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Abstract: The doubly fed induction generator (DFIG)-based wind energy conversion systems (WECSs)
are prone to certain uncertainties, nonlinearities, and external disturbances. The maximum power
transfer from WECS to the utility grid system requires a high-performance control system in the
presence of such nonlinearities and disturbances. This paper presents a nonlinear robust chattering
free super twisting fractional order terminal sliding mode control (ST-FOTSMC) strategy for both
the grid side and rotor side converters of 2 MW DFIG-WECS. The Lyapunov stability theory
was used to ensure the stability of the proposed closed-loop control system. The performance
of the proposed control paradigm is validated using extensive numerical simulations carried out
in MATLAB/Simulink environment. A detailed comparative analysis of the proposed strategy is
presented with the benchmark sliding mode control (SMC) and fractional order terminal sliding
mode control (FOTSMC) strategies. The proposed control scheme was found to exhibit superior
performance to both the stated strategies under normal mode of operation as well as under lumped
parametric uncertainties.

Keywords: wind energy conversion system (WECS); doubly fed induction generator (DFIG);
sliding mode control (SMC); fractional order control (FOC); super twisting sliding mode
control (STSMC); terminal sliding mode control (TSMC); fractional order terminal sliding mode
control (FOTSMC)

1. Introduction

Since the early 20th century, energy from wind has been utilized to add mechanical power to grind
grains or to pump water. The first wind turbine was developed to generate electricity. Wind power was
remarked as one of the promising renewable energy sources in the decade 1980–1990 [1]. During the
end of the 20th century, the capacity of wind energy has approximately increased twice every three
years worldwide. At present, windmills, wind-pumps and wind power plants are effectively working
in many countries around the world. Since the early 1980, the cost of electricity generated from wind
energy has decreased about one-sixth and the trend seems to continue, for example, in 1982, the average
list price of Danish-produced wind turbines was 1770 US$/kW, and in 1997, the average price was
850 US$/kW [1]. The use of wind energy does not cause harmful emissions like greenhouse gases
during its operating period and, without any surprise, worldwide wind power is one of the rapidly
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growing renewable energy sources. According to the World Wind Association, wind capacity over
the world has reached up to 597 GW in 2019 [2], which was 318 MW in 2013 [3]. The overall capacity
for the past seven years is shown in Figure 1. Owing to this increase, the manufacturers are striving
to develop wind turbines with a high capacity of 3–6 MW [4]. The wind energy conversion system
(WECS) basically comprises an AC generator, gears, and a wind turbine to extract the maximum
power from wind energy and transfer to the AC grid. Doubly fed induction generators (DFIGs) are
widely used to extract the energy from the wind with the advantages of resilient structure, wide range
speed operation capability, low inverter cost [5], active and reactive power control capability in the
four-quadrant region, and torque control. Variable control of the DFIG under varying wind speed is
necessary to reduce the stresses on mechanical structures and acoustic noises that are the result of high
fluctuations in the electromagnetic torque.
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Figure 1. Total globally installed wind power capacity (GW) [2].

The development of a DFIG-based WECS control system is a trivial task. Researchers had
already invested in developing a robust control paradigm to improve the performance of
the closed-loop DFIG-based WECS. A proportional integral (PI) controller has been widely
used as a linear controller for the speed and power control of the DFIG-based WECS.
The family of linear controllers—including (1) repetitive control paradigms, (2) deadbeat control,
and (3) proportional resonant control—is prone to various problems of robustness and speed
convergence under modeled and unmodeled disturbances. A number of nonlinear control techniques
have been proposed in the literature in order to cope with the problems of linear controllers. The most
recent and prominent control techniques include (1) predictive power control, (2) H-infinity (H∞)
control, (3) fuzzy control, (4) artificial neural network (ANN), (5) sliding mode control (SMC),
and (6) hybrid SMC techniques.

A predictive direct torque control (DTC) strategy has been proposed in [6] to reduce the torque
ripples and flux ripples of the DFIG. A grid-connected strategy was adopted with constant switching
frequency using a two-level voltage source converter (VSI). The authors in [7] have proposed a
predictive power paradigm for the DFIG-WECS, in which the voltage was calculated directly from
the power prediction variation. The accuracy and robustness of the proposed system have been
improved by using switching delay compensation methodologies. The predictive control strategies
for WECS have been improved by the introduction of optimization schemes. A constrained genetic
algorithm (GA) has been proposed in [8] for the DFIG-based WECS. The weighting factors have been
determined using a novel GA, and thus provided a better solution for constrained problems in the
DFIG systems. The predictive control-based strategies provided a better solution, but these techniques
were prone to computational problems. Comparative analysis of H∞ controller with SMC and exact
feedback linearization [9] have been made in [10]. The main objective was to mitigate the voltage
dips in the DFIG-based WECS and to provide an enhanced fault voltage-ride-through operation.
A hybrid controller, combining the features of model predictive control (MPC) and H∞ controller,
has been presented in [11]. An improved convergence feature was ensured using predictive strategy,
while H∞ control strategy was used to provide enhanced robustness against external disturbances.
Artificial intelligence (AI)-based systems have also been proposed to improve the steady-state response
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of the DFIG-based WECS. A fuzzy logic controller has been proposed in [12]. The steady-state response
was improved and compared with the deadbeat and PI controllers. A hybrid controller based on PI
and fuzzy rules has been formulated for the DFIG-WECS [13]. The active and reactive powers were
independently controlled and compared with the PI and fuzzy systems. The ANN-based system
has also been proposed in the literature. The author in [14] eliminated the flux estimation and inner
current loop using ANN based on the rotor loop design. The author in [15] analyzed both the super
and sub-synchronous operational modes of the DFIG using ANN at some specific power factor.
The adapted control strategy was a field-oriented vector control scheme for the grid side and rotor side
converter. A direct power control strategy has been applied in [16] for the DFIG-based WECS using
ANN. The direct power control strategy was also proposed in [17] using supervised and fixed models
to minimize errors owing to the delay in control time with a shorter execution time. The outcomes
from the above ANN-based controller concluded the superior performance over PI-based controllers,
but there were certain shortcomings in the execution of ANN. A model-free and intelligent control
strategy was proposed in [18]. The authors have addressed the stochastic and nonlinear variations in
the DFIG using intelligent control system. The difficulties in ANN were the selection of hidden layers,
number of neurons, and selection of suitable rules in the case of fuzzy paradigms.

Apart from these intelligent techniques, variable structure sliding mode control (SMC) has gained
increased attention for the DFIG-based WECS owing to its robust nature against both modeled and
unmodeled external disturbance, fault scenarios, parameter variations, simple structure, low parameter
sensitivity and easy implementation for wind extraction [19], direct power control [20], and maintenance
of DC voltage [21]. A number of SMC techniques have been proposed in the literature [22–26]. A novel
experimental based SMC has been proposed in [27] using simplified vector control of the DFIG-based
WECS. The authors in [28] have proposed an SMC based direct power control strategy to overcome the
problem of under-voltage in the DFIG system. The strategy stated was also applied to eliminate the
output power oscillation by removing the reactive power ripples interchange in the stator. The control
target of achieving symmetrical sinusoidal current in the stator of DFIG was accomplished using an
SMC-based power control paradigm. The robustness of the proposed SMC controller was validated
using simulation and experimental results on a 2 kW DFIG system. The same strategy has been
used in [29] in a discrete-domain to eliminate the power errors through the direct calculation of the
rotor voltage. A converter of constant switching frequency was used to simplify the AC harmonic
filter design, thus improved the quality of DFIG power in the presence of external distributions
and fault scenario. The SMC-based WECS proved to be very robust as compared with previous
designed PI-based controllers. The main disadvantage of the classical SMC is the inherently occurring
chattering phenomenon owing to the introduction of discontinuous signum function in the control
law. A number of hybrid techniques have been proposed in the literature to minimize or completely
eliminate the chattering by enhancing the classical SMC. These enhancement techniques include
designing different sliding surfaces, reaching law approaches, higher order SMC, and using composite
SMC, as shown in Figure 2.
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A second-order SMC has been developed in [31–33] for DFIG-based WECS. Another second-order
SMC has been developed in [34] for the DTC of the DFIG system. The conventional hysteresis
control has been replaced with second-order SMC to reduce the flux and torque surface ripples.
Classical adapted non-overlapped, fixed, and adjacent horizon adaptation time windows have been
revisited with an appropriate receding horizon to model the disturbances and uncertainties due to gusty
wind effects. A hybrid SMC has been proposed in [35] through the combination of gravitational search
algorithm, its variants, and SMC for DFIG-based WECS. In order to reduce the inherent chattering in the
conventional SMC, the author considered the control signals as an objective function [36]. Power flow
was performed in [37] using particle swarm optimization based optimized SMC. Another enhancement
technique to reduce chattering was the reaching law approach. A number of techniques based on
exponential reaching law have been proposed in [38–41] to reduce chattering with an accelerated
approaching process.

All of the above-mentioned techniques are integer order techniques. The recently developed
fractional order control paradigm with promising features is widely applied for both nonlinear
and linear systems [42,43]. The authors in [44] present a comprehensive review of the fractional
order integration and differentiation. The authors in [45] have proposed that the fractional order
control paradigm provided more degree of freedom with respect to integer order control paradigms.
The stability of the fractional order paradigm was ensured by proposing fractional order Lyapunov
functions in [46]. A number of fractional order control schemes have been proposed for DFIG-based
WECS [47,48]. The authors in [48] have compared the fractional order SMC with integer order SMC
schemes for WECS. The authors in [49] have proposed an adaptive fractional order terminal SMC
(FOTSMC) for DFIG-based WECS, where a comparative analysis of the FOTSMC with the conventional
SMC was made. The authors provided simulation-based results to validate the superior performance
of the FOTSMC over the conventional SMC in terms of chattering reduction and robustness against
external disturbances.

Keeping in view the previous research, a very robust and efficient controller is proposed in this
paper by combining the attributes of super twisting SMC (STSMC) and FOTSMC, henceforth called
super twisting fractional order terminal SMC (ST-FOTSMC). The performance of the proposed technique
is validated through simulations carried out in MATLAB/Simulink, and it has been found to have a
superior performance when compared with the benchmark SMC and FOTSMC strategies under the
normal mode of operation as well as under lumped parametric uncertainties.

Furthermore, the sectional arrangement of this paper is as follows. The wind turbine and DFIG
modeling are presented in Section 2. The control paradigm for the rotor side and grid side converter is
presented in Section 3. Section 4 describes the performance evaluation of the proposed control strategy
under two different case studies in Matlab/Simulink. Finally, the paper is concluded in Section 5.
The basic definitions for fractional calculus are given in Appendix A.

2. DFIG-Based WECS Modeling

This section presents the complete model of the grid side converter, rotor side converters, and wind
turbine. The mutual operation of the DFIG-based converters and wind turbine system is shown
in Figure 3a.

2.1. Wind Turbine Model

The primary application of a wind turbine is to convert the kinetic energy of wind into mechanical
energy. This mechanical energy is expressed in terms of aerodynamic power extracted from the wind.
Because the wind speed is stochastic in nature, the power extracted from the wind turbine can never
be as much as its total capacity. The aerodynamic power can also be calculated using some special
software, as performed in [50].



Energies 2020, 13, 2158 5 of 20Energies 2020, 13, x FOR PEER REVIEW 5 of 21 

 

 

(a) 

 
(b) 

Figure 3. (a) Schematic of the doubly fed induction generator (DFIG)-based wind energy conversion 
system (WECS); (b) ideal wind turbine power curve. 

The aerodynamic power depends on many factors including wind speed and wind turbine 
geometry, and is given as follows: ܲ = ,ߣ)௣ܥଶܴߨߩ12  ଷ (1)ݒ(ߚ

where ߩ is the air density; R denotes the rotor radius of the wind turbine; ݒ is the wind speed; ܥ௣(ߣ, ߣ :is given as ߣ represents the tip speed ratio and pitch angle, respectively, The tip speed ratio ߚ and ߣ is the power coefficient, which is dependent on the geometry and shape of rotor blades; and (ߚ = ݒ௧ܴߗ  (2) 

where ߗ௧ is the angular shaft speed of the wind turbine. ܥ௣ and ߣ are interrelated by a function 
given as follows: ܥ௣ = ܿଵ(ܿଶߣ − 1)݁ି௖యఒ  (3) 

where ܿଵ ,	ܿଶ, and ܿଷ  are positive constants. Referring to Figure 3b, it can be concluded that the 
maximum power is extracted when ߣ = ௣ܥ ௢௣௧, thus giving the maximum value ofߣ =  ௣ି௠௔௫. Theܥ
wind turbine torque is expressed as follows: 

௥ܶ = ௧ܶܩ ௧ߗ = ܩ௥ߗ  (4) 

Figure 3. (a) Schematic of the doubly fed induction generator (DFIG)-based wind energy conversion
system (WECS); (b) ideal wind turbine power curve.

The aerodynamic power depends on many factors including wind speed and wind turbine
geometry, and is given as follows:

P =
1
2
ρπR2Cp(λ, β)v3 (1)

where ρ is the air density; R denotes the rotor radius of the wind turbine; v is the wind speed; Cp(λ, β) is
the power coefficient, which is dependent on the geometry and shape of rotor blades; and λ and β
represents the tip speed ratio and pitch angle, respectively, The tip speed ratio λ is given as:

λ =
ΩtR

v
(2)

where Ωt is the angular shaft speed of the wind turbine. Cp and λ are interrelated by a function given
as follows:

Cp = c1

(c2

λ
− 1

)
e
−c3
λ (3)

where c1, c2, and c3 are positive constants. Referring to Figure 3b, it can be concluded that the maximum
power is extracted when λ = λopt, thus giving the maximum value of Cp = Cp−max. The wind turbine
torque is expressed as follows:

Tr =
Tt

G
Ωt =

Ωr

G
(4)

where G represents gear ratio, Ωr is generator speed, Tr is the generator torque, and Tt is the
aerodynamic torque. Substituting Equation (4) into (1) and (2), the reference generator speed Ωr_re f
and the reference grid power Pgrid−re f are given as follows:

Ωr_re f =
λopt G

R v
Pgrid−re f =

1
2ηρπ

2Cp−maxv3

 (5)

where η is the efficiency of the wind turbine.
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2.2. Doubly Fed Induction Generator Model

It is difficult to represent an asynchronous machine in three phases owing to its strong coupling.
A DFIG model in the dq-synchronously reference frame is given below [51]:

Vds = RsIds +
d
dtϕds −ωsϕqs

Vds = RsIqs +
d
dtϕqs +ωsϕds

Vdr = RrIds +
d
dtϕdr − (ωs −ωr) ϕqs

Vqr = RrIqs +
d
dtϕqr − (ωs −ωr) ϕds

, where


ϕds = LsIds + MIdr
ϕqs = LsIqs + MIqr

ϕdr = LsIdr + MIds
ϕqs = LsIqr + MIqs

(6)

where Vds and Vqs are the stator voltage components; Ids and Iqs are the stator current
components; Vdr and Vqr are the rotor voltage components; Idr and Iqr are the rotor current
components; ϕds and ϕqs are stator flux components; ϕdr and ϕqr are rotor flux components; Rs and Rr

are the resistors of the stator and rotor, respectively; ωr = pΩr and ωs are the rotor and stator angular
velocity respectively; Lr and Ls are the inductances of the rotor and stator, respectively; and p is the
number of pole pairs.

The generator rotating parts dynamics are given by the following:

J
d
dt

Ωr = Tem − Tr − frΩr (7)

where Tem is the electromagnetic torque, TL is the load torque, J is the inertia, and F is the viscous
friction coefficient. The electromagnetic torque Tem is given as follows:

Tem = P
MVs

ωsLs

(
ϕqsIdr −ϕdsIqr

)
(8)

Aligning the reference frame to the d-axis of stator flux, we have ϕds = ϕs and ϕqs = 0, and thus (8)
can be simplified as follows:

Tem = −p
MVs

ωsLs
ϕsIqr (9)

Neglecting the per phase stator resistance and making the stature flux constant, Vds = 0,
and Vqr = Vs = Vdr = ωs ϕs. Using this assumption and substituting (9) in (6) and (7), we get the rotor
voltages, active power, and reactive power, given as follows:

Vdr = RrIdr + σLr
d
dt Idr − sσLrωsIdr

Vqr = RrIqr + σLr
d
dt Iqr − σsωsIdr + s MVs

Ls

}
(10)

{
Ps = −

MVs

Ls
Iqr; Qs =

Vs
2

ωsLs
Iqr −

MVs

Ls
Idr (11)

Here, σ = 1− M
LrLs

and s = ωs−ωr
ωs

.
The rotor current in terms of stator flux can be given as follows:

d
dt Idr =

1
σLr

(
Vdr −RrIdr + sσLrωsIqr −

M
Ls

d
dtϕds

)
d
dt Iqr =

1
σLr

(
Vqr −RrIqr + sσLrωsIdr − sωs

M
Ls

d
dtϕds

)  (12)

3. Rotor Side and Grid Side Converter Control

A robust nonlinear and chattering free ST-FOTSMC-based paradigm is presented in this section.
The overall control structure of the DFIG-based WECS works in two loops, which are the outer loop
and inner loop control. A cascaded control structure is adopted in WECS control on the basis of the
fact that the mechanical subsystem (outer loop) of the DFIG-based WECS is slower than the electrical



Energies 2020, 13, 2158 7 of 20

subsystem (inner loop). The outer loop regulates the speed of the DFIG, while the inner loop regulates
the electromagnetic torque and d-axis rotor current.

3.1. Speed Control

The outer loop speed control is formulated using Equation (7) and is given as follows:

d
dt

Ωr =
Tem

J
+ d3, d3 = −

1
J
(Tr + frΩr) (13)

where Tem is the control input and d3 is the lumped uncertainty. The speed tracking error is chosen as
eω = Ωr −Ωr_re f . Taking the derivative of Ωr and substituting

.
Ωr from Equation (28) in the derivative

of speed error, we get the following:

.
eω =

.
Ωr −

.
Ωr_re f ;

.
eω =

Tem

J
+ d3 −

.
Ωr_re f . (14)

Using the fractional order calculus, the proposed surface is presented as follows:

Sω = c5D−αeω + c6Dα
|eω|γsgn(eω). (15)

The surface derivative is given as follows:

.
Sω = c5D1−αeω + c6Dα D1

|eω|γsgn(eω)︸             ︷︷             ︸
.
Sω = c5D1−αeω + c6γDα

|eω|γ−1 .
eω

 (16)

By applying D−α to both sides of Equation (16) and then substituting the value of
.
eω, we get

the following:

DαSω = c5D2−2αeω + c6γ(
|eω|γ−1 Tem

J
+ |eω|γ−1d3 − |eω|γ−1

.
Ωr−re f ) where Dα = D1−α (17)

The equivalent control law Tem_eq is derived from Equation (17) and the discontinuous control
component Tem−sw is designed based on a super twisting control method and is given as follows:

Uω = Te−re f = Tem_eq + Tem−sw

Tem_eq = J|eω|1−γ
[
|eω |γ−1

.
Ωr−re f

c6γ
−

c5
c6γ

D1−2αeω

]
Tem−sw = J|eω|1−γ

[
−
λω
c6γ
|Sω|

1
2 sign (Sω) + u1

] (18)

In Equation (18), the term u1 = −
βω
c6γ

∫
sign (Sω) and λω > 0 and βω > 0 represent control gains.

To prove that the controller derived in Equation (18) is closed-loop stable, the Lyapunov function is
expressed as V1 = 0.5Sω2. Applying the fractional operator Dα to the Lyapunov function V1 yields the
following expression [3].

DαV1 ≤ SωDαSω +
∞∑

j=1

T (1 + α)

T (1 + α− j)(1 + j)
DjSωDα− jSω (19)

Consider the following inequality [3]:

∞∑
j=1

T (1 + α)

T (1 + α− j)(1 + j)
DjSωDα− jSω ≤ ρ|Sω| (20)
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By combining the Equations (17)–(20), the following expression is obtained.

DαV1 ≤ Sω

(
c5D1−2α + eωc6γ(

|eω |γ−1

J (J|eω|1−γ
[
|eω |γ−1

.
Ωr−re f

c6γ
−

c5
c6γ

D1−2αeω− (21)

λω
c6γ
|Sω|

1
2 sign (Sω) −

βω
c6γ

∫
sign (Sω)

]
)+|eω|γ−1d3 − |eω|γ−1

.
Ωr−re f

)
)ρ|Sω| (21)

After simplification, Equation (21) is expressed as follows.

DαV1 ≤ −λω|Sω|
1
2 |Sω| − βω

∫
|Sω|+ ρ|Sω| (22)

By choosing λω and βω such that λω|Sω|
1
2 |Sω| + βω

∫
|Sω| > ρ|Sω|, the expression DαV1 is

always negative.

3.2. Current Control

The aim of this current control is to derive a controls strategy such that x tracks the given reference
xre f in the presence of uncertainty. The given current reference trajectory is defined as follows:

xre f =
[
Idr_re f Iqr_re f

]T
(23)

Using Equation (9), the reference current is calculated as follows:

Iqr−re f =
ωsLs

PMVs
Tem−re f (24)

The d-axis reference current is derived by substituting Qs−re f = 0, in reference reactive power

Qs−re f =
V2

s
ωsLs
−

MVs
ωsLs

Idr and is given as follows:

Idr−re f =
Vs

ωsM
(25)

The tracking errors of current are defined as follows:

e = x− xre f =
[
ed eq

]T
=

[
Idr − Idrre f

Iqr − Iqrre f

]
(26)

The error derivative is given as follows:
.
ed = 1

σLr

(
Vdr −RrIdr + sσLrωsIqr −

M
Ls

d
dtϕds

)
−

.
Idr_re f

.
eq =

1
σLr

(
Vqr −RrIqr + sσLrωsIdr − sωs

M
Ls

d
dtϕds

)
−

.
Iqr_re f

(27)

Hence, Equation (27) can be written as follows:{ .
ed = G1 +

1
σLr

Vdr −
1
σLr

RrIdr
.
eq = G2 +

1
σLr

Vqr −
1
σLr

RrIqr
where

 G1 = 1
σLr

(
sσLrωsIqr −

M
Ls

d
dtϕds

)
−

.
Idr_re f

G2 = 1
σLr

(
sσLrωsIdr − sωs

M
Ls

d
dtϕds

)
−

.
Iqr_re f

(28)

The proposed sliding surfaces and their first derivatives are given as follows: Sd = c1D−αed + c2Dα
|ed|

γsgn(ed)

Sq = c3D−αeq + c4Dα
∣∣∣eq

∣∣∣γsgn
(
eq
) (29)
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
.
Sd =

(
c1D1−αed + c2γDα

|ed|
γ−1 .

ed
)

.
Sq =

(
c3D1−αeq + c4γDα

∣∣∣eq
∣∣∣γ−1 .

eq

) (30)

Applying D−α to both sides of Equation (30), setting D1−α = Dα and substituting Equation (28),
we get the following:  DαSd = c1D1−2αed + c2γ|ed|

γ−1(G1 +
1
σLr

Vdr −
1
σLr

RrIdr)

DαSq = c3D1−2αeq + c4γ
∣∣∣eq

∣∣∣γ−1
(G2 +

1
σLr

Vqr −
1
σLr

RrIqr)
(31)

The equivalent control laws [Vdr_eq Vqr_eq] are derived from Equation (31) and the discontinuous
control components [Vdr_sw Vqr_sw] are designed based on a super twisting control method.

Vdreq = σLr

[
−G1 +

1
σLr

RrIdr −
c1|ed|

1−γD1−2αed
c2γ

]
Vdr_sw = −

λ
ω1|ed |

1−γ

c2γ
|Sd|

1
2 sign (Sd) −

βω1|ed |
1−γ

c2γ

∫
sign (Sd)

Vqreq = σLr

[
−G2 +

1
σLr

RrIqr −
c3|eq|

1−γD1−2αeq
c4γ

]
Vdr_sw = −

λ
ω2|eq |1−γ

c4γ

∣∣∣Sq
∣∣∣ 1

2 sign
(
Sq

)
−

βω2|eq |1−γ

c4γ

∫
sign

(
Sq

)
(32)

Thus, the complete control law, which is u =

[
Ud

Uq

]
=

[
Vdreq + Vdr_sw

Vqreq + Vqr_sw

]
, is deduced from

Equation (32). In Equation (32), the constant terms [λω1 > 0 λω2 > 0 ] and [βω1 > 0 βω2 > 0] represent
control gains. To prove the closed-loop stability of the controller derived in Equation (32), the Lyapunov
function is expressed as V2 = 0.5(Sd

2 + Sq
2). Applying the concept presented in Equation (20) and by

applying fractional operator Dα to the Lyapunov function V2 yields the following expression [3].

DαV2 ≤ SdDαSd + SqDαSq + ρ1|Sd|+ ρ2
∣∣∣Sq

∣∣∣ (33)

In Equation (33), ρ1 and ρ2 represent positive constants. By combining Equations (31)–(33),
the following expression is obtained.

DαV2 ≤ −λω1|Sd|
1
2 |Sd| − λω2

∣∣∣Sq
∣∣∣ 1

2
∣∣∣Sq

∣∣∣− βω1

∫
|Sd| − βω2

∫ ∣∣∣Sq
∣∣∣+ ρ1|Sd|+ ρ2

∣∣∣Sq
∣∣∣ (34)

By choosing the constant terms [λω1 λω2] and [βω1 βω2 ] such that λω1|Sd|
1
2 |Sd|+ λω2

∣∣∣Sq
∣∣∣ 1

2
∣∣∣Sq

∣∣∣+
βω1

∫
|Sd|+ βω2

∫ ∣∣∣Sq
∣∣∣ > ρ1|Sd|+ ρ2

∣∣∣Sq
∣∣∣, the expression DαV2 is always negative.

3.3. Grid Side Control

The magnitude and flow direction of power through the DFIG rotor are not always constant
owing to both gusty and sluggish behavior of wind flow. The consistency of the DC link voltage is the
key objective of grid side control under the aforementioned circumstances. For this purpose, a vector
control strategy is deployed with the orientation of the reference frame along with the grid voltage or
stator voltage [3]. Hence, the active and reactive power after Vs = Vd and Vq = 0 are given as follows:

P = 3
2

(
VdId + VqIq

)
= 3

2 (VdId)

Q = 3
2

(
VqId + VdIq

)
= 3

2

(
VdIq

)  (35)
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Equation (35) reveals that the power flow between the grid side converter and grid is proportional
to the value of Id and Iq. The active power flow between the grid and the grid side converter is equal to
the DC power. Hence, the dynamics can be expressed as follows:

Ios =
3

2E
VdId (36)

C
dE
dt

= Ios − Ior (37)

where E is the DC link voltage. Substituting Equation (36) in Equation (37), we get the following:

.
E = 1

C

(
3

2E VdId − Ior
)

.
E = g(x)Id −

1
C Ior

 where g(x) =
1
C

3
2E

Vd (38)

The function g(x) is expressed as follows:

g(x) = g0(x) + ∆g(x); go(x) =
1
C

3
2E∗

Vd (39)

where E∗ is the reference value of E, while ∆g(x) is the uncertainty term. Substituting g(x) from
Equation (39) into Equation (38) yields the following:

.
E = g0(x)Id −

1
C

Ior + dE; dE = ∆g(x)Id (40)

The voltage tracking error eE and its derivative
.
eE are defined as follows:

eE = E− E∗ (41)

.
eE =

.
E−

.
E
∗

(42)

Replacing
.
E from Equation (40) we get the following:

.
eE = g0(x)Id −

1
C

Ior + dE−
.
E
∗

(43)

By defining a fractional order surface SE and its derivative
.
SE, we have the following:

SE = c7D−αeE + c8Dα
|eE|

γsgn(eE).
SE = c7D1−αeE + c8γDα

|eE|
γ−1 .

eE

 (44)

Applying fractional operator D−α to Equation (44), we have the following:

D1−αSE = c7D1−2αeE + c8γ|eE|
γ−1 .

eE (45)

A simplified equation is obtained by replacing D1−α on Dα and substituting the value of
.
eE from

Equation (43) in Equation (46), which yields the following:

DαSE = c7D1−2αeE + c8γ

(
|eE|

γ−1g0(x)Id −
|eE|

γ−1

C
Ior + |eE|

γ−1dE− |eE|
γ−1 .

E
∗

)
(46)

The equivalent control law Id_eq is derived from Equation (46) and the discontinuous control
component Id_sw is designed based on a super twisting control method.
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
Id_eq =

1
g0(x)
|eE|

1−γ
[
|eE |

γ−1

C Ior − |eE|
γ−1 .

E
∗

−
c7

c8γ
D1−2αeE

]
Id_sw = −

λ
ω3|eE |

1−γ

g0(x)c8γ
|SE|

1
2 sign (SE) −

B
ω3|eE |

1−γ

g0(x)c8γ

∫
sign (SE)

(47)

Thus, the complete control law, Id_re f = Id_eq + Id_sw, is deduced from (47). In Equation (47),
the constant terms λω3 > 0 and βω3 > 0 represent control gains. To prove the closed-loop stability of the
controller derived in Equation (47), the Lyapunov function is expressed as V3 = 0.5(SE

2). Applying the
concept presented in (20) and by applying fractional operator Dα to the Lyapunov function V3 yields
the following expression [3].

DαV3 ≤ SEDαSE + ρ3|SE| (48)

In Equation (48), ρ3 represents a positive constant. By combining Equations (46)–(48), the following
expression is obtained.

DαV3 ≤ −λω3|SE|
1
2 |SE| − βω3

∫
|SE|+ ρ3|SE| (49)

By choosing λω3 and βω3 such that λω3|SE|
1
2 |SE|+ βω3

∫
|SE| > ρ3|SE|, the expression DαV3 is

always negative.

4. Results and Discussion

Numerical simulations were carried out in Matlab/Simulink environment to analyze and validate
the effectiveness of the proposed control paradigm. The parameters of the proposed controller were
selected using Matlab/Simulink optimization toolbox. The minimization of the objective function
was carried out using the criteria of integral absolute error. The authors in [52] have presented the
parameter selection criteria using response optimization. The selected values of parameters are given
in Table A1. Figure 4 shows the wind speed profile used in the simulation. Two cases are discussed in
detail for both the rotor side as well as the grid side converter’s control.
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4.1. CASE 1

In this case, the system is supposed to operate in ideal conditions, such that it is not affected by
any uncertainty or external disturbance.

Figure 5a shows the speed response of the DFIG for the SMC, FOTSMC, and proposed ST-FOTSMC
strategies. The SMC scheme exhibits an oscillatory response owing to inherent chattering. The FOTSMC
strategy alleviates chattering through the fractional approach. The proposed ST-FOTSMC scheme
offers superior and accurate chattering-free speed tracking to the other two candidates. This is further
validated by the speed tracking error eω, illustrated in Figure 5b, where the speed tracking error is the
minimum for the proposed strategy as compared with the SMC and FOTSMC techniques.
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The active and reactive power comparisons for the DFIG stator are depicted in Figure 6a,b,
respectively. The active power with the SMC controller suffers from the highest oscillations, while the
FOTSMC strategy makes these oscillations less severe. Again, the proposed ST-FOTSMC paradigm
offers a superior and smooth chattering free active power. The same is true for the reactive power.
The FOTSMC strategy takes a certain amount of time to bring the reactive power to zero, but it exhibits
less chattering than the SMC strategy. The proposed controller brings the reactive power to zero
without any disturbance and oscillations, thus ensuring superior performance to its competitors.
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Figure 6. (a) Active power comparison; (b) reactive power comparison.

As discussed earlier, the active and reactive powers are controlled through the d and q components
of the stator current, respectively. Figure 7a,b illustrate the tracking errors of the d and q components
of the stator currents, respectively. It is evident from the stated figures that the steady-state current
errors, ed and eq are the least in the case of the proposed ST-FOTSMC technique, thus validating its
superior performance to the other two strategies.

The control inputs
(
Ud, Uq, and Uω

)
comparison for the rotor side controller and the current

controller is depicted in Figure 8a, while Figure 8b shows the sliding surfaces comparison for the
current controllers and the speed controller. It can be observed that, in each case, the proposed
ST-FOTSMC technique has a very fast dynamic response with almost no chattering as compared with
the SMC and FOTSMC schemes.

The DC-link voltage is shown in Figure 9a for each candidate. It is evident that the proposed
ST-FOTSMC technique maintains a constant DC-link voltage as compared with the SMC and FOTSMC.
This is verified by the DC-link voltage error shown in Figure 9b, where the error is almost equal to zero
in the case of the ST-FOTSMC. On the hand, the stated error is not zero in the case of the SMC and
FOTSMC paradigms. Furthermore, the error is the largest in the case of the conventional SMC.
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Moreover, the control input and sliding surface for the grid side controller are shown in Figure 10a,b,
respectively. The worst performance of the conventional SMC can be seen in the form of excessive
chattering. However, the proposed ST-FOTSMC scheme exhibits a superior and chattering-free
performance to both of its competitors.
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4.2. CASES 2

The effectiveness of the proposed controller is further tested under parametric uncertainties and
external disturbance. A lumped uncertainty is added to the system, which simulates variation in the
DFIG parameters and external disturbance. In this case, the total variation in the DFIG parameters
and the external disturbance is assumed to be 25%. The mathematical formulation of the lumped
uncertainty is expressed as follows:{ .

x = F(x) + Hu = f (x) + hu + d
d = 25% f (x) + 25%hu + 2− sin(wt)

A similar case is assumed in Section 4.3. It is assumed that a 25% variation in the nominal parameter
with sinusoidal disturbance is acting on the grid side controller. The mathematical formulation is
expressed as follows:

dE = 25%g(x) + 5 sin(wt)

The addition of the sinusoidal term generally represents the power oscillations of slow frequency
in the DFIG system. The reference speed tracking comparison of the conventional SMC, FOTSMC,
and ST-FOTSMC is depicted in Figure 11a, which shows that the proposed controller has superior
reference speed tracking performance under parameter uncertainties and external disturbances.
The corresponding speed tracking error is shown in Figure 11b, which further validates the superior
performance of the proposed scheme. The conventional SMC has been found to have the worst
performance in terms of severe chattering.
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The active and reactive powers of the DFIG under lumped uncertainty are shown in Figure 12a,b,
respectively. It can be seen that the proposed ST-FOTSMC technique exhibits chattering-free active
and reactive powers compared with the conventional SMC and FOTSMC schemes. Furthermore,
the proposed strategy has the fastest convergence in the case of the reactive power.

The current error convergence analysis of the stator d and q components under lumped uncertainty
is shown in Figure 13a,b, respectively. It is evident that the proposed scheme converges the stated errors
to zero much faster than both the conventional SMC and FOTSMC schemes, with almost no chattering.
On the other hand, chattering can be seen in both the conventional SMC and FOTSMC schemes.
This validates the superior performance of the proposed technique under lumped uncertainties.

The DC-link voltage and the corresponding DC-link voltage error under lumped uncertainties are
shown in Figure 14a,b, respectively. The proposed control scheme exhibits superior performance to the
other candidates by maintaining a chattering-free DC-link voltage with the least error.
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4.3. Efficiency

The appropriate control of DFIG-based WECS is essential for efficiency enhancement of the system.
The efficiency of the DFIG-based WECS is the ratio of the active power injected into the grid to the
available wind power. The efficiency of the system under consideration is given as follows [53]:

η =
P

Pw
(50)

where P is the active power injected into the grid given in Equation (35) and is shown in Figure 6a.
The wind, Pw, is calculated as follows:

Pw = Aρv3 (51)

where ρ is the density of air, v is the wind speed, and A is the wind turbine rotor area. The efficiency of
the DFIG for the conventional SMC, FOTSMC, and ST-FOTSMC schemes is compared in Figure 15.
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It can be observed that the efficiency of the proposed controller reaches up to 80%, which is higher than
the efficiencies of both the conventional SMC and FOTSMC schemes. This improvement in efficiency
validates the superior performance of the proposed ST-FOTSMC strategy for DFIG-based WECS.
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5. Conclusions

By combining the attributes of super twisting SMC and fractional order terminal SMC strategies,
a new nonlinear super twisting algorithm based fractional order terminal SMC strategy was proposed
in this paper for a utility grid-connected 2 MW DFIG-WECS. The proposed controller is compared
with the other two existing variants of the SMC, including the conventional SMC and fractional order
terminal SMC, proposed earlier in the literature. Both the stated variants of the SMC and proposed
controller are compared with each other under two different cases including normal mode of operation
and operation under lumped parametric uncertainties. The numerical simulations carried out in
MATLAB/Simulink validate the superior performance of the proposed controller under each condition
in terms of minute chattering, fast dynamic response, and fast convergence.
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Appendix A. Basic Definitions for Fractional Calculus

A Fractional operator aDα
t is defined as follows [46].

aDα
t =


dα
dtα α > 0
1 α = 0∫ t

a (dτ)
a α < 0

(A1)

The operator α denotes the order of the system where R (α) is the set of real number. A general
fractional operator is described by three definitions [46]. The definitions are named as follows:
Caputo definition (A2) for (n – 1) < α < n, Grunwald–Letnikov definition (A3), the Riemann–Liouville
definition is also formulated in (A4).

aDα
t � Dα =

 1
Γ(n−α)

∫ t
a

f n(τ)

(t−τ)α−n+1 dτ (n− 1 ≤ α ≤ n)
dm

dtn f (t) (α = n)
(A2)
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aGLDα
t f (t) = lim

n→∞

(
1

hα
) [(t−α)/h]∑

j=0
(−1) j

(
α
j

)
f (t− jh)(

α
j

)
=

Γ(α+1)
Γ( j+1)Γ(α− j+1)

 (A3)

Here, h is the representation of step time, n is the first integer larger than “a”, and Γ(.) denotes
gamma function.

Dα
t = dα

dtα f (t) = 1 dm

Γ(m−α)dtm

∫ t
a

f (τ)

Γ(t−τ)α−m+1 dτ

aD−αt = Iα f (t) = 1 dm

Γ(α)

∫ t
a

f (τ)
(t−τ)1−α dτ

 (A4)

The author in [54,55] has discussed the stability of fractional order system in detail. A complete
comparison of fractional order integration and differentiation is presented in [56]. The authors
have reviewed the physical and geometrical interpretation of fraction integration and differentiation.
A fractional order s (Laplace operator) is usually approximated using the integer order transfer function.
A method has been proposed by Oustaloup to approximate a function having a form given as follows:

H(s) = sa, a > 0 (A5)

The rational function to approximate (A5) is given as follows:

H(s) = K
N∏

n=−N

1 + s
ωz,n

1 + s
ωp,n

a > 0 (A6)

where K is the gain responsible to make the unit gain of the both sides of (A6) at 1 rad/sec. 2N + 1 is

the number of poles and zeros. ωz,n = ωb
(
ωh
ωb

) n+N+ 1−a
2

2N+1 and ωp,n = ωb
(
ωh
ωb

) n+N+ 1+a
2

2N+1 , where ωh and ωb
denotes the upper limit and lower limit of the approximation frequency, usually chosen as ωhωb = 1,
and thus K = ωa

h.

Table A1. System and controller parameters. DFIG, doubly fed induction generator.

DFIG and Wind
Turbine Parameter Values Control Parameters Values Control Parameters Values

Voltage 700 V k 0.5–5 c5 0.02

No. of pole pairs 3 γ 0.7 c6 5

Rs 1.4 Ohm α 0.8 kr1 0.002

Rr 1.2 Ohm λω1 0.1 kr2 0.02

M 0.0051839 H βω1 0.001 kr3 0.006

Lr = Ls 0.0053 H λω2 0.01 c7 0.005

f f 0.00015 N ms−1 βω2 0.2 c8 1

J 765.6 kg/m2 λω3 0.003 kr4 0.003

DC Link Voltage (E) 800 V βω3 0.001

DC Link Capacitor 0.01 farad c1 0.0015

Frequency 50 Hz c2 5

Blade radius 35 m c3 0.02

Gear ratio 62.5 c4 5

λopt 6.325
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