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Abstract: Asynchronous motors are widely used in industry and agriculture because of their simple
structure, low cost, and easy maintenance. However, due to the coupling and uncertain factors of
the actual operation of the motor, a traditional controller cannot achieve a satisfactory control effect.
A linear active disturbance rejection controller (LADRC), featuring good robustness and adaptability,
was proposed to improve the control efficiency of a nonlinear, uncertain plant. A linear extended
state observer (LESO) is the core part of a L. The accuracy of the observation of state variables and
unknown disturbances is related to the control effect of the controller. The performance of a traditional
LESO is not high enough, and thus an error differential is introduced by analyzing the principle of
LESO to improve its observation performance. The improved LADRC applies to the vector speed
control of the induction motor. Additionally, low-speed and high-speed no-load starting, sudden
load, electromagnetic torque, and three-phase stator current of the induction motor was simulated
using MATLAB (Developed by MathWorks in Natick, MA, USA, and dealt by MathWorks Software
(Beijing) Co., Ltd. in Beijing, China). Theoretical analysis and simulation results show that the ADRC
based on the improved linear expansion observer was better than the traditional linear ADRC in
terms of the dynamic and static performance and robustness.

Keywords: asynchronous motor; linear active disturbance rejection control; error differentiation;
vector control

1. Introduction

Three-phase asynchronous motors are commonly used in industrial and agricultural production
due to their advantages of simple structure, ruggedness, and low price [1–4]. The emergence of vector
control allows the AC speed regulation system to have good speed regulation performance, just like a
DC speed regulation system [5]. However, vector control has disadvantages, such as dependence on
accurate mathematical models, poor adaptability to instruction changes, and sensitivity to changes in
the system parameters. Even if the motor parameters and rotor flux linkage are known accurately,
decoupling can be achieved under steady-state conditions, and there are still couplings during the
field-weakening speed regulation. The nonlinearity of the magnetization curve of the ferromagnetic
material in the motor [6] leads to the nonlinearity of the motor inductance, and the change of the
inductance parameter reduces the speed control effect of the vector control. The AC control system has
the characteristics of non-linearity [1,4], strong couplings, and having multiple variables, which means
the traditional control method based on a precise mathematical model faces severe challenges.

The active disturbance rejection control (ADRC) theory was proposed for the control of nonlinear
uncertain systems. The system is linearized by compensating for the observed total disturbance.
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The compensated system can be converted into an integrator series independent of whether the
object is deterministic, linear, or nonlinear, or whether it is time-varying or time-invariant. At present,
the ADRC theory has been applied to a six-rotor aircraft [7], a permanent magnet synchronous motor [8],
DC–DC boost converter [9], and other fields. Abdul-Adheem et al. [10] applied the improved ADRC
to the decoupling control of multivariable systems. The coupling is divided into two parts: static
coupling (control input of the system) and dynamic coupling (parts other than the control input to
the system). All ADRC pass a reversible static matrix (approximately reversible also applies) that
is used for decoupling. Compared with the traditional decentralized control method (an automatic
disturbance rejection controller designed independently for each part of the system), the improved
ADRC decoupling algorithm uses part of the system model information, easing the burden of the
extended state observer (ESO) such that the decoupling effect is better. Although both numerical
simulations and physical verification show that the ADRC controller has a good control effect, the large
number of modeled non-linear links between the ADRC require high system hardware requirements
and increases the difficulty of real-time control. The second-order auto-disturbance rejection controller
has 15 parameters that need to be adjusted, and the direction of the parameter adjustment is difficult to
determine, which brings certain difficulties in the practical application of the controller. In short, many
factors limit the popularity and engineering application of ADRC.

American scholar Gao Zhiqiang explored the connotation and meaning of the idea of
auto-disturbance control. He was inspired by the concept of “time scale” [11] proposed by Han
Jingqing researchers and proposed the concept of “frequency scale.” The parameter setting is carried
out through the pole configuration in the frequency domain, and the parameters to be set are reduced to
three, which greatly promotes the development and application of the auto-disturbance control theory.
Since then, the linear auto-rejection controller has been used in fault detection [12], a wind energy
conversion system [13], maximum power point tracking [14], and other fields. Li et al. [15] adopted
the concept of “relative order” to determine the order of the linear ADRC (LADRC) controller and
designed a second-order LADRC controller to suppress the harmonics to the grid in the AC microgrid.
Laghridat et al. [13] applied LADRC to the control of generators and grid-side converters. Compared
with the ADRC, an LADRC has the advantages of a fixed structure, an independent object model,
clear physical meaning, easy theoretical analysis [13,16], and easy engineering application. However,
in practical applications, it is found that the anti-interference performance of LADRC decreases rapidly
with the increase of interference and input frequency, which is related to the insufficient performance
of a traditional ESO [17].

This study took the three-phase cage asynchronous motor as the control object, established a
mathematical model for it according to the rotor flux linkage orientation, and introduced the structure
of the ADRC controller and the role of each component. First, the structure and function of each
part of the ADRC controller are introduced. Then, based on the basic principle of deviation control,
the adjustment process of each state variable of traditional LESO is discussed and improved. Through
theoretical analysis, the stability proof and precision analysis of an improved LESO are given. From the
frequency domain, the convergence, tracking, and immunity of the improved linear auto-disturbance
controller are analyzed. In the time domain, a large deviation band of the initial value of the internal
state variable of the observer is seen and the corresponding value of the system’s overshooting is
compared. Finally, the control effects of the two controllers are compared based on results from
Matlab/Simulink digital simulation software (Developed by MathWorks in Natick, MA, USA, and dealt
by MathWorks Software (Beijing) Co., Ltd. in Beijing, China).

2. Mathematical Modeling of an Asynchronous Motor and Introduction to Classic LADRC

2.1. Mathematical Modeling of the Rotor Flux Orientation of Induction Motor

To facilitate the research, it was necessary to treat the motor as an ideal motor; therefore, it was
necessary to make the following assumptions [18]:
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1. The stator and rotor three-phase windings of the motor are completely symmetrical.
2. The surfaces of the stator and rotor are smooth without any cogging effect, and the air gap

magnetic potential of each phase of the stator and rotor exhibits a sinusoidal distribution in space.
3. The influences of the core eddy current, saturation, and hysteresis loss are ignored, and the skin

effect of the conductor is ignored. (Note: the parameters of the rotor side have been converted to
those of the stator side.)

The three-phase winding voltage balance equation in the three-phase stationary coordinate system
is shown in Figure 1:
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Figure 1. Physical model of an asynchronous motor.

The three-phase winding voltage balance equation in the three-phase stationary coordinate system
is shown in Equation (1):
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uc
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=
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d
dt
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, (1)

where uA,uB,uC,ua,ub and uc are the instantaneous values of the stator (A, B, C) and rotor phase (a, b, c)
voltages; iA,iB,iC,ia ,ib , and ic are the instantaneous values of the stator (A, B, C) and rotor (a, b, c) phase
currents; and ψA,ψB,ψC,ψa,ψb,ψc are the full flux of each phase winding. Rs and Rr are the resistances
of the stator and rotor windings, respectively.

The flux of each winding of an asynchronous motor is the sum of its own self induction flux and
the mutual inductance flux of other windings. Therefore, the flux of the six windings can be expressed
as follows: [

ψs

ψr

]
=

[
Lss Lsr

Lrs Lrr

][
is
ir

]
, (2)

where ψs =
[
ψA ψB ψC

]T
,ψr =

[
ψa ψb ψc

]T
,is =

[
iA iB iC

]T
, and ir =

[
ia ib ic

]T
.

The stator inductance matrix is:

Lss =


Lms + Lls −

1
2 Lms −

1
2 Lms

−
1
2 Lms Lms + Lls −

1
2 Lms

−
1
2 Lms −

1
2 Lms Lms + Lls

. (3)
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The rotor inductance matrix is:

Lrr =


Lms + Llr −

1
2 Lms −

1
2 Lms

−
1
2 Lms Lms + Llr −

1
2 Lms

−
1
2 Lms −

1
2 Lms Lms + Llr

. (4)

The mutual inductance matrix of the stator and rotor is:

Lrs = LT
sr = Lms


cosθ cos(θ− 2π

3 ) cos(θ+ 2π
3 )

cos(θ+ 2π
3 ) cosθ cos(θ− 2π

3 )

cos(θ− 2π
3 ) cos(θ+ 2π

3 ) cosθ

. (5)

The voltage equation of the asynchronous motor in the rotating orthogonal coordinate system can
be obtained from a Park transform:
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dt
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, (6)

where usd, usq, urd, and urq are the components of the voltage of the stator and rotor sides along the
d and q axes; isd, isq, ird, irq are the components of the current of the stator and rotor sides along the
d and q axes; ψsd, ψsq, ψrd, and ψrq are the components of the magnetic flux of the stator and rotor
sides along the d and q axes; and ω1 and ω are the synchronous angular velocity and the rotor angular
velocity, respectively.

The flux equation of the asynchronous motor in the synchronous rotation orthogonal coordinates
system is: 

ψsd
ψsq

ψrd
ψrq
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


isd
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irq

, (7)

where Ls, Lr, and Lm are stator inductance, rotor inductance, and mutual inductance between the stator
and rotor, respectively. ψrd = ψr when the rotor flux is oriented as in Figure 2.

Energies 2020, 13, x FOR PEER REVIEW 5 of 22 

 

where sL , rL , and mL  are stator inductance, rotor inductance, and mutual inductance between the 

stator and rotor, respectively. rd rψ ψ=  when the rotor flux is oriented as in Figure 2. 

 
Figure 2. Rotor flux orientation. 

 

Selecting the stator currents and rotor flux as the state variables, and the stator voltages as the 
control variables, a fourth-order simplified nonlinear differential equation can be given as follows: 

1

2 3 1

2 1

,

1 ,                           

1 ,

1 .

p
r r sq L

m
rd sd r

r r

sd sd r sq sd
s

m
sq sq r r sd sq

s r s

n
k i T

J
L i
T T

i k i k i u
L

Li k i i u
L L L

ω ψ

ψ ψ

ψ ω
σ

ψ ω ω
σ σ


= −


 = −


 = − + + +


 = − − − +









 (8) 

In the above state equations, pn , rT , and LT  represent the number of pole pairs of the motor, 

the load torque, and the rotor time constant, respectively. The coupling between the state variables 
in Equation (8) causes the nonlinearity of the system [4,10]. The vector control block diagram of the 
asynchronous motor is shown in Figure 3, in which automatic speed regulator ( ASR ), the automatic 
current torque regulator ( ACTR ), and the automatic current magnetic regulator ( ACMR ) are the 
controllers of the vector speed regulation system.  

  

rψβ

( )Aα

1Mi1Ti

1 1( )i F

1ω

qu

du
D

ai
bi

ci

αβ

ACMR
Motor

SVPW
MACTRASR

FBS

  Rotor flux
calculation

θ

αβ abc

αβ

ω

*
su α

iα
iβ

*
su β*ω

*
sdi

sqi
sdi DQ

DQ
+

−
+

−

+
−

*
sdu
*
squ

Figure 2. Rotor flux orientation.



Energies 2020, 13, 2168 5 of 20

Selecting the stator currents and rotor flux as the state variables, and the stator voltages as the
control variables, a fourth-order simplified nonlinear differential equation can be given as follows:

.
ωr = k1ψrisq −

np
J TL,

.
ψrd = Lm

Tr
isd −

1
Tr
ψr,

.
isd = −k2isd + k3ψr +ω1isq +

1
σLs

usd,
.
isq = −k2isq −

Lm
σLsLr

ψrωr −ω1isd +
1
σLs

usq.

(8)

In the above state equations, np, Tr, and TL represent the number of pole pairs of the motor,
the load torque, and the rotor time constant, respectively. The coupling between the state variables
in Equation (8) causes the nonlinearity of the system [4,10]. The vector control block diagram of the
asynchronous motor is shown in Figure 3, in which automatic speed regulator (ASR), the automatic
current torque regulator (ACTR), and the automatic current magnetic regulator (ACMR) are the
controllers of the vector speed regulation system.
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Figure 3. Vector control structure of an asynchronous motor. ASR: automatic speed regulator, ACTR:
Automatic torque current regulator, ACMR: Automatic magnetic field current regulator SVPWM: Space
Vector Pulse Width Modulation.

In Equation (8), there is a cross-coupling term in the state equation of the asynchronous motor,
thus resulting in the mutual effect of control of the torque component and the excitation component of
the stator current, which further affects the dynamic and static performance of the system. The graphical
representation of the coupling term is shown in Figure 4. Decoupling can be achieved if the coupling
terms are observed and compensated for [19].
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2.2. LADRC Introduction and First-Order LADRC Design

The ADRC consists of a tracking differentiator (TD) [20,21], an extended state observer (ESO) [22,23],
and a nonlinear states error feedback control laws (NLSEF) . Among them, the TD can arrange the
transition process for the given input, reduce the “impact” of the original error on the system caused
by the given mutation, and realize the differential signal extraction; ESO can observe the state variables
and total disturbances (unmodeled dynamics and external disturbances) of the controlled object in a
real-time manner; and the NLSEF is used to improve the dynamic characteristics of the closed-loop
system. The linear ADRC only replaces the nonlinear part of the original controller with the linear
part, where the structure of the controller is shown in Figure 5.
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Consider the first-order system [24]:

.
y = −ay + w + bu, (9)

where u is the output of the controller, y is the system output, w is the external disturbance, a is the
system parameter, b is the controller gain that satisfies b ≈ b0; the parameters a and b are unknown.
Let x1 = y and x2 = f (y, w) = −ay + w + (b − b0)u, where x1 represents the system output and
x2 represents the total disturbance of the system. Assuming that f (y, w) is derivable and satisfies
.
f (y, w) = h, the state variables x1 = y and x2 are selected to establish the continuous extended state
equation s shown in Equation (10):

[ .
x1
.
x2

]
=

[
0 1
0 0

][
x1

x2

]
+

[
b0

0

]
u +

[
0
1

]
.
f ,

y =
[

1 0
][ x1

x2

]
.

(10)

The corresponding continuous expansion state observer can be established as:
e = z1 − y,[ .

z1
.
z2

]
=

[
−β1 1
−β2 0

][
z1

z2

]
+

[
b0 β1

0 β2

][
u
y

]
.

(11)

In Equation (11), z1 and z2 are the state variables of the linear extended state observer, which can
be adjusted using the difference between the state variables z1 and the system output y. By selecting
the appropriate observer gain coefficients β1 and β2, the observer state variables can be used to observe
the system output y and the total disturbance f (y, w).
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Estimate the total disturbance of the system through the expanded state variables, and compensate
for the input side of the system:

u =
(−z2 + u0)

b0
. (12)

If the estimation error of z2 to f (y, w) is excluded, Equation (9) is simplified to a pure integral link:

.
y = ( f (y, w) − z2) + u0 ≈ u0. (13)

The linear feedback control law uses proportional links:

u0 = kp(v− z1). (14)

In Equation (14), kp is the controller bandwidth and v is the given reference input. Pole assignment
of the parameters of the observer and controller is performed using the bandwidth method [10]:

β1 = 2ω0,
β2 = ω2

0,
kp = ωc.

(15)

where ωc is the controller gain and ω0 is the observer gain. The bandwidth ω0 of the observer is about
3 to 5 times that of the controller ωc.

3. Design and Performance Analysis of ADRC

3.1. Design and Stability Proof of the Improved State Observer

The traditional observer estimates the internal state variables of the system using the difference e
between the estimated value z1 of the system output and the output y of the system. In Sun [25], it is
pointed out that the observer should first track the output y of the system with z1, and then track the
output f with z2. Before the tracking of the estimated value z1 to the system output y is completed,
other state variables of the observer cannot complete the tracking of the corresponding state variables
of the system. However, when the observation variable z1 can better track the output y of the system,
the smaller error e makes it difficult to adjust other observation variables; therefore, we have to use a
larger coefficient β2 to speed up the tracking of the observation variables to the real value. Meanwhile,
to ensure the stability of the system, the value of β2 cannot be too large. In general, the gain coefficient
of the observer βi increases by an order of magnitude, which is more serious in the higher-order ADRC.
Yang et al. [26] mentioned that the extended observer could be improved by introducing the differential
of the observation error, but the parameters of the controller were doubled and the parameters of the
observer needed to be configured; therefore, it had to be further simplified.

From Equation (11), we can get: {
z1 = x1 + e,
z2 =

.
z1 + β1e− b0u.

(16)

The following equation can be obtained by sorting Equation (16):{
z1 = x1 + e,
z2 = x2 +

.
e + β1e.

(17)
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It can be seen from Equation (17) that the error between z2 and x2 is
.
e + β1e, and adjusting z2 by

using it as a correction amount can speed up the convergence without significantly increasing the
observer gain. Therefore, the classic LESO can be modified as follows:

e = z1 − x1,
.
z1 = z2 − β1e + b0u,
.
z2 = −β2(

.
e + β1e).

(18)

Equations (12), (14), and (18) form the improved Linear Active Disturbance Rejection Controller
of Equation (8), whose structure is shown in Figure 6.
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Figure 6. Structure of the improved controller.

3.1.1. Improved Stability Proof of LESO

Let e1 = z1 − x1 and e2 = z2 − x2. From Equations (10) and (18), we obtain:{ .
e1 = e2 − β1e1,
.
e2 = −β2e2 −w.

(19)

Let Y1 = e1 and Y2 = e2 − β1e1 to obtain the error equation of the LESO system:
.
Y1 = Y2,
.
Y2 = −(β1 + β2)Y2 − β1β2Y1 −w.

(20)

The characteristic equation of Equation (20) is:

λ2 + (β1 + β2)λ+ β1β2 = 0. (21)

The necessary and sufficient conditions for the stability of the second-order system are β1 + β2 > 0
and β1β2 > 0. The zero solution (e1 = 0, e2 = 0) of the second-order constant-coefficient differential
equation shown in Equation (20) is globally asymptotically stable because ω0 > 0 and ωc > 0 are stable.

When considering the disturbance w, the system has a steady-state error. Specify w0 = const > 0
when |w| ≤ w0 . When the system reaches a steady-state, then:

.
Y1 = Y2 = 0,
.
Y2 = 0.

(22)

The steady-state error is calculated according to Equation (19): |e1| ≤
w0
β1β2

,
|e2| ≤

w0
β2

.
(23)
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3.1.2. Observation Errors of the Classical First-Order LESO

Stability and error analyses are performed on the traditional first-order LESO represented by
Equation (11). Let Y1 = e1 and Y2 = e2 − β1e1 be used to obtain the equation of the traditional LESO
error system: 

.
Y1 = Y2,
.
Y2 = −β1Y2 − β2Y1 −w.

(24)

The characteristic equation of Equation (24) is given as follows:

λ2 + β1λ+ β2 = 0. (25)

Using the Hurwitz theorem, the necessary and sufficient conditions for the stability of the
second-order system are β1 > 0 and β2 > 0. The zero solution (e1 = 0, e2 = 0) of the second-order
constant-coefficient differential equation shown in Equation (24) is globally asymptotically stable
because ω0 > 0 and ωc > 0 are stable.

When considering the disturbance w, the system has a steady-state error. Specify w0 = const > 0
when |w|≤ w0 . When the system reaches a steady-state, then:

.
Y1 = Y2 = 0,
.
Y2 = 0.

(26)

The steady-state error of the observer can be expressed as: |e1| ≤
w0
β2

,

|e2| ≤
β1w0
β2

.
(27)

According to the above analysis, the modified LESO shown in Equation (18) can exhibit a better
dynamic regulation performance and a smaller steady-state observation error than the traditional LESO
when the parameters β1 and β2 are the same. Compared with Equations (23) and (27), the improved
LESO exhibits a higher observation accuracy than the traditional LESO when the observer and controller
bandwidths are the same.

3.2. Performance Index Analysis of the Improved Linear ADRC

3.2.1. Convergence and Estimation Error of the Improved LESO

The Laplace transform of Equation (18) can be used to obtain the transfer function of the observer: Z1(s) =
(β1+β2)s+β1β2
(s+β1)(s+β2)

Y(s) + b0s
(s+β1)(s+β2)

U(s),

Z2(s) =
β2s

s+β2
Y(s) − b0β2

s+β2
U(s).

(28)

Taking e1 = z1 − y and e2 = z2 −
.
y into account for analyzing a typical y, and u as the amplitude K

step signal, then the steady-state error of LESO is given as:
e1 = lim

s→0
sE1(s) = 0,

e2 = lim
s→0

sE2(s) = 0.
(29)
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Equation (29) shows that the improved LESO has a good convergence performance for realizing
the invariant estimation of the system state variables and generalized disturbances. Further analyzing
its dynamic process, the response of z1 under the step signal when b0 = 0 is as follows:

z1(s) = K(
1
s
+

2
(s + 2ω0)(ω0 − 2)

−
ω0

(s +ω2
0)(ω0 − 2)

). (30)

The time-domain response of z1 under the action of a step signal can be obtained using an inverse
Laplace transform:

z1(t) =

 K(1 + 2e−2tω0−ω0e−tω2
0

ω0−2 ) ω0 , 2,
K(1 + 4te−4t

− e−4t) ω0 = 2.
(31)

In Equation (30), for t > 0, the derivative of t and taking
.
z1(t) = 0 can produce the extreme point

of t0:

t0 =


2(lnω0−ln 2)
ω2

0−2ω0
ω0 , 2,

1
2 ω0 = 2.

(32)

The extreme value of z1 is obtained by substituting the extreme value t0 into Equation (30):

z1(t0) =

 K(1 + 2e
−4(lnω0 − ln2)

ω0−2
−ω0e

−2ω0(ln
ω0 − ln2)

ω0−2

ω0−2 ) ω0 , 2,
K(1 + e−2) ≈ 1.135K ω0 = 2.

(33)

The trajectory of z1(t0)with the observer bandwidth valueω0 can be obtained via digital simulation.
According to Figure 7, when ω0 = 2, the tracking overshoot of observer z1(t0) to y is the largest. At this
time, the system overshoot is equal to the traditional LESO overshoot. The traditional LESO has a
13.5% overshoot at t0 = 2/ω0 and the amount of overshoot is independent of the value of the observer
bandwidth ω0.
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The overshoot of the improved LESO varies with the observer bandwidth ω0. The maximum
overshoot of the observer state variable z1 is equal to that of the traditional observer. The corresponding
speed of the system can be increased and the amount of overshoot is reduced by selecting a larger
observer bandwidth ω0. Although the observer bandwidth ω0 is larger and the tracking speed is faster,
it will lead to noise amplification. The ability of LESO to suppress noise needs to be analyzed.

3.2.2. Improved Disturbance Immunity Analysis of LESO

The closed-loop transfer function of the improved LADRC can be obtained by combining
Equations (12), (14), and (18):

u =
1
b0

G1(s)(kpv−H(s)y). (34)
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The transfer functions of G1(s) and H(s) in Equation (34) are as follows:

G1(s) =
(s+β1)(s+β2)

s2+(β1+kp)s
,

H(s) =
β2s2+(β1β2+β1kp+β2kp)s+β1β2kp

(s+β1)(s+β2)
.

(35)

According to Equation (34), the diagram of the system structure shown in Figure 8 is obtained [24]:
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Figure 8. Equivalent system structure diagram.

Now the effect of the observation noise δ0 at the output y of the system and the disturbance δc

at the output u of the controller for the improved LESO will be discussed. Based on Equation (28),
the transfer function of the improved LADRC is:

z1

δ0
=

(2ω0 +ω2
0)s + 2ω3

0

(s + 2ω0)(s +ω2
0)

. (36)

Similarly, the transfer function of δ0 of the traditional LESO’s observation noise can be obtained
as follows:

z1

δ0
=

2ω0s +ω2
0

(s +ω0)
2 . (37)

The transfer function of the disturbance δc at the output of the LESO controller can be improved
according to:

z1

δc
=

b0s
(s + 2ω0)(s +ω2

0)
. (38)

The transfer function of the disturbance δc at the output of a traditional LESO controller is:

z1

δc
=

b0s

(s + w0)
2 . (39)

Figure 9 shows the characteristic amplitude and phase–frequency curves for the improved and
traditional LESOs. The bandwidth of the improved LESO was higher than that of the traditional LESO,
and the phase lag of the intermediate frequency segment was improved. Unlike Figure 9, the improved
LESO with the same observer bandwidth in Figure 10 is basically the same as the traditional LESO in
the high frequency band, but it has better noise immunity in the low frequency band compared with
the traditional LESO, and can more effectively suppress the interference at the input end.
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Figure 10. Frequency-domain characteristic curves of the input disturbance.

3.2.3. Immunity Analysis of the Improved Self-Disturbance Rejection Controller

According to Equation (10), the control object can be written as:

sY(s) = F(s) + b0U(s). (40)

Combined with Figure 8, the closed-loop transfer function of the system is as follows:

Y(s) =
kp

s + kp
V(s) +

s2 + (β1 + kp)s
(s + β1)(s + β2)(s + kp)

F(s). (41)

The closed-loop transfer function of the system includes the tracking term and the disturbance
term. If the state variable of the observer can be used to accurately estimate the total disturbance of
the system, the closed-loop transfer function of the system is simplified to the first-order inertial link.
At this time, it relates the corresponding speed of the system to the bandwidth of the controller, and
the larger the bandwidth, the faster the system.

It can be seen from the closed-loop transfer function that the disturbance term impacts the observer
and controller bandwidths. The same observer and controller bandwidths were selected for comparing
the improved LESO with the traditional LESO. It can be seen from Figure 11 that under the same
bandwidth, the immunity of the improved LESO in the middle- and low-frequency bands were better
than that of the traditional LESO, and it improved the phase lag of the middle-frequency band.
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In particular, if the disturbance f is taken as the unit step signal, we can obtain the output response
using Equation (41):

Y(s) =
a

(s +ω0)
+

b
(s +ω2

0)
+

c
(s +ωc)

, (42)


a = ω0+ωc

(ω2
0−ω0)(ωc−ω0)

,

b =
2ω0+ωc−ω2

0
(ω0−ω

2
0)(ωc−ω2

0)
,

c = 2ω0
(ω0−ωc)(ω2

0−ωc)
.

(43)

The time domain for the anti-Laplace transformation to obtain system output can be expressed as:

y(t) = ae−ω0t + be−ω
2
0t + ce−ωct. (44)

It is easy to find lim
t→∞

y(t) = 0, i.e., the steady-state output of the system is zero under the external

step disturbance.

(a) Controller Stability with an Unknown Input Gain

Considering only the influence of the input gain on the stability of the system, i.e., if f = (b− b0)u,
then Equation (40) can be simplified to:

sY(s) = bU(s). (45)

The following equation can be obtained by combining Equations (26) and (30):

Y(s) =
ωc(s + 2ω0)(s +ω2

0)

a3s3 + a2s2 + a1s + a0
V(s). (46)

In Equation (46), the coefficients are as follows: a3 = b0/b,a2 = 2a0ω0 + a0ωc + ω2
0, a1 =

2ω3
0 + 2ω0ωc +ω2

0ωc, and a0 = 2ω3
0ωc. As ω0 and ωc are greater than zero, it is easy to see that a3,a2,a1

and a0 are all positive numbers. The necessary and sufficient condition for the stability of the Leonard
qipat stability criterion (Equation (46)) is that all odd or even Hurwitz determinants are positive.

∆3 =

∣∣∣∣∣∣∣∣∣
a2 a0 0
a3 a1 0
0 a2 a0

∣∣∣∣∣∣∣∣∣ = a0(a1a2 − a0a3)

= a2
0(4ω

4
0 + 2ω3

0ωc +ω2
cω

2
c + 4ω2

0ωc + 2ω0ω2
c ) + (2ω5

0 +ω4
0ωc + 2ω3

0ωc)a0

(47)
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Since b, b0, ω0 and ωc are all positive numbers, ∆3 > 0 is true, i.e., the improved LADRC can be
stable for any parameter greater than zero.

(b) Stability of the Controller when the System Parameters are Unknown

Set the controlled object as the following:

y =
b0

s + kc
u, (48)

where kc in Equation (48) is an unknown system parameter, and the closed-loop transfer function of
the system is obtained by combining with Figure 8:

Y(s) =
ωc(s +ω0)(s +ω2

0)(s + 2ω0)

s4 + a4s3 + a3s2 + a2s + a1
V(s), (49)


a4 = ω2

0 + 4ω0 +ωc + kc,
a3 = ω2

0ωc + 4ω2
0 + 3ω3

0 + 4kcω0 + kcωc + 4ω0ωc,
a2 = 4kcω2

0 + 2ω2
0ωc + 3ω3

0ωc + 2ω4
0 + 2kcω0ωc,

a1 = 2ω4
0ωc.

. (50)

The necessary and sufficient conditions for the stability of Equation (49) are:

ak3
c + bk2

c + ckc + d > 0, (51)

a = 4ω5
0ωc(4ω0 +ωc)(2ω0 +ωc),

b = (72ω9
0ωc + 68ω8

0ω
2
c + 128ω8

0ωc + 14ω7
0ω

3
c + 160ω7

0ω
2
c + 52ω6

0ω
3
c + 4ω5

0ω
4
c ,

c = 52ω11
0 ωc + 62ω10

0 ω
2
c + 176ω10

0 ωc + 16ω9
0ω

3
c + 252ω9

0ω
2
c + 128ω9
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3
c + 272ω8

0ω
2
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0ω
4
c + 144ω7

0ω
3
c + 20ω6

0ω
4
c ,

d = 12ω13
0 ωc + 18ω12

0 ω
2
c + 56ω12

0 ωc + 6ω11
0 ω

3
c + 96ω11

0 ω
2
c + 64ω11

0 ωc+

48ω10
0 ω

3
c + 160ω10

0 ω
2
c + 6ω9

0ω
4
c + 124ω9

0ω
3
c + 64ω9

0ω
2
c + 24ω8

0ω
4
c+

72ω8
0ω

3
c + 16ω7

0ω
4
c .

(52)

If the roots of Equation (51) are kc1, kc2, and kc3 (kc1 < kc2 < kc3), the conditions of system stability
are kc1 < kc < kc2 or kc > kc3.

According to the digital simulation results, the equation had a pair of conjugate complex roots and
a real root. Figure 12 shows the boundary curve for ensuring the system stability when ω0 = 30 and
ω0 ∈ [0, 60], and Figure 13 shows the boundary curve for ensuring the system stability when ω0 = 30
and ωc ∈ [0, 60]. From Figures 12 and 13, it can be seen that the stability region of the system increased
with an increase of the observer bandwidth ω0 and the controller bandwidth ωc
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4. Simulation Study

To verify the actual control effect of the improved LADRC , a vector control model of a three-phase
asynchronous motor based on rotor flux linkage orientation was established based on MATLAB
and Simulink simulation software (Development by MathWorks, Natick, MA, USA, and agent of
MathWorks Software (Beijing) Co., Ltd.). The motor parameters are shown in Table A1. The current
loop controller adopted the improved LADRC control, and the outer loop adopted Proportional integral
controller (PI) control. The control effect of the controller was verified by simulating the motor speed,
the three-phase stator current, the electromagnetic torque, and the sudden load when the motor was
started without load at different speeds.

4.1. Dynamic Performance of the Controller for an Induction Motor at Different Given Speeds

4.1.1. Dynamic Performance of the Controller Given a Low Speed of the Motor

Figure 14a shows the simulation diagram of the no-load starting process of the asynchronous
motor with a given reference speed of 200 rev/min. The red curve represents the improved LADRC,
while the blue curve represents the traditional LADRC. It can be seen from Figure 14 that the traditional
LADRC could reach the given value near the motor speed at 0.1 s, while the improved LADRC could
reach the given value near the motor speed at 0.07 s. Therefore, the controller effect of the improved
LADRC was better than that of the traditional LADRC.
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Figure 14b is a simulation diagram of the electromagnetic torque of the induction motor during
no-load starting. The corresponding speed of the electromagnetic torque of the motor was greater
when the improved LADRC was adopted. The electromagnetic torque of the motor when the improved
LADRC was adopted was larger than that when the traditional LADRC was adopted at the same time
point; therefore, the electromagnetic torque of the motor could be restored to zero in a shorter time.

Figure 14c is the simulation diagram of the three-phase stator current when the asynchronous
motor started up without a load under the action of the traditional LADRC. After the improved LADRC
was adopted, the three-phase stator current reached the steady-state again near 0.09 s, and the motor
speed reached the given value. Figure 14d is the simulation diagram of the three-phase stator when
the asynchronous motor started up without a load under the action of the improved LADRC. After the
improved LADRC was adopted, the three-phase stator current reached the steady-state again near
0.07 s. It can be seen from the simulation diagram of the three-phase stator under the action of two
controllers that the dynamic performance of the improved linear observer was better.

The improved linear expansion observer can better estimate the total disturbance in the system
and realize the decoupling between the excitation subsystem and the torque subsystem. Therefore,
the motor controlled by the improved Linear Active Disturbance Rejection Controller at the same time
in Figure 14b can obtain a greater electromagnetic torque. The key to motor speed regulation is the
adjustment of electromagnetic torque. At the same time in Figure 14b, the electromagnetic torque
obtained by the motor under the improved linear auto-disturbance control is larger than that under
the traditional linear auto-disturbance controller, so the improvement in Figure 14a Under the Linear
Active Disturbance Rejection Controller, the motor speed can reach the given value of a shorter time.

The load in the equivalent circuit of the motor is purely resistive and the magnitude of the
equivalent resistance is related to the slip rate. The slip rate is 1 when the motor is started without load.
At this time, the total impedance of the system is small and the current on the stator side is large. When
the motor reaches a given speed, the slip ratio is less than 1 and the total impedance of the system
becomes larger. Therefore, the three-phase stator currents in Figure 14c,d become smaller when the
motor speed reaches a given value.

4.1.2. Dynamic Performance of the Controller Given a High Speed of the Motor

Figure 15a is the speed simulation diagram of the asynchronous motor at a given reference speed
of 800 rev/min, in which the blue curve is the simulation diagram under the action of the traditional
LADRC, and the red curve is that under the action of the improved LADRC. It can be seen from the
figure that the traditional LADRC reached the given value near the motor speed at 0.23 s, while the
improved LADRC reaches the given value near the motor speed at 0.18 s, and exhibited a better control
effect than the traditional LADRC.

Figure 15c is the simulation diagram of the three-phase stator when the asynchronous motor
started up without a load under the action of the traditional LADRC. After the improved LADRC was
adopted, the three-phase stator current reached the steady-state again near 0.17 s, when the motor
speed reached the given value. Figure 15d is the simulation diagram of the three-phase stator when
the asynchronous motor started up without a load under the action of the improved LADRC. After the
improved LADRC was adopted, the three-phase stator current reached the steady-state again near
0.16 s. According to Figure 15c,d, the dynamic performance of the improved linear observer was better.
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4.2. Steady State Error of Asynchronous Motor Controller at Different Given Speeds

Figure 16a is the local amplification of Figure 15a. Although the steady-state error of the system
under the action of the traditional Linear Active Disturbance Rejection Controller is not large at a given
reference speed of 200 r/min, the steady-state error of the asynchronous motor under the action of the
improved Linear Active Disturbance Rejection Controller is smaller. Figure 16b is the local amplification
of Figure 16a. Compared with the given reference speed of 200 r/min, the steady-state error of the
asynchronous motor under the action of the improved Linear Active Disturbance Rejection Control
is still better than the traditional Linear Active Disturbance Rejection Controller, which, although,
becomes larger under the given reference speed of 200 r/min.Energies 2020, 13, x FOR PEER REVIEW 19 of 22 
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The coupling between the excitation subsystem and the torque subsystem increases to the 
increase in speed, resulting in the steady-state error of the motor in Figure 17b at a high speed greater 
than that in Figure 17a at low speed. The improved linear expansion observer can estimate the total 
disturbance more accurately, reduce the coupling between the two subsystems to a certain extent, 
and improve the control of electromagnetic torque. Since the improved Linear Active Disturbance 
Rejection Controller is applied to the current inner loop decoupling and the outer loop still adopts PI 
control, the improvement of load torque and the steady-state error is not obvious. 

5. Conclusions 

Figure 16. Steady-state error of the system at different speeds.

PI control uses error feedback to eliminate the error. When the system output is equal to the
given input, the controller output is zero. At this time, the motor cannot maintain the current speed
and deviates from the given value, resulting in the steady-state error of motor speed. The coupling
between the excitation subsystem and the torque subsystem increases with the increase of the speed,
resulting in the steady-state error of the speed of the motor in Figure 16b at high speed higher than
that in Figure 16a at low speed.
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4.3. Immunity Performance of the Asynchronous Motor Controller at Different Given Speeds

Figure 17a is a simulation diagram of the motor speed during the process of a sudden increase in
the mechanical torque by 10 N·m in 0.35 s and a subsequent sudden decrease in the mechanical torque
by 10 N·m in 0.4 s at a given speed of 200 rev/min (returning to the state before the system loading).
Figure 17b is a simulation diagram of the motor speed during the process of a sudden increase in the
mechanical torque by 10 N·m in 0.35 s and subsequent sudden decrease in the mechanical torque by
10 N·m in 0.4 s (returning to the state before the system loading) at a given speed of 800 rev/min. From
Figure 17a,b, it can be seen that the motor speed controlled by the traditional LADRC fluctuated more
after the mechanical load of the motor suddenly increased; therefore, the immunity of the improved
LADRC was better than that of the traditional LADRC.
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The coupling between the excitation subsystem and the torque subsystem increases to the increase
in speed, resulting in the steady-state error of the motor in Figure 17b at a high speed greater than that
in Figure 17a at low speed. The improved linear expansion observer can estimate the total disturbance
more accurately, reduce the coupling between the two subsystems to a certain extent, and improve the
control of electromagnetic torque. Since the improved Linear Active Disturbance Rejection Controller is
applied to the current inner loop decoupling and the outer loop still adopts PI control, the improvement
of load torque and the steady-state error is not obvious.

5. Conclusions

The key to the performance of an ADRC is whether the extended state observer can accurately
estimate the state variables of the system. There is a cross-coupling term in the state equation of
the asynchronous motor in the synchronous rotating coordinate system. The control of the torque
component and the excitation component of the motor stator current will affect each other, thus further
affecting the dynamic and static performances of the system.

Actual systems always have unknown dynamic characteristics, i.e., the uncertainty of the model.
In the control system, there are often various external disturbances, such as the control quantity
disturbance or the measurement noise. LESOo regards the coupling of the dynamic model of the
asynchronous motor system as a part of the total disturbance of the system. The disturbance is added
to the input of the system model using feedforward compensation. After compensation, the model of
the controlled asynchronous motor is transformed into the integrator series type.

The key to the motor speed regulation lies in the regulation of the electromagnetic torque.
The improved LESOo had a higher observation accuracy, the estimated value of total disturbance was
closer to the real value, the coupling degree between the torque component and excitation component
was smaller after compensation, and the improved LESOo could control the torque component more
independently; therefore, the control effect of the motor speed was better. Theoretical analysis and
simulation results showed that the control effect of the improved LADRC was better than that of the
traditional LADRC.
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Abbreviations

Acronym Definition
LESO Linear extended state observer
LSEF Linear state error feedback
LTD Linear tracking differentiator
LADRC Linear active disturbance rejection control

Appendix A

Table A1. Three-phase cage asynchronous motor parameters.

Parameter Symbol Value Unit

Rated Capacity SN 3730 VA
Rated voltage UN 220 V
Rated frequency f 50 Hz
Stator resistance Rs 0.435 Ω
Rotor resistance Rr 0.069 Ω
Stator inductance Ls 0.079 H
Rotor inductance Lr 0.071 H
Stator and rotor mutual inductance Lm 0.069 H
Pole pairs of asynchronous motor np 2
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