25 at the end of 2019.

Energies 2020, 13, x; doi: FOR PEER REVIEW 8 of 15 

 

2009 from the sample for estimation. During this period, there was little trading—due to institutional 
reasons that the transfer of emission trading was not allowed from Phase I to Phase II—resulting in 
a EUA price close to zero Euro (€0). In the A-MF-DFA analysis of this study, the whole sample period 
is divided into three sub-periods according to institutional changes: Phase I from 4 August 2005 to 29 
June 2007, Phase II from 16 January 2009 to 31 December 2012, and Phase III from 1 January 2013 to 
31 December 2019. The EUA price data are shown in Euro/ton. We obtain return series using first 
differences of logarithmic values of the price data. 

Figure 2 shows the movement of the EUA price for each phase. In this figure, the movement of 
the EUA price shows that the price was traded at approximately €20–€30 in the early period of Phase 
I, but the price fell to near €0 at the end of Phase I due to the institutional characteristics that the 
overallocated emission in 2006 did not transfer to the next phase, Phase II. At the beginning of Phase 
II, where the system was supplemented for carry-over issues, prices rose again to €10–€15, but they 
plunged below €10 from 2011 as the European financial crisis depressed real economic activity and 
reduced carbon emissions. This trend continued into early Phase III, with transactions taking place 
at approximately €5–€10. However, EUA prices have risen sharply, and they were trading at 
approximately €25 at the end of 2019. 

 
Figure 2. The price dynamics of the EU Allowance Unit (EUA) for each period. 

Table 3 reports the descriptive statistics of the data used in this study. The level represents the 
level variable, i.e., the emission price, and Returns (%) represents its return. The average price (Avg.) 
of each phase was highest, at €14.136, in Phase I and lowest, at €10.014, in Phase III. The standard 
deviation (St. Dev.), at 3.225, showed that the average price was smallest in Phase II. This means that 
the price change in Phase II was relatively small. According to the descriptive statistics of the returns, 
the average was −1.031% in Phase I, −0.062% in Phase II, and 0.073% in Phase III. The fact that the 
emissions’ returns in Phase I were relatively large compared to Phases II and Phase III would be the 
result of free allocation and no banking EUAs to Phase II. Skewness measures the extent to which a 
distribution is not symmetric about its mean value and kurtosis measures how fat the tails of the 
distribution are. The level variable was skewed and platykurtic, but the returns variable was skewed 
and leptokurtic. In addition, the results of the J–B test significantly reject the null hypothesis of 
normality, indicating that the distribution of EUA prices and returns is different from the normal 
distribution over the sample period.  

In this study, the augmented Dickey–Fuller (ADF) and Phillips and Perron (PP) unit root tests 
are used to check the stationarity of sample time series, which grants the use of the A-MF-DFA 
method. The null hypothesis of the two tests is “time series has a unit root”, implying that the series 
are not stationary. To consider the nature of data and reduce model misspecification, we perform 
these tests including a constant (intercept), a constant and linear trend (intercept and trend), and 
neither (none). Table 4 shows the results of these two tests. As shown in this table, all the level series 
“Level” are not stationary in Phase I, Phase II, and Phase III, whereas the return series “Returns (%)” 
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Table 3 reports the descriptive statistics of the data used in this study. The level represents the
level variable, i.e., the emission price, and Returns (%) represents its return. The average price (Avg.)
of each phase was highest, at €14.136, in Phase I and lowest, at €10.014, in Phase III. The standard
deviation (St. Dev.), at 3.225, showed that the average price was smallest in Phase II. This means
that the price change in Phase II was relatively small. According to the descriptive statistics of the
returns, the average was −1.031% in Phase I, −0.062% in Phase II, and 0.073% in Phase III. The fact
that the emissions’ returns in Phase I were relatively large compared to Phases II and Phase III would
be the result of free allocation and no banking EUAs to Phase II. Skewness measures the extent to
which a distribution is not symmetric about its mean value and kurtosis measures how fat the tails
of the distribution are. The level variable was skewed and platykurtic, but the returns variable was
skewed and leptokurtic. In addition, the results of the J–B test significantly reject the null hypothesis
of normality, indicating that the distribution of EUA prices and returns is different from the normal
distribution over the sample period.

Table 3. Descriptive statistics.

Value
Level Returns (%)

Phase I Phase II Phase III Phase I Phase II Phase III

Obs. 497 1032 1826 496 1031 1825
Avg. 14.136 11.925 10.014 −1.031 −0.062 0.073
Min 0.080 5.710 2.680 −41.774 −11.528 −44.655
Max 29.780 16.840 29.760 49.315 18.704 21.060

St. Dev. 9.316 3.225 7.330 6.542 2.693 3.301
Kurtosis −1.327 −1.270 0.136 13.480 3.872 22.149

Skewness −0.221 −0.442 1.302 −0.546 0.221 −1.367
J–B test 40.20 *** 102.68 *** 518.06 *** 3817.18 *** 656.85 *** 37,967.99 ***

Notes: *** indicates significance at the 1% level. The data of the period from 30 June 2007 to 15 January 2009 are not
included in the sample.

In this study, the augmented Dickey–Fuller (ADF) and Phillips and Perron (PP) unit root tests are
used to check the stationarity of sample time series, which grants the use of the A-MF-DFA method.
The null hypothesis of the two tests is “time series has a unit root”, implying that the series are not
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stationary. To consider the nature of data and reduce model misspecification, we perform these tests
including a constant (intercept), a constant and linear trend (intercept and trend), and neither (none).
Table 4 shows the results of these two tests. As shown in this table, all the level series “Level” are not
stationary in Phase I, Phase II, and Phase III, whereas the return series “Returns (%)” are stationary at the
1% significance level. Therefore, in this study, we will continue the empirical analysis using returns’ data.

Table 4. The results of the unit root test.

Test Period
Intercept Trend and Intercept None

Level Returns (%) Level Returns (%) Level Returns (%)

ADF
Phase I −0.81 −18.83 *** −3.04 −19.29 *** −1.34 −10.58 ***
Phase II −0.89 −30.16 *** −2.00 −30.19 *** −0.86 −30.17 ***
Phase III −0.07 −33.32 *** −1.77 −33.35 *** −0.95 −33.30 ***

PP
Phase I −0.56 −18.95 *** −3.06 −19.22 *** −1.18 −18.91 ***
Phase II −0.93 −30.12 *** −2.04 −30.15 *** −0.86 −30.12 ***
Phase III 0.31 −41.84 *** −1.53 −41.86 *** 1.34 −41.84 ***

Note: *** indicates significance at the 1% level.

5.2. Analysis Results

5.2.1. Asymmetric Multifractality Analysis Results

Figure 3 shows F2(n) versus n in a log–log plot of Phase I, Phase II, and Phase III, which are the
results estimated by the asymmetric MF-DFA method. The coloured dots represent the values of F2(n)
for overall (blue), upward (red), and downward (yellow) cases, respectively. Generally, the larger
the value of Fq(n), the greater the volatility of the market. The values of the fluctuation functions of
upward and downward periods are different in most time scales for Phase I, Phase II, and Phase III.
This reflects the asymmetric behaviour of the upward period and the downward period in the carbon
credit market.
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We can measure the degree of asymmetry of fluctuation function using ∆F2 = log2 F+
2 (n) − F−2 (n).

If ∆F2 = 0, the changes of the upward and the downward periods are symmetric. Figure 4 represents
∆F2 of each period. The larger the magnitude of ∆F2, the greater the asymmetry. From the figure,
we can see that Phase I and Phase III are more asymmetric than Phase II, and that the value of the
fluctuation function of the upward period is greater than that of the downward period in many parts.
The mean ∆F2 values of the three periods are 0.211, 0.142, and 0.257, respectively. Therefore, Phase III
has a greater degree of asymmetry compared with Phase I and Phase II.
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5.2.2. The Generalised Hurst Exponent Estimation

The trajectories of the dynamic general Hurst exponents of each phase are shown in Figure 5,
in which q varies from−5 to 5 by 0.1. The blue, red, and yellow represent the overall (H(q)), the upward
(H+(q)), and the downward (H−(q)) cases, respectively.

From the figure, we find that for all phases the generalized Hurst exponents changes depending
on q, which shows evidence of multifractal behaviour of the correlations of the EUA return. H+(q) and
H−(q) for all phases changes with different trends, which indicates the correlations are asymmetric in
upward periods and in downward periods. As q increases, H(q), H+(q), and H−(q) of Phase I, Phase II,
and Phase III, respectively, decrease in general, which means that the correlations of the time series of
all phases weaken gradually for large fluctuations in both upward and downward periods.

In case Phase I, the gap between H+(q), and H−(q) decreases for small fluctuations (q < 0) but it
increases again for large fluctuations (q > 0). It indicates that the correlation asymmetry of the EUA
return movement during Phase I.

On the other hand, in the case of Phase II and Phase III, the gap between H+(q), and H−(q)
decreases as q increases. It means that the degree of the asymmetry of the EUA return movement
weaken gradually for large fluctuations during Phase II and Phase III.



Energies 2020, 13, 2171 11 of 14

Energies 2020, 13, x; doi: FOR PEER REVIEW 11 of 15 

 

5.2.2. The Generalised Hurst Exponent Estimation 

The trajectories of the dynamic general Hurst exponents of each phase are shown in Figure 5, in 
which ݍ varies from –5 to 5 by 0.1. The blue, red, and yellow represent the overall ((ݍ)ܪ), the 
upward (ܪା(ݍ)), and the downward ((ݍ)ିܪ) cases, respectively. 

 
 

(a) Phase I (b) Phase II 

 

(c) Phase III 

Figure 5. The ܪ ,(ݍ)ܪା(ݍ), and (ݍ)ିܪ functions in the return dynamics versus ݍ. (a) Of Phase I; (b) 
Of Phase II; (c) Of Phase III. 

From the figure, we find that for all phases the generalized Hurst exponents changes depending 
on ݍ, which shows evidence of multifractal behaviour of the correlations of the EUA return. ܪା(ݍ) 
and (ݍ)ିܪ  for all phases changes with different trends, which indicates the correlations are 
asymmetric in upward periods and in downward periods. As ݍ increases, ܪ ,(ݍ)ܪା(ݍ), and (ݍ)ିܪ 
of Phase I, Phase II, and Phase III, respectively, decrease in general, which means that the correlations 
of the time series of all phases weaken gradually for large fluctuations in both upward and 
downward periods. 

In case Phase I, the gap between ܪା(ݍ), and (ݍ)ିܪ decreases for small fluctuations (ݍ < 0) 
but it increases again for large fluctuations (ݍ > 0). It indicates that the correlation asymmetry of the 
EUA return movement during Phase I. 

On the other hand, in the case of Phase II and Phase III, the gap between ܪା(ݍ), and (ݍ)ିܪ 
decreases as ݍ increases. It means that the degree of the asymmetry of the EUA return movement 
weaken gradually for large fluctuations during Phase II and Phase III. 
  

Figure 5. The H(q), H+(q), and H−(q) functions in the return dynamics versus q. (a) Of Phase I; (b) Of
Phase II; (c) Of Phase III.

5.2.3. Time-Varying Market Efficiency

If a time series has long memory characteristics, the behaviour of the returns does not follow
a random walk, so the market is considered as being informationally inefficient. We can understand
how the market efficiency changes over time using the movement of the Hurst exponent (H(2)).

Figure 6 shows the changes of H(2) with window size five. We can see that H(2) of Phase I,
Phase II, and Phase III changes over time continuously. The largest median value of H(2) is 0.775 for
Phase I. The median values of Phase II and Phase III are 0.55 and 0.49, respectively. That is, the market
efficiency of Phase I is the lowest, whereas that of Phase III is the highest. This means that the market
efficiency increases as the emission market matures.

We can estimate the measure of the market inefficiency (MDM), which is suggested by Wang
et al. [20] and can be calculated as follows:

MDM =
1
2

(∣∣∣H(−10) − 0.5
∣∣∣)+ (∣∣∣H(10) − 0.5

∣∣∣) (9)

where the scaling factors H(−10) and H(10) represent the small fluctuation and the large fluctuation,
respectively. We set the magnitude of fluctuation to 10 (q = ±10) as suggested in [20] but the value
is not restricted. For example, Al-Yahyaee et al. [27] and Mensi et al. [28] use q = ±5 and q = ±4,
respectively. If the market is efficient, the value of the MDM is close to zero. If the MDM of the
market is large, the market is inefficient. The MDM s values the three phases are summarised in
Table 5. The “Overall” field represents the overall MDM without regard to the trend of the time series.
“Upward” and “Downward” fields represent the MDM values calculated by H+(q = 10, q = −10) and
H−(q = 10, q = −10), respectively.
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Table 5. Measurement of market efficiency using MDM with H(−10) and H(10).

Phase Overall Upward Downward

Phase I 0.313 0.417 0.271
Phase II 0.228 0.240 0.249
Phase III 0.149 0.182 0.152

Looking at the overall MDM without considering the direction of the returns, Phase I is 0.313,
followed by Phase II (0.228) and Phase III (0.149). This means that when we do not consider the status
of the market, Phase I is considered as the most inefficient market, whereas Phase III is the most
efficient market. As a result, we conclude that the overall market efficiency has been improved, but it
has not yet reached the level of efficiency meant by the efficient market hypothesis.

Considering the direction of the returns, the MDM value of the upward periods is greater than
that of the downward periods during Phase I and Phase III. This means that the market became more
inefficient during the upward periods compared to the downward periods during Phase I and Phase
III. Conversely, for Phase II, the MDM value of the downward periods (0.249) is slightly higher than
that of the upward periods (0.240), so the market during falling periods is considered as being slightly
more inefficient.

6. Conclusions

The main goal of the EU ETS (emission trading scheme) system is to enable participating countries
to achieve their greenhouse gas reduction targets in a cost-effective and economically optimal way.
This is the basic premise. The efficiency of the CO2 emissions’ market is especially important for
energy and carbon hedge fund investors and risk managers, companies with high carbon emissions,
and energy and environmental policymakers.

In this study, the level and change of informational efficiency of the EU ETS carbon trading
market, which is the largest and most active ETS market, were analysed according to phases. For this
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purpose, the European Emissions Market daily price from 4 August 2005 to 31 December 2019 and
the asymmetric multi-fractal fluctuation detrended analysis technique was used. The main results
obtained in this study are as follows. First, there were multifractal characteristics in the price movement
of the carbon credit market, and these characteristics were different in the market ups and downs.
Additionally, the degree of asymmetry of the multifractal characteristics was greater during Phase III
than during both Phase I and Phase II. Second, the informational efficiency of the carbon credit market
has changed over time, with the lowest informational efficiency in Phase I and the highest informational
efficiency in Phase III. Third, measuring the market inefficiency scale showed that the market efficiency
was lowest during Phase I and highest during Phase III. During Phase III, the value of the upward
period was higher than that of the downward period, indicating that the inefficiency in the upward
period was higher.

From the empirical analysis results of this study, it can be seen that the informational efficiency
of the carbon credit market has improved continuously. However, it has not yet reached the level of
informational efficiency demanded by the efficient market hypothesis. Therefore, EU ETS policymakers
need to tighten regulations to improve the information flow in the carbon market and reduce market
manipulation. Basically, the EU ETS is a system for which it is difficult to find similar cases in the past
for reference, and improvement of the system through trial and error is inevitable.

Furthermore, even if the carbon credit trading market operates efficiently, climate change due to
carbon emissions cannot be sufficiently suppressed. As pointed out by Lehmann and Gawel [29] and
del Rio [30], the carbon credit trading system focuses on very limited and short-term goals and does
not account for the technological aspects of changing the way that energy is used. Thus, the EU ETS
may not be able to control climate change appropriately. In this regard, to better respond to climate
change caused by carbon emissions, it is necessary to increase the informational efficiency of the carbon
credit trading market and promote other effective policies, such as supporting renewable and clean
energy production and consumption.
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