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Abstract: A q-rung orthopair fuzzy set (q-ROFS), an extension of the Pythagorean fuzzy set (PFS)
and intuitionistic fuzzy set (IFS), is very helpful in representing vague information that occurs in
real-world circumstances. The intention of this article is to introduce several aggregation operators in
the framework of q-rung orthopair fuzzy numbers (q-ROFNs). The key feature of q-ROFNs is to deal
with the situation when the sum of the qth powers of membership and non-membership grades of
each alternative in the universe is less than one. The Einstein operators with their operational laws
have excellent flexibility. Due to the flexible nature of these Einstein operational laws, we introduce
the q-rung orthopair fuzzy Einstein weighted averaging (q-ROFEWA) operator, q-rung orthopair
fuzzy Einstein ordered weighted averaging (q-ROFEOWA) operator, q-rung orthopair fuzzy Einstein
weighted geometric (q-ROFEWG) operator, and q-rung orthopair fuzzy Einstein ordered weighted
geometric (q-ROFEOWG) operator. We discuss certain properties of these operators, inclusive of their
ability that the aggregated value of a set of q-ROFNs is a unique q-ROFN. By utilizing the proposed
Einstein operators, this article describes a robust multi-criteria decision making (MCDM) technique
for solving real-world problems. Finally, a numerical example related to integrated energy modeling
and sustainable energy planning is presented to justify the validity and feasibility of the proposed
technique.

Keywords: q-rung orthopair fuzzy numbers; Einstein norms; aggregation operators; sustainable
planning decision management

1. Introduction

Currently, creating a sustainable energy policy for countries poses a considerable challenge.
It raises several issues such as energy policy definition and planning [1], the choice of energy sources [2],
and the assessment of energy supply technologies [3]. Due to the critical, complex, subjective, and
poorly structured nature of the issues themselves, many of the scientists’ contributions are directed to
the area of building objective models of decision support. The reason for this phenomenon should
be sought in the fact that modeling this class of problems requires correct mapping not only of the
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assessed alternatives/variants or scenarios. In such a case, experts must also consider the consequences
of analyzing the decision problem from different perspectives and points of view taking into account
several conflicting criteria [4]. For example, a sustainable energy planning process requires taking
into account several environmental, social, and economic groups of factors in the decision making
process [5]. Often, the shape of the final ranking is additionally influenced by the presence of interest
groups [6], and this factor also requires objectification and correct mapping in the developed model [7].
The availability of measurement data of the model and their imprecision [8] (together with the
preference of the decision makers uncertainty [9]) are not without significance. At the same time, it is a
widely raised and still valid research challenge [10].

From the methodological point of view, current literature studies confirm that an extension of
the decision support process beyond the classic optimization model of a single objective function is
commonly accepted, described on a set of acceptable solutions [4]. This extension makes it possible
to undertake multi-criteria problems, focusing on obtaining a solution that satisfies many, often
conflicting goals. The existence of many criteria, conflicts between criteria, and the complex, subjective,
and poorly structured nature of the decision problem constitute the pragmatism of multi-criteria
decision support [11]. It is on these foundations that many multi-criteria decision making (MCDM)
[12] methods have been developed. The actual state-of-the-art in this area clearly confirms that MCDM
methods handle the problem mentioned above practically and effectively. The analysis of the literature
indicates the prevalence of the use of MCDM methods in energy decision making issues. MCDM
methods are used as practical and useful tools to solve problems related to decision making on energy
policy making [13] or RES technology selection and assessment [14]. This fact can be easily confirmed
by review and meta-analysis papers like Løken [15], Martín-Gamboa et al. [16], Wang et al. [5], and
Arce et al. [17]. These papers show the multitude of both practical problems in the field of energy
policy and MCDM techniques used as a formal background for the models developed.

The literature studies also confirm the widespread use of fuzzy developments (based on the
theory of fuzzy sets) of MCDM methods in energy issues [1,18]. The essence of this approach is
based on the fact that fuzzy number theory models express the uncertainty in individual opinions
to obtain more sensitive, concrete, and realistic modeling results [19]. This topic is widely discussed
in the literature [20]. Many new extensions of MCDM methods are being developed with the use
of successive tools of different generalizations of fuzzy sets that are being designed to handle the
uncertain decision making environment [21]. It is worth noting that despite a large number of
methodological and practical works in this area, the authors’ conclusions indicate the need to improve
the workshop of existing models supporting this decision making process [18]. The reasons for this,
apart from the obvious contradiction of the goals here, are a complex and multi-level set of criteria
or natural uncertainty of measurement data and decision makers preferences, which address the
numerous difficulties in accurately reflecting the MCDM model [19]. In response to the aforementioned
shortcomings in the current paper, we developed a new robust MCDM technique based on Einstein
operators with q-rung orthopair fuzzy numbers. We propose the score function, accuracy function,
and certainty function for ranking q-rung orthopair fuzzy numbers (q-ROFNs). We present the
mathematical procedure of our approach to solving sustainable energy planning problems in Pakistan.

The rest of this paper is organized as follows. Section 2 contains a literature review of the MCDM
method’s usage in RES domain decision problems by using uncertain and imperfect information.
In Section 3, we discuss the concept of q-rung orthopair fuzzy sets (q-ROFSs). We define some
operational laws, basic aggregation operators, the score function, and the accuracy function for q-rung
orthopair fuzzy numbers (q-ROFNs). In Section 4, we discuss the concept of the t-norm and t-conorm
and Einstein operational laws for q-ROFSs. In Section 5, we introduce some new q-rung orthopair
fuzzy Einstein aggregation operators. In Section 6, we develop q-ROFNs based multi-criteria decision
making method and discuss integrated energy modeling and sustainable energy policy. In Section 7,
we give the conclusion of the research work.
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2. Literature Review

2.1. MCDM Background in the Sustainability Domain

The analysis of the genesis and primal areas of usage of multi-criteria decision support methods
emphasizes their dynamic development, which began in the 1970s. In the 1980s, they were already
amongst the primary management support tools. To confirm this fact, the work presented by Teckle [22]
included the current state of the research, along with an extended analysis of the applications of
MCDM methods in various management problems. Examples of areas of effective use of MCDM
encompassed management of water resources [23,24], including waste (sewage) [25], management of
forest resources [26] (more broadly environmental [27,28]), many decision problems in transport [29]
and logistics [30], as well as model issues for the MCDM problems of land parcels [31] or human
resource planning [32]. It is possible to point out many applications of multi-criteria decision
support methods in the area of strategic problems, such as the evaluation of projects [33], plans
and strategies [34], or the choice of a specific policy direction [35], selection and evaluation of public
facilities (e.g., schools [36], hospitals [37]), regional development planning [38], capital investments [39]
and budgeting [40], planning and implementation of the production process [41], economic policy [42],
evaluation of information systems [43], or dedicated military objectives [44]. At the moment, the area
of usage of MCDM methods has become extremely broad, and apart from the model above-mentioned
classes of management problems, it covers the remaining spheres of economic practice, science, as well
as everyday human decision problems.

In the last decade, the concept of sustainability has been one of the most important research
topics. Generally, the term sustainability refers to social, economic, and environmental [45] aspects
to ensure prosperity, environmental protection, and social unity [46]. According to the scientific
literature, the sustainability concept has a multi-disciplinary form and a multi-faceted nature [47].
In recent years, the topics related to sustainability, sustainability development, and sustainability
management have become the main factors determining the majority of business and organizational
activities. To confirm this, many global, international, national, and regional strategies are based
on sustainability aspects [48]. Sustainable decision making combines management theories and the
principles of sustainability, considering environmental, social, and economic factors in the decision
making process [5]. Therefore, making decisions in the area of sustainable development requires the
reconciliation of contradictory goals. Frequently, decisions have a multi-level and multi-faceted nature,
requiring the participation and involvement of many shareholders. Thus, the need for including
conflicting goals, conflicting criteria, as well as many stakeholders in one decision making process
causes the modeling of sustainability problems to be often carried out using MCDM methods. This fact
is confirmed by many literature studies presenting various decision problems related to sustainability,
yet successfully modeled using MCDM methods. For example, the problems include assessment of
sustainability processes in a selected area [49], resource planning, corporate policy and strategy [50],
public policy modeling [51], spatial planning, economic [52], or government policy planning [53],
measuring of the sustainable information society [54], or modeling of sustainable population growth
and urbanization problems [55,56].

Moreover, MCDM methods have also been applied in sustainable modeling of the consumer
market [57], optimization of the sustainable portfolio [58], modeling of the sustainable use of
resources [59], maximizing user conversion [60], or modeling of industrial development and the
energy crisis [61]. Besides, in the area of sustainable company management, the applicability of the
MCDM methods was confirmed in such management problems as: finance, information technology,
logistics (including sustainable supply chain management [62] and the choice of a sustainable supplier)
[4]. The ability to aggregate data and generate synthetic assessments of individual decision making
variants allows MCDM methods to create sustainable development indicators for the energy industry
[63], water areas [64], rural areas [52], the development of countries [65], agricultural development
[66], or urban areas [55].



Energies 2020, 13, 2155 4 of 40

2.2. MCDM Methods in Energy Policy Modeling

In recent years, a growing interest in renewable energy sources (RES) has been observed.
Determinants of such a situation can be found in, among others, the development of technologies and
the search for the independence of national economies of many countries from conventional energy
sources [67]. Furthermore, the progressive decline in the resources of natural energy forces changes
in macro and micro energy strategies, while increasing their prices on the global market. It is worth
mentioning that renewable energy sources can be used almost anywhere in the world. However, the
main problem corresponds to the justification of the economic, technological, environmental, and
social correctness of the location and construction of infrastructure using this type of resource. For
instance, an improperly located farm can be a source of negative environmental and social impacts.

The inclusion of the aforementioned environmental imperatives in energy policy planning, as
well as the addition of pro-social factors have resulted in the need to reconcile conflicting objectives
and different stakeholders in the process of the planning and evaluation of energy policy in regions
or countries. Some of the essential tools for model structuring and problem-solving are the MCDM
methods [68]. Numerous literature review studies confirmed this fact [15–17,69]. What is important
is that the American and European schools’ approaches to the multi-criteria decision support have
become very popular in this area [70]. The popularity of “American school” methods, based on
value/utility theory (usually single synthesizing criterion), has been confirmed, for example in [14,71].
Among them, the analytic hierarchy process (AHP) method is widely used. It is characterized by a
relatively simple computational algorithm and, at the same time, the possibility of reflecting well
the complex, hierarchical structure of this class of decision making problems. Numerous works in
the field of energy policy using the AHP method can be pointed out, and examples of them concern
in particular the selection of renewable energy sources for sustainable development [72], strategic
renewable energy resources’ selection [73], energy source policy assessment [74], or sustainable energy
planning [75]. The same group of methods (schools) includes TOPSIS and VIKOR. They are based
on similar principles, and their application additionally allows for the construction of so-called
“reference points” (ideal and anti-ideal solution). These methods have also proven effective in the
assessment of economic and environmental energy performance [76], optimization of power generation
systems [77], sustainable energy-storing optimization [78], or selecting sustainable energy conversion
technologies [79]. It is worth noting that the methods of the “American school” are not entirely
appropriate in modeling sustainable energy issues [80]. This is directly related to the fact that these
methods are characterized by an undesirable effect of linear compensation (substitution) of criteria,
which in practice significantly hinders and often makes it impossible to meet the paradigm of so-called
“strong sustainability” [81]. The methods of the so-called “European school” are characterized by
lower levels of criteria compensation (partial compensation/non-compensation), and thus stronger
fulfillment of the strong sustainability paradigm. The most popular outranking methods include
ELECTRE and PROMETHEE [82]. The techniques from the ELECTRE family show effectiveness
in modeling problems, in which there is an under-specification of preferential information [83],
and modeling this under-specification is done using pseudo-criteria (criteria with thresholds) and
outranking relations [83], which constitute the foundation for building the final outranking graph. The
methods of the PROMETHEE family are characterized by the same formal assumptions (outranking
relation). However, the final ranking is in the form of alternative quantitative assessments [84].
Examples of the effective use of these methods in energy policy include the evaluation of power plants
[85], the evaluation of sustainable energy sources [86], rank policies [87], or investment risk evaluation
for new energy resources [88]. Regardless of the methods indicated, the need to objectify the models
leads researchers towards building hybrid approaches. This means that several MCDM methods are
used in one model or several models are constructed for benchmarking purposes. Such procedures in
the area of energy policy can be found, for example, in the works [79,89–91].

A detailed analysis of the works indicates that apart from the proper selection of the appropriate
MCDM method, the current challenge in this class of problems remains the accurate modeling of
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the data, the preferences of the interveners in the model, and more importantly, their imprecision
[83]. It constitutes the correctness of the entire decision making process and the quality of the final
recommendation [11].

2.3. MCDM Based Uncertain Data Modeling

For many years, the issue of vague and imperfect information has been at the forefront.
Information aggregation is the key factor for decision management in the areas of business,
management, engineering, psychology, social sciences, medical sciences, and artificial intelligence.
Traditionally, the knowledge about an alternative has been believed to be considered as simple
numbers. Nevertheless, knowledge cannot be accessed in a simple form at any time in the modern
world. It is very important to address data inconsistencies in order to deal with these conditions.
Zadeh [92] initiated the concept of the fuzzy set by means of the membership function. A fuzzy set
is a significant mathematical model to define and assemble the objects whose boundaries are elusive
by utilizing membership grades. Atanassov [93] introduced the intuitionistic fuzzy set (IFS) as an
extension of the fuzzy set. Yager [94–96] introduced the Pythagorean fuzzy set (PFS) as an extension
of Atanassov’s intuitionistic fuzzy set. Bashir et al. [97] discussed the convergences for intuitionistic
fuzzy set theory as important fundaments to extend MCDM methods. A Pythagorean fuzzy number
(PFN) is superior to an intuitionistic fuzzy number (IFN). Yager further introduced the idea of the
q-rung orthopair fuzzy set (q-ROFS) as the extension of the Pythagorean fuzzy set (PFS) [98]. A q-rung
orthopair fuzzy number (q-ROFN) is superior to both IFN and PFN because IFN and PFN both may
be regarded as q-ROFN, but not conversely (see [96,98]). Yager [99] introduced the concept of ordered
weighted averaging aggregation operators for MCDM. Akram et al. [100–103] proved the usefulness
of m-polar fuzzy soft rough sets, neutrosophic incidence graphs, and m-polar fuzzy ELECTRE-Iin
decision making problems. Ali et al. [104] presented new abilities of soft sets and rough sets with
fuzzy soft sets. Garg and Arora [105–108] established certain concepts of IFsoft power and dual
hesitant fuzzy soft aggregation operators. Hashmi et al. [109] introduced the notion of the m-polar
neutrosophic set and m-polar neutrosophic topology and their applications to MCDM in medical
diagnosis and clustering analysis. Hashmi and Riaz [110] introduced a new way to handle the censuses
process by using the Pythagorean m-polar fuzzy Dombi aggregation operators. In Kumar and Garg
[111], a new extension of the well-known TOPSIS method based on pair set analysis with the use of
interval-valued intuitionistic fuzzy set theory was presented. Karaaslan [112] introduced neutrosophic
soft sets with applications in decision making. Naeem et al. [113] introduced Pythagorean fuzzy soft
MCGDM methods based on TOPSIS, VIKOR, and aggregation operators. The hybrid concept based
on Pythagorean m-polar fuzzy sets and the TOPSIS method was presented in Naeem et al. [114].
Peng and Yang [115] discussed some new results of PFS and defined the Pythagorean fuzzy number
(PFN). Fuzzy information measures and their applications were introduced in Peng et al. [116]. Peng
and Selvachandran [117] developed state-of-the-art and future directions for PFS. The new concept
of the Pythagorean fuzzy soft set (covering practical areas) was presented by [118]. Pend and Dau
[119] investigated the use of single-valued neutrosophic MCDMto extend the MABACand TOPSIS
methods. In their work, they used a new similarity coefficient using the score function. Riaz et al.
[120–122] introduced the N-soft topology and soft rough topology with applications to group decision
making. Riaz and Hashmi [123] presented the concept of the cubic m-polar fuzzy set application in
multi-attribute group decision making (MAGDM) with application to the agribusiness domain.

MCDM problem solving based on the notion of linear Diophantine fuzzy set (LDFS) was presented
in [124]. LDFS is superior ti IFS, PFS, and q-ROFS. Riaz and Hashmi [125] introduced novel concepts
of MCDM based on soft rough Pythagorean m-polar fuzzy sets and Pythagorean m-polar fuzzy soft
rough sets. New approaches based on the idea of bipolar fuzzy soft topology, cubic bipolar fuzzy sets,
and cubic bipolar fuzzy ordered weighted geometric aggregation were also presented in [126–128].
Studies confirmed a broad spectrum of practical usage of the given extensions.
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They presented various illustrations and decision making applications of these concepts by using
different algorithms. In [129], the useful concept of bipolar fuzzy soft mappings was presented.
The same idea was successfully applied in the new TOPSIS method extension and its applications to
MCGDM [130].

Xu proposed the IF aggregation operators concept in [131]. In the book [132], Xu and Cai
introduced the theory and applications of the intuitionistic aggregation of fuzzy information. Xu [133]
investigated hesitant fuzzy sets theory and different ways of aggregation knowledge. The next
stage of development was the research conducted by Ye [134], who showed an approach based on
interval-valued hesitant fuzzy prioritized weighted aggregation (IVHFPWA) operators and their
practical application to MCDM problems. The linguistic neutrosophic cubic numbers were first
presented as an extended approach to solving MCDM problems in [135]. Two interesting approaches
related to soft rough covering and rough soft hemirings were proposed by Zhan et al. [136,137].
Zhang et al. [138–140] proposed much work for using uncertain data to solve MCDM problems. As
a result of their work, they presented fuzzy soft β-covering based fuzzy rough sets, covering on
generalized intuitionistic fuzzy rough sets, and fuzzy soft coverings based fuzzy rough sets. Ali [141]
presented two new approaches of q-rung orthopair fuzzy sets based on L-fuzzy sets and the notion of
orbits. Liu and Wang [142] presented some q-rung orthopair fuzzy aggregation operators and their
application to MCDM. Liu et al. [143] developed a ranking range based approach to MCDM under
incomplete knowledge, and it was verified in the venture investment evaluation.

3. Preliminaries

In this section, the conceptual ideas related to q-ROFS are given that are used in the rest of
the paper.

Definition 1 ([98]). A q-rung orthopair fuzzy set (q-ROFS) in a finite universe f is an object of the form:

M = {< ℵ,YM(ℵ),FM(ℵ) >: ℵ ∈ f}

where YM(ℵ) and FM(ℵ) represent the degree of membership and the degree of non-membership of the element
ℵ ∈ f, respectively, to the set M with the condition:

0 ≤ YM(ℵ)q +FM(ℵ)q ≤ 1, (q ≥ 1)

and the degree of indeterminacy is given as:

πM(ℵ) = (YM(ℵ)q +FM(ℵ)q −YM(ℵ)qFM(ℵ)q)1/q

For each ℵ ∈ f, a basic element of the form 〈YM(ℵ),FM(ℵ)〉 in a q-ROFS, denoted by M, is called the q-rung
orthopair fuzzy number (q-ROFN). It can be written as G = 〈YM,FM〉.

3.1. Operational Laws on q-Rung Orthopair Fuzzy Numbers

Definition 2 ([142]). Let G1 = 〈Y1,F1〉 and G2 = 〈Y2,F2〉 be q-ROFNs. Then:

(1) Ḡ1 = 〈F1,Y1〉
(2) G1 ∨ G2 = 〈max{Y1,F1}, min{Y2,F2}〉
(3) G1 ∧ G2 = 〈min{Y1,F1}, max{Y2,F2}〉
(4) G1 ⊕ G2 = 〈(Yq

1 +Y
q
2 −Y

q
1Y

q
2)

1/q,F1F2〉
(5) G1 ⊗ G2 = 〈Y1Y2, (F q

1 +F q
2 −F

q
1F

q
2 )

1/q〉
(6) σG1 = 〈(1− (1−Y

q
1)

σ)1/q,Fσ
1 〉

(7) Gσ
1 = 〈Yσ

1 , (1− (1−F q
1 )

σ)1/q〉
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Definition 3 ([142]). Assume that Ğk = 〈Yk,Fk〉 is a family of q-ROFNs, and q− ROFWA : Λn → Λ, if:

q− ROFWA(Ğ1, Ğ2, . . . Ğn) =
n

∑
k=1

FkĞk

= F1Ğ1 ⊕ F2Ğ2 ⊕ . . . ,FnĞn

where Λ is the set of all q-ROFNs, F = (F1,F2, . . . ,Fn)T is the weight vector of (Ğ1, Ğ2, . . . , Ğn) such that
0 6 Fk 6 1, and the sum of the components of F must be equal to one. Then, the q-ROFWA is called the q-rung
orthopair fuzzy weighted average operator.

Based on q-ROFNs operational rules, we can also consider q-ROFWAwith Theorem 1.

Theorem 1. Let Ğk = 〈Yk,Fk〉 be the family of q-ROFNs; we can find q− ROFWG by:

q− ROFWA(Ğ1, Ğ2, . . . Ğn) =

〈
q

√
(1−

n

∏
k=1

(1−Y
q
k)

Fk ),
n

∏
k=1
FFk

k

〉

Definition 4. Assume that Ğk = 〈Yk,Fk〉 is the family of q− ROFN, and q− ROFWG : Λn → Λ, if:

q− ROFWG(Ğ1, Ğ2, . . . Ğn) =
n

∑
k=1
ĞFk

k

= ĞF1
1 ⊗ Ğ

F2
2 ⊗ . . . , ĞFn

n

where Λn is the set of all q− ROFNs, F = (F1,F2, . . . ,Fn)T is the weight vector of (Ğ1, Ğ2, . . . , Ğn) such that
0 6 Fk 6 1, and the sum of the components of F must be equal to one. Then, the q− ROFWGis called the
q-rung orthopair fuzzy weighted geometric operator. On the basis of the operational laws of q-ROFNs, we can
also find q− ROFWG by the theorem below.

Theorem 2. Let Ğk = 〈Yk,Fk〉 be the family of q-ROFNs; we can find q− ROFWG by:

q− ROFWG(Ğ1, Ğ2, . . . Ğn) =

〈 n

∏
k=1

Y
Fk
k , q

√
(1−

n

∏
k=1

(1−F q
k )

Fk )

〉

Definition 5. Suppose <̃ = 〈Y,F〉 is a q-ROFN, then a score function E of <̃ is defined as:

E(<̃) = Yq −F q

E(<̃) ∈ [−1, 1]. The score of a q-ROFN defines its ranking, i.e., a high score defines a high preference of
q-ROFN. However, the score function is not useful in many cases of q-ROFN. For example, let us consider
G1 = 〈0.6138, 0.2534〉 and G2 = 〈0.7147, 0.4453〉 to be two q-ROFN. If we take the value of q to be two,
then E(G1) = 0.3125 = E(G2), i.e, the score functions of G1 and G2 are the same. Therefore, to compare the
q-ROFNs, it is not necessary to rely on the score function.

We add a further method, the accuracy function, to solve this issue.

Definition 6. Suppose <̃ = 〈Y,F〉 is a q-ROFN, then an accuracy function R of <̃ is defined as:

R(<̃) = Yq +F q

R(<̃) ∈ [0, 1]. The high value of accuracy degree R(<̃) defines the high preference of <̃.
Again, consider G1 = 〈0.6138, 0.2534〉 and G2 = 〈0.7147, 0.4453〉 to be two q-ROFNs. Then, their accuracy
functions are R(G1) = 0.4410 and R(G2) = 0.4410,
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so by the accuracy function, we have G1 < G2.

Definition 7. Let C̃ = 〈YC̃,FC̃〉 and B̃ = 〈YB̃,FB̃〉 be any two q-ROFN and E(C̃),E(B̃) be the score
functions of C̃ and B̃, and R(C̃),R(B̃) be the accuracy functions of C̃ and B̃, respectively, then:

(1) If E(C̃) > E(B̃), then C̃ > B̃

(2) If E(C̃) = E(B̃), then:

if R(C̃) > R(B̃), then C̃ > B̃,
if R(C̃) = R(B̃), then C̃ = B̃.

4. Einstein Operational Laws of q-ROFNs

We will give an overview of the t-norm and t-conorm in this section and give examples relevant
to these norms. Some of the properties of Einstein operations are given on q-ROFNs.

For the first time in the sense of probabilistic metric spaces, triangular norms have been adopted
as we use them today. Throughout decision making, statistics, and theories on non-additive measures
and cooperative games, they also play a significant role. Many parameterized t-norm families are
renowned functional equation solutions. T-norms are used in fuzzy set theory at the intersection of two
fuzzy sets. For modeling disjunction or union, t-conorms are used. These are a simple interpretation
of the conjunction and disjunction in mathematical fuzzy logic semantics and are used in MCDM to
combine criteria.

A triangular norm (t-norm) is a binary operation z that satisfies the following conditions at the
interval [0, 1]:

(i) z(ℵ, ∂̃) = z(∂̃,ℵ)
(ii) z(ℵ,z(∂̃, Z̃)) = z(z(ℵ, ∂̃), Z̃)

(iii) if P̃ ≤ ℵ and ∂̃ ≤ Z̃, then z(P̃, ∂̃) ≤ z(ℵ, Z̃)
(iv) z(ℵ, 1) = 1 (neutral element one) and z(0, 0) = 0

Here, some famous examples of the t-norm are given:

• zM(ℵ, ∂̃) = min(ℵ, ∂̃) (minimum or Gödel t-norm)
• zP(ℵ, ∂̃) = ℵ.∂̃ (product t-norm)
• zL(ℵ, ∂̃) = max(ℵ+ ∂̃− 1, 0) (Lukasiewicz t-norm)

No t-norm can attain greater values than zM. The idempotents of a t-norm z are those ℵ satisfying
z(ℵ,ℵ) = ℵ. The bounds zero and one are trivial idempotents. A t-norm is called Archimedean if
each sequence ℵn, n ∈ N, where ℵ1 < 1 and ℵn = z(ℵn,ℵn), converges to zero. A continuous t-norm
is Archimedean iff it has no idempotents between zero and one. A continuous Archimedean t-norm is
called strict if z(ℵ,ℵ) > 0 for all ℵ > 0. Continuous Archimedean t-norms that are not strict are called
nilpotent. The product t-norm is strict, and the Lukasiewicz t-norm is nilpotent.

A triangular conorm (t-conorm) is a binary operation S that satisfies the following conditions at
the interval [0, 1]:

(i) S(ℵ, ∂̃) = S(∂̃,ℵ)
(ii) S(ℵ,S(∂̃, Z̃)) = S(S(ℵ, ∂̃), Z̃)

(iii) if P̃ ≤ ℵ and ∂̃ ≤ Z̃, then S(P̃, ∂̃) ≤ S(ℵ, Z̃)
(iv) S(ℵ, 0) = 1 (neutral element zero) and S(1, 1) = 1

Here, some famous examples of t-conorm are given:

• SM(ℵ, ∂̃) = max(ℵ, ∂̃) (maximum or Gödel t-conorm)
• SP(ℵ, ∂̃) = ℵ+ ∂̃− ℵ.∂̃ (product t-conorm)
• SL(ℵ, ∂̃) = min(ℵ+ ∂̃, 1) (Lukasiewicz t-conorm)



Energies 2020, 13, 2155 9 of 40

No t-conorm can attain smaller values than SM. If z is a t-norm, then S(ℵ, ∂̃) = 1−z(1−ℵ, 1− ∂̃) is
a t-conorm, and vice versa. Thus, we obtain a dual pair of a t-norm and a t-conorm. There are several
types of groups of t-norms and t-conorms that can be chosen to construct the intersections and unions.
Einstein sums and Einstein products are good alternatives for algebraic sums and algebraic products
because they provide a very smooth approximation. Einstein sums and products are examples of
t-norms and t-conorms and are defined as follows in the q-ROF setting.

zε(ℵ, ∂̃) =
ℵ.ε∂̃

q
√

1 + (1− ℵq).ε(1− ∂̃q)
, Sε(ℵ, ∂̃) = q

√
ℵq + ∂̃q

1 + ℵq.ε∂̃q

Definition 8. Let G1 = 〈Y1,F1〉 and G2 = 〈Y2,F2〉 be q-ROFNs and w > 0 be any real number, then:
(i) G1 = 〈F1,Y1〉
(ii) G1 ∨ε G2 = 〈max{Y1,Y2}, min{F1,F2}〉
(iii) G1 ∧ε G2 = 〈min{Y1,Y2}, max{F1,F2}〉

(iv) G1 ⊗ε G2 =

〈
Y1.εY2

q
√

1+(1−Yq
1).ε(1−Y

q
2)

, q

√
F q

1+F
q
2

1+F q
1 .εF

q
2

〉
(v) G1 ⊕ε G2 =

〈
q

√
Y

q
1+F

q
2

1+Y
q
1.εY

q
2
, F1.εF2

q
√

1+(1−F q
1 ).ε(1−F

q
2 )

〉
(vi) w.εG1 =

〈
q
√

(1+(Y1)
q)w−(1−(Y1)

q)w

(1+(Y1)
q)w+(1−(Y1)

q)w
,

q√2(F1)
w

q
√

(2−(Y1)
q)w+((F1)

q)w

〉
(vii) Gw1 =

〈
q√2(Y1)

w

q
√

(2−(Y1)
q)w+((Y1)

q)w
, q
√

(1+(F1)
q)w−(1−(F1)

q)w

(1+(F1)
q)w+(1−(F1)

q)w

〉

Theorem 3. Let G1 and G2 be q-ROFNs and w,w1,w2 ≥ 0 be any real number, then:
(i) G1 ⊗ε G2 = G2 ⊗ε G1

(ii) G1 ⊕ε G2 = G2 ⊕ε G1

(iii) (G1 ⊗ε G2)
w = Gw1 ⊗ε Gw2

(iv) w.ε(G1 ⊕ε G2) = w.εG1 ⊕ε w.εG2

(v) Gw1
1 ⊗ε Gw2

1 = Gw1+w2
1

(vi) w1.ε(w2.εG1) = (w1.εw2).εG1

(vii) (Gw1
1 )w2 = (G1)

w1.εw2

(viii) w1.εG1 ⊕ε w2 = (w1 +w2).εG1

Proof. See Appendix A.1.

Theorem 4. Let G1 = 〈Y1,F1〉 and G2 = 〈Y2,F2〉 be q-ROFNs, then:

(i) Gc
1 ∨ε Gc

2 = (G1 ∧ε G2)
c

(ii) Gc
1 ∧ε Gc

2 = (G1 ∨ε G2)
c

(iii) Gc
1 ⊗ε Gc

2 = (G1 ⊕ε G2)
c

(iv) Gc
1 ⊕ε Gc

2 = (G1 ⊗ε G2)
c

(v) (G1 ∨ε G2)⊕ε (G1 ∧ε G2) = (G1 ⊕ε G2)

(vi) (G1 ∨ε G2)⊗ε (G1 ∧ε G2) = (G1 ⊗ε G2)

Proof. This is a trivial case. We omit it here.

Theorem 5. Let G1 = 〈Y1,F1〉, G2 = 〈Y2,F2〉 and G3 = 〈Y3,F3〉 be q-ROFNs, then:

(i) (G1 ∨ε G2)⊗ε G3 = (G1 ⊗ε G3) ∨ε (G2 ⊗ε G3)
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(ii) (G1 ∧ε G2)⊗ε G3 = (G1 ⊗ε G3) ∧ε (G2 ⊗ε G3)

(iii) (G1 ∨ε G2)⊕ε G3 = (G1 ⊕ε G3) ∨ε (G2 ⊕ε G3)

(iv) (G1 ∧ε G2)⊕ε G3 = (G1 ⊕ε G3) ∧ε (G2 ⊕ε G3)

(v) (G1 ∧ε G2) ∨ε G3 = (G1 ∨ε G3) ∧ε (G2 ∨ε G3)

(vi) (G1 ∨ε G2) ∧ε G3 = (G1 ∧ε G3) ∨ε (G2 ∧ε G3)

Proof. This is a trivial case. We omit it here.

5. q-Rung Orthopair Fuzzy Einstein Aggregation Operators

In this section, we introduce several new Einstein operators for q-ROFNs, namely the q-rung
orthopair fuzzy Einstein weighted averaging (q-ROFEWA) operator, the q-rung orthopair fuzzy
Einstein ordered weighted averaging (q-ROFEOWA) operator, the q-rung orthopair fuzzy Einstein
weighted geometric (q-ROFEWG) operator, and the q-rung orthopair fuzzy Einstein ordered weighted
geometric (q-ROFEOWG) operator.

5.1. q-Rung Orthopair Fuzzy Einstein Weighted Averaging Operator

Definition 9. Let Gp = 〈Yp,Fp〉 be the family of q-ROFNs and (q-ROFEWA): Λn → Λ if,

q-ROFEWA(G1,G2, . . . ,Gn) =
n

∑
s=1

FsGs

= F1.εG1 ⊕ε F2.εG2 ⊕ε . . .⊕ε Fn.εGn

where Λ is the set of all q− ROFNs, F = (F1,F2, . . . ,Fn)T is the weight vector of (G1,G2, . . . ,Gn) such that
0 6 Fs 6 1, and the sum of the components of F must be equal to one. Then, the q-ROFEWA is called the q-rung
orthopair fuzzy Einstein weighted averaging operator.

We can also consider q-ROFEWA by the following theorem on the basis of Einstein’s operational laws
of q-ROFNs.

Theorem 6. Let Gp = 〈Yp,Fp〉 be the family of q-ROFNs; we can also find q-ROFEWA by:

q-ROFEWA(G1,G2, . . . ,Gn) =

〈
q

√
∏n

s=1(1 + (Ys)q)Fs −∏n
s=1(1− (Ys)q)Fs

∏n
s=1(1 + (Ys)q)Fs + ∏n

s=1(1− (Ys)q)Fs
,

q
√

2 ∏n
s=1 F

Fs
s

∏n
s=1(2− (Fs)q)Fs + ∏n

s=1((Fs)q)Fs

〉

where F = (F1,F2, . . . ,Fn)T is the weight vector of (G1,G2, . . . ,Gn) such that 0 6 Fs 6 1 and ∑n
s=1 Fs = 1

and the sum of the components of F must be equal to one.

Proof. See Appendix A.2.

Theorem 7. The aggregated value using the q-ROFEWA operator is q-ROFN.

Proof. See Appendix A.3.

Theorem 8. Let Gp = 〈Yp,Fp〉 be the family of q-ROFNs. Then, the q-ROFWA operator and the q-ROFEWA
operator have the following relation:

q-ROFEWA(G1,G2, . . . ,Gn) ≤ q-ROFWA(G1,G2, . . . ,Gn)
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Proof. See Appendix A.4.

Example 1. Let G1 = (0.64, 0.90), G2 = (0.54, 0.94), G3 = (0.45, 0.63) and G4 = (0.59, 0.26) be the family
of q-ROFNs, and the weight vector for these numbers is F = (0.3, 0.2, 0.4, 0.1). q = 3, then we have,

q

√
∏4

s=1(1 + (Ys)q)Fs −∏4
s=1(1− (Ys)q)Fs

∏4
s=1(1 + (Ys)q)Fs + ∏4

s=1(1− (Ys)q)Fs
= 0.5519

q
√

2 ∏4
s=1 F

Fs
s

∏4
s=1(2− (Fs)q)Fs + ∏4

s=1((Fs)q)Fs
= 0.7173

and:

q− ROFEWA(G1,G2,G3,G4) =

〈
q

√
∏4

s=1(1 + (Ys)q)Fs −∏4
s=1(1− (Ys)q)Fs

∏4
s=1(1 + (Ys)q)Fs + ∏4

s=1(1− (Ys)q)Fs
,

q
√

2 ∏4
s=1 F

Fs
s

∏4
s=1(2− (Fs)q)Fs + ∏4

s=1((Fs)q)Fs

〉
= (0.5519, 0.7173)

Now, we use q-ROFWA operator on these q-ROFNs:

q-ROFWA(G1,G2,G3,G4) =

〈
q

√√√√(1−
4

∏
k=1

(1−Y
q
k)

Fk ),
4

∏
k=1
FFk

k

〉
= (0.5543, 0.6952).

It can be easily seen that:

q-ROFEWA(G1,G2,G3,G4) ≤ q− ROFWA(G1,G2,G3,G4)

5.2. q-Rung Orthopair Fuzzy Einstein Ordered Weighted Averaging Operator

Definition 10. Let Gp = 〈Yp,Fp〉 be the family of q-ROFNs and (q-ROFEOWA): Λn → Λ if,

q-ROFEOWA(G1,G2, . . . ,Gn) =
n

∑
s=1

FsGs

= F1.εG£(1) ⊕ε F2.εG£(2) ⊕ε . . .⊕ε Fn.εG£(n)

where Λ is the set of all q-ROFNs, F = (F1,F2, . . . ,Fn)T is the weight vector of (G1,G2, . . . ,Gn) such that
0 6 Fs 6 1 and £(1), £(2), . . . , £(n) is a permutation of (1, 2, . . . , n) such that G£(i−1) ≥ G£(i). Then, the
q-ROFEWA is called the q-rung orthopair fuzzy Einstein weighted averaging operator.

We can also consider q-ROFEOWA by the following theorem on the basis of Einstein’s operational
laws of q-ROFNs.

Theorem 9. Let Gp = 〈Yp,Fp〉 be the family of q-ROFNs; we can also find q-ROFEWA by:

q-ROFEOWA(G1,G2, . . . ,Gn) =

〈
q

√
∏n

s=1(1 + (Y£(s))
q)Fs −∏n

s=1(1− (Y£(s))
q)Fs

∏n
s=1(1 + (Y£(s))

q)Fs + ∏n
s=1(1− (Y£(s))

q)Fs
,

q
√

2 ∏n
s=1 F

Fs
£(s)

∏n
s=1(2− (F£(s))

q)Fs + ∏n
s=1((F£(s))

q)Fs

〉
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where F = (F1,F2, . . . ,Fn)T is the weight vector of (G1,G2, . . . ,Gn) such that 0 6 Fs 6 1 and ∑n
s=1 Fs = 1.

£(1), £(2), . . . , £(n) is a permutation of (1, 2, . . . , n) such that G£(i−1) ≥ G£(i).

Proof. The proof is the same as Theorem 3.

Theorem 10. Let Gp = 〈Yp,Fp〉 be the family of q-ROFNs. Then, the q-ROFOWA operator and q-ROFEOWA
operator have the following relation:

q-ROFEOWA(G1,G2, . . . ,Gn) ≤ q− ROFOWA(G1,G2, . . . ,Gn)

Proof. The proof is the same as Theorem 5.

Example 2. Let G1 = (0.64, 0.90), G2 = (0.54, 0.94), G3 = (0.45, 0.63) and G4 = (0.59, 0.26) be the family
of q-ROFNs, and the weight vector for these numbers is F = (0.3, 0.2, 0.4, 0.1). Take q = 3. First, we find score
function of all q-ROFNs,

E(G1) = −0.4669

E(G2) = −0.6731

E(G3) = −0.1589

E(G4) = 0.1878

Now, G£(1) = G4, G£(2) = G3, G£(3) = G1, and G£(4) = G2. Then, we have,

q

√√√√∏4
s=1(1 + (Y£(s))

q)Fs −∏4
s=1(1− (Y£(s))

q)Fs

∏4
s=1(1 + (Y£(s))

q)Fs + ∏4
s=1(1− (Y£(s))

q)Fs
= 0.586006

q
√

2 ∏4
s=1 F

Fs
£(s)

∏4
s=1(2− (F£(s))

q)Fs + ∏4
s=1((F£(s))

q)Fs
= 0.608596

and:

q-ROFEOWA(G£(1),G£(2),G£(3),G£(4)) =

〈
q

√√√√∏4
s=1(1 + (Y£(s))

q)Fs −∏4
s=1(1− (Y£(s))

q)Fs

∏4
s=1(1 + (Y£(s))

q)Fs + ∏4
s=1(1− (Y£(s))

q)Fs
,

q
√

2 ∏4
s=1 F

Fs
£(s)

∏4
s=1(2− (F£(s))

q)Fs + ∏4
s=1((F£(s))

q)Fs

〉
= (0.586006, 0.608596)

Now, we use the q-ROFOWA operator on these q-ROFNs:

q-ROFOWA(G£(1),G£(2),G£(3),G£(4)) =

〈
q

√√√√(1−
4

∏
k=1

(1−Y£(k))
q)Fk ),

4

∏
k=1
F£(k))

Fk

〉
= (0.587646, 0.579922)

It can be easily seen that:

q-ROFEOWA(G£(1),G£(2),G£(3),G£(4)) ≤ q− ROFOWA(G£(1),G£(2),G£(3),G£(4))
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5.3. q-Rung Orthopair Fuzzy Einstein Weighted Geometric Operator

Definition 11. Let Gp = 〈Yp,Fp〉 be the family of q-ROFNs and (q-ROFEWG): Λn → Λ if,

q-ROFEWG(G1,G2, . . . ,Gn) =
n

∑
s=1
GFs

s

= GF1
1 ⊗ε GF2

2 ⊗ε . . .⊗ε GFn
n

where Λ is the set of all q-ROFNs and F = (F1,F2, . . . ,Fn)T is the weight vector of (G1,G2, . . . ,Gn) such that
0 6 Fs 6 1. Then, the q-ROFEWG is called the q-rung orthopair fuzzy Einstein weighted geometric operator.

We can also consider q-ROFEWG by the following theorem on the basis of Einstein’s operational laws
of q-ROFNs.

Theorem 11. Let Gp = 〈Yp,Fp〉 (p = 1, 2, . . . , n) be the family of q-ROFNs. Then:

q-ROFEWG(G1,G2, . . . ,Gn) =

〈
q
√

2 ∏n
s=1 Y

Fs
s

∏n
s=1(2− (Ys)q)Fs + ∏n

s=1((Ys)q)Fs
,

q

√
∏n

s=1(1 + (Fs)q)Fs −∏n
s=1(1− (Fs)q)Fs

∏n
s=1(1 + (Fs)q)Fs + ∏n

s=1(1− (Fs)q)Fs

〉

where F = (F1,F2, . . . ,Fn)T is the weight vector of (G1,G2, . . . ,Gn) such that 0 6 Fs 6 1 and ∑n
s=1 Fs = 1.

Proof. See Appendix A.5.

Theorem 12. The aggregated value using q-ROFEWG operator is q-ROFN.

Proof. See Appendix A.6.

Theorem 13. Let Gp = 〈Yp,Fp〉 (p = 1, 2, . . . , n) be the family of q-ROFNs. Then, the q-ROFWG operator
and q-ROFEWG operator have the following relation:

q− ROFEWG(G1,G2, . . . ,Gn) ≤ q− ROFWG(G1,G2, . . . ,Gn)

Proof. The proof is the same as Theorem 5.

Example 3. Let G1 = (0.54, 0.83), G2 = (0.43, 0.73), G3 = (0.26, 0.67), and G4 = (0.63, 0.91) be the family
of q-ROFNs, and the weight vector for these numbers is F = (0.4, 0.2, 0.1, 0.3). If q = 3, then we have,

q
√

2 ∏4
s=1 Y

Fs
s

∏4
s=1(2− (Ys)q)Fs + ∏4

s=1((Ys)q)Fs
= 0.504864

q

√
∏4

s=1(1 + (Fs)q)Fs −∏4
s=1(1− (Fs)q)Fs

∏4
s=1(1 + (Fs)q)Fs + ∏4

s=1(1− (Fs)q)Fs
= 0.835576
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and:

q-ROFEWG(G1,G2,G3,G4) =

〈
q
√

2 ∏4
s=1 Y

Fs
s

∏4
s=1(2− (Ys)q)Fs + ∏4

s=1((Ys)q)Fs
,

q

√
∏4

s=1(1 + (Fs)q)Fs −∏4
s=1(1− (Fs)q)Fs

∏4
s=1(1 + (Fs)q)Fs + ∏4

s=1(1− (Fs)q)Fs

〉
= (0.504864, 0.835576)

Now, we use q-ROFWG operator on these q-ROFNs:

q-ROFWG(G1,G2,G3,G4) =

〈 4

∏
k=1

Y
Fk
k , q

√√√√(1−
4

∏
k=1

(1−F q
k )

Fk )

〉
= (0.502286, 0.839142)

It can be easily seen that:

q-ROFEWG(G1,G2,G3,G4) ≤ q-ROFWG(G1,G2,G3,G4)

5.4. q-Rung Orthopair Fuzzy Einstein Ordered Weighted Geometric Operator

Definition 12. Let Gp = 〈Yp,Fp〉 be the family of q-ROFNs and (q-ROFEOWG): Λn → Λ if,

q-ROFEOWG(G1,G2, . . . ,Gn) =
n

∑
s=1
GFs

s

= GF1
£(1) ⊗ε GF2

£(2) ⊗ε . . .⊗ε GFn
£(n)

where Λ is the set of all q− ROFNs and F = (F1,F2, . . . ,Fn)T is the weight vector of (G1,G2, . . . ,Gn) such
that 0 6 Fs 6 1. £(1), £(2), . . . , £(n) is a permutation of (1, 2, . . . , n) such that G£(i−1) ≥ G£(i). Then,
q− ROFEWA is called the q-rung orthopair fuzzy Einstein weighted geometric operator.

On the basis of Einstein operational laws of q-ROFNs, we can also find q-ROFEOWG by the
following theorem.

Theorem 14. Let Gp = 〈Yp,Fp〉 be the family of q-ROFNs; we can also find q-ROFEWA by:

q-ROFEOWG(G1,G2, . . . ,Gn) =

〈 q
√

2 ∏n
s=1 Y

Fs
£(s)

∏n
s=1(2− (Y£(s))

q)Fs + ∏n
s=1((Y£(s))

q)Fs
,

q

√
∏n

s=1(1 + (F£(s))
q)Fs −∏n

s=1(1− (F£(s))
q)Fs

∏n
s=1(1 + (F£(s))

q)Fs + ∏n
s=1(1− (F£(s))

q)Fs

〉

where F = (F1,F2, . . . ,Fn)T is the weight vector of (G1,G2, . . . ,Gn) such that 0 6 Fs 6 1.
£(1), £(2), . . . , £(n) is a permutation of (1, 2, . . . , n) such that G£(i−1) ≥ G£(i).

Proof. The proof is the same as Theorem 11.

Theorem 15. Let Gp = 〈Yp,Fp〉 be the family of q-ROFNs. Then, the q-ROFOWA operator and
q-ROFEOWG operator have the following relation:

q-ROFEOWG(G1,G2, . . . ,Gn) ≤ q-ROFOWG(G1,G2, . . . ,Gn)
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Proof. The proof is obvious.

Example 4. Let G1 = (0.54, 0.83), G2 = (0.43, 0.73), G3 = (0.26, 0.67), and G4 = (0.63, 0.91) be the family
of q-ROFNs, and the weight vector for these numbers is F = (0.4, 0.2, 0.1, 0.3). If q = 3, first we find the score
function of all q-ROFNs,

E(G1) = −0.4143

E(G2) = −0.3095

E(G3) = −0.2832

E(G4) = −0.5035

Now, G£(1) = G3, G£(2) = G2, G£(3) = G1, and G£(4) = G4. Then we have,

q
√

2 ∏4
s=1 Y

Fs
£(s)

∏4
s=1(2− (Y£(s))

q)Fs + ∏4
s=1((Y£(s))

q)Fs
= 0.406854

q

√√√√∏4
s=1(1 + (F£(s))

q)Fs −∏4
s=1(1− (F£(s))

q)Fs

∏4
s=1(1 + (F£(s))

q)Fs + ∏4
s=1(1− (F£(s))

q)Fs
= 0.800078

and:

q-ROFEOWG(G£(1),G£(2),G£(3),G£(4)) =

〈 q
√

2 ∏4
s=1 Y

Fs
£(s)

∏4
s=1(2− (Y£(s))

q)Fs + ∏4
s=1((Y£(s))

q)Fs
,

q

√√√√∏4
s=1(1 + (F£(s))

q)Fs −∏4
s=1(1− (F£(s))

q)Fs

∏4
s=1(1 + (F£(s))

q)Fs + ∏4
s=1(1− (F£(s))

q)Fs

〉
= (0.406854, 0.800078)

Now, we use q-ROFOWG operator on these q-ROFNs:

q− ROFOWG(G£(1),G£(2),G£(3),G£(4)) =

〈 4

∏
k=1

Y£(k))
Fk , q

√√√√(1−
4

∏
k=1

(1−F£(k))
q)Fk )

〉
= (0.403389, 0.807254)

It can be easily seen that:

q− ROFEOWG(G£(1),G£(2),G£(3),G£(4)) ≤ q− ROFOWG(G£(1),G£(2),G£(3),G£(4))

6. MCDM Problem for the Proposed Operators

We discuss the MCDM problem by using the proposed operators. Consider a set of alternatives
T̂ = {T̂1, T̂2, . . . , T̂m} with m elements, and O = {O1,O2, . . . ,On} is the finite set of criteria with n
elements. The decision maker provides a matrix of his/her own opinion D = (ζij)m×n, where ζij is
given for the alternatives T̂i ∈ T̂ with respect to the criteria Oj ∈ O by the decision maker in the form
of q-ROFNs. A MCDM problem can be expressed in the form of the decision matrix of q− ROPFNs
written by D = (ζij)m×n = (Yij,Fij)m×n:
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O1 O2 On


T̂1 (Y11,F11) (Y12,F12) · · · · · · (Y1n,F1n)

T̂2 (Y21,F21) (Y22,F22) · · · · · · (Y2n,F2n)
...

...
. . . . . .

...
T̂m (Ym1,Fm1) (Ym2,Fm2) · · · · · · (Ymn,Fmn)

The proposed operators will be applied to the MCDM, which involves Algortihm 1.

Algorithm 1

Step 1: Acquire a decision matrix D = (ζij)m×n in the form of q-ROFNs from the decision maker.
Step 2: The criteria involved in the decision matrix are defined by two types, namely cost-type criteria
(τc) and benefit-type criteria (τb). If all criteria are the same types, there is no need for normalization,
but there are two types of criteria in MCDM; in this case using the normalization formula the matrix D
has been changed into normalizing matrix Y(kij) = (ψij, φij):

kij = (ψij, φij) =

{
ςc

ij; j ∈ τc

ςij; j ∈ τb.

where ςc
ij show the compliment of ςij.

Step 3: Use one of the suggested operators to determine cumulative assessments of the alternatives.

ki = q− ROFEWA(ki1, ki2, . . . , kin), (i = 1, 2, 3, . . . , m)

or:
ki = q− ROFEWG(ki1, ki2, . . . , kin), (i = 1, 2, 3, . . . , m)

Step 4: Calculate the score of all cumulative assessments of the alternatives.
Step 5: Rank the alternatives by the score function and ultimately choose the most suitable alternative.

The flowchart of the proposed algorithm is presented in Figure 1.

Figure 1. Flowchart of the proposed algorithm.

6.1. Case Study

Electricity is a main energy resource among the different energy resources and has a high demand
from the different economic sectors. Nevertheless, the production of electricity is followed by serious
challenges of technology, climate, and sustainability. Fossil fuels such as coal, oil, and natural gas
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are the main primary energy resources used to generate electricity. It was recently reported that
around 70% of electricity is produced worldwide from fossil fuels. Consequently, fossil fuel electricity
generation also includes greenhouse gases (GHG), other emissions, and air pollutants. A comparison
is made between coal, natural gas, nuclear, hydro, solar, wind, geothermal, and biomass generation.
The parameters considered are system cost minimization, water footprint, and land intensity. The most
popular energy modeling techniques include [144–146]:

• The energy and power evaluation program (ENPEP) is a nonlinear equilibrium model that
balances the requirement for energy with available resources and technologies;

• Market allocation (MARKAL) is an integrated energy system that may be used to quantify the
consequences of policy decisions on technology development and resource consumption;

• The model for the energy supply strategy alternatives and their general environmental impact
(MESSAGE) combines technologies and fuels and constructs energy chains, which allows mapping
energy flows from resource extraction to energy services; and

• The long-range energy alternatives planning system (LEAP) assists in energy policy analysis,
especially tracking energy consumption, production, and resource extraction. These strategies
are well designed for various levels of energy management. Energy models include a reliable
framework to check predictions by organizing massive amounts of data in an open manner that
reflects a stable system.

Across its background, Pakistan has suffered terrible energy challenges. The country’s energy crises,
which extend mostly over a decade, have resulted in the collapse of thousands of factories, decreasing
industrial production and influencing the lives of millions of families. For a developing country like
Pakistan, choosing the best future direction of electricity generation is an inevitable challenge. In this
context, energy modeling could be of great help if it takes into account the energy resource efficiency
and the techno-economic and other relevant parameters to identify potential future energy pathways.
Throughout the last quarter century, these crises have negatively affected the economy, with a loss
of around 10% of the total gross domestic product(GDP). If not resolved at both the operational and
strategic levels, Pakistan’s energy challenges could become a national interest threat [147].

In this analysis, electricity demand for the 2015–2050 time frame was calculated using the LEAP
model. LEAP has become a consumer-friendly energy management tool that is used internationally
for energy policy analysis. LEAP promotes a modeling approach based on scenarios by monitoring
the growth, transition, and use of energy resources across the economy [148]. LEAP is a commonly
used software tool developed at the Swedish Environment Institute for energy policy research and
evaluation of climate change mitigation. LEAP has been implemented in far more than 190 countries
around the world. The customers include state agencies, researchers, NGOs, consulting firms, and
energy providers. It has been used from cities and countries to regional, national, and international
applications in a wide range of dimensions. [149] When designing the modeling structure for Pakistan’s
LEAP, 2015 was set as the reference year, as well 2050 as the final year. Reference (REF), which is an
energy mechanism according to the latest plans and policies of the GOP, was the first supply side
example. The paths of renewable energy technologies (RET) envisaged full penetration of renewable
energy sources, and the scenario of clean coal maximum (CCM) foresees the use of reliable technologies
for coal based power generation. The fourth scenario is called the energy efficiency and conservation
(EEC) scenario. Pakistan’s total electricity requirement in 2050 is expected to be 1706.1 TWh, and
in 2015, it was just 90.4 TWh. Because the REF, RET, and CCM scenarios were based on common
demand-side assumptions, there was the same demand forecast for these three scenarios. For the EEC
scenario, however, the projection of electricity demand for the same duration was calculated at 1373.2
TWh, which was 20 percent lower than the demand projected in the reference scenario.
Table 1 shows a concise overview of the main scenarios (alternatives).
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Table 1. Concise overview of the main scenarios. CCM, clean coal maximum; EEC, energy efficiency
and conservation; RET, renewable energy technologies.

Scenario Definition Resources

CCM The choice of clean coal is Indigenous coal, oil, gas,
favorable under this scenario. and nuclear.

EEC The efficiency and conservation measures Strategies for productivity and
are considered under this scenario. capacity for recycling.

REF The current proposal and policy of As per the plans and policies
the state is being pursued in this situation. of the state.

RET Sustainable energy options and technology Sources of renewable energy,
are favored under this situation. hydro, solar, wind, and biomass.

The supply side scenario alternatives were developed in the LEAP model in accordance
with the different production technology’s resource potential and technical-economic parameters.
The 2015/2050 generation (TWh) and installed power (GW) forecasts for various fuels and technologies
are available. The total installed capacity in 2015 was 23.62 (GW). In 2015, the most widely used
technology was oil and open cycle gas, which accounted for half of the installed capacity. Figure 2
presents installed capacity with respect to various fuels and technologies.
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Figure 2. Installed capacity with respect to various fuels and technologies for Pakistan (2015).

By the LEAP model, installed capacity by the different scenarios in 2050 was 425.94 (GW) by REF,
463.9 (GW) by RET, 416.21 (GW) by CCM, and 348.56 (GW) by EEC. Figure 3 shows installed capacity
in different scenarios. The considered scenarios assumed a move away from oil processing and an
increase in the share of renewable energy sources and increased use of coal.
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Figure 3. Installed capacity in different scenarios for Pakistan (2050).

Generation was 108.3 (TWh) from various fuels and innovations in 2015. Figure 4 presents the
details, where most of the electricity was generated using oil and hydro technologies. In this area,
technologies related to coal, solar PV, lifts, and biomass were marginal.
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Figure 4. Generation with respect to various fuels and technology in 2015.

Through LEAP, model generation in 2050 will be 1373.2 (TWh) and through EEC, 1706.10 (TWh)
by REF, RET, and CCM across different scenarios. Figure 5 presents the generation in various scenarios
for Pakistan in 2050. Renewable energy, such as run of river, biomass, and wind, will have the largest
share in electricity generation with varying degrees depending on the chosen scenario.
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Figure 5. Generation in different scenarios for Pakistan (2050).

To determine the best alternative among the four scenarios given in Table 1, we have the following
criteria given in Table 2, which were selected on the basis of a literature review.

Table 2. Criteria for evaluating the best alternative.

Criteria Definition Ref

G1 Requirement for land One of the key elements for an investment is land
requirements. Furthermore, a good land call will
assess monetary losses. [150,151]

G2 CO2 emissions This selection criteria considers the emissions of CO2
and the costs related to waste treatment. [152–154]

G3 Waste disposal management This alternative approach can be measured to reduce
harm to life quality and improve sustainability by
taking this criterion into account. [153,154]

G4 Risk Measures the probability of failure. [153–155]
G5 Feasibility Measures the energy scenario implementation probability. [156,157]
G6 Reliability It is the capacity of a structure to operate according

to the designed circumstances. [83,84,158]
G7 Job creation Energy policies are measured by taking into consideration

the labor effect measured by taking care of jobs directly and indirectly.
[47,49,158]

G8 Investment cost This consists of common expenditure throughout the
establishment of a power plant, which covers the cost
of machinery, manpower, construction, and infrastructure. [63,91,159]

G9 Political acceptance This criterion examines that there may not be consensus
among many of the views of the leaders on the planned
energy policy. [1,2,76,86]

G10 Social acceptance Social acceptance involves evaluating the company’s
perceived understanding of ventures and measuring the
customer’s opinions. [1,2,15,69]

6.2. Illustrative Example

An illustrative example of the sustainable energy policy in Pakistan is given to illustrate the

approach. Here, the set of alternatives is ̂̂T = {T̂1, T̂2, T̂3, T̂4} where T̂1=CCM, T̂2=EEC, T̂3=REF, and
T̂4=RET. In evaluating these alternatives, we have the set of criteria O = {O1,O2, . . . ,O10} given in
Table 2 and take q = 3. Let F = {0.13, 0.8, 0.9, 0.11, 0.8, 0.11, 0.7, 0.9, 0.14, 0.10} be their corresponding
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weight vector, and assume that the expert provides his/her own point of view in the form of the
decision matrix D = (ζij)4×10 of the q-RONs as follows.

O1 O2 O3 O4 O5


T̂1 (0.23, 0.79) (0.34, 0.69) (0.23, 0.71) (0.39, 0.81) (0.16, 0.59)
T̂2 (0.93, 0.11) (0.69, 0.21) (0.79, 0.31) (0.89, 0.31) (0.81, 0.25)
T̂3 (0.71, 0.23) (0.65, 0.31) (0.69, 0.41) (0.83, 0.29) (0.79, 0.34)
T̂4 (0.54, 0.16) (0.23, 0.16) (0.51, 0.53) (0.79, 0.53) (0.89, 0.56)

O6 O7 O8 O9 O10


T̂1 (0.10, 0.69) (0.25, 0.61) (0.41, 0.23) (0.09, 0.63) (0.15, 0.79)
T̂2 (0.81, 0.31) (0.92, 0.13) (0.79, 0.13) (0.69, 0.23) (0.85, 0.27)
T̂3 (0.92, 0.43) (0.53, 0.27) (0.53, 0.23) (0.81, 0.31) (0.89, 0.51)
T̂4 (0.32, 0.16) (0.34, 0.15) (0.79, 0.13) (0.69, 0.17) (0.23, 0.43)

First, we get the normalized decision matrix by taking the compliment of the cost-type criteria,
in Table 2 O1= land requirement, O2 = CO2 emission, O4= risk, and O8= investment cost are the
cost-type criteria. Y(kij) = (ψij, φij) is obtained by taking the compliment operation as follows.

O1 O2 O3 O4 O5


T̂1 (0.79, 0.23) (0.69, 0.34) (0.23, 0.71) (0.81, 0.39) (0.16, 0.59)
T̂2 (0.11, 0.93) (0.21, 0.69) (0.79, 0.31) (0.31, 0.89) (0.81, 0.25)
T̂3 (0.23, 0.71) (0.31, 0.65) (0.69, 0.41) (0.29, 0.83) (0.79, 0.34)
T̂4 (0.16, 0.54) (0.16, 0.23) (0.51, 0.53) (0.53, 0.79) (0.89, 0.56)

O6 O7 G8 O9 O10


T̂1 (0.10, 0.69) (0.25, 0.61) (0.23, 0.41) (0.09, 0.63) (0.15, 0.79)
T̂2 (0.81, 0.31) (0.92, 0.13) (0.13, 0.79) (0.69, 0.23) (0.85, 0.27)
T̂3 (0.92, 0.43) (0.53, 0.27) (0.23, 0.53) (0.81, 0.31) (0.89, 0.51)
T̂4 (0.32, 0.16) (0.34, 0.15) (0.13, 0.79) (0.69, 0.17) (0.23, 0.43)

Determine the cumulative assessments of the alternatives by using the q-ROFEWA operator.

ki = q-ROFEWA(ki1, ki2, . . . , kin)

For i = 1:
k1 = q-ROFEWA(k11, k12, . . . , k1n) = (0.747534, 0.0210146)

For i = 2:
k2 = q-ROFEWA(k11, k12, . . . , k1n) = (0.984792, 0.00518705)

For i = 3:
k3 = q-ROFEWA(k11, k12, . . . , k1n) = (0.937416, 0.0097189)

For i = 4:
k4 = q-ROFEWA(k11, k12, . . . , k1n) = (0.982514, 0.00613556)

Now, the values of the score related to each scenario are:

E(k1) = 0.417719

E(k2) = 0.955066

E(k3) = 0.823751

E(k4) = 0.948453
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Now, rate the aggregate collective preferred value of ki(i = 1, 2, 3, 4) using the score function in
descending order. Figure 6 presents their comparison. k2 corresponds to T̂2. Therefore, T̂2 is the
desired scenario. Strategies for productivity and capacity for recycling were considered under this
scenario. The second place was taken by the scenario assuming sources of renewable energy of hydro,
solar, wind, and biomass. The last position was taken by a scenario related to indigenous coal, oil, gas,
and nuclear.

k2 � k4 � k3 � k1

13.28%

30.37%

26.19%

30.16% CCM

EEC

REF

RET

Figure 6. Visualization of the relative assessment of the considered energy scenarios for Pakistan.

7. Conclusions

Proper mapping of uncertainty data and decision makers’ preferences is one of the biggest
challenges in interdisciplinary research. MCDM has been applied widely to solve a number of
real-world problems that involve impreciseness, uncertainty, and vagueness in the data. We focused
on information aggregation for MCDM based on Yager’s q-ROFS model as this model is more practical
and useful than the existing Yager’s Pythagorean fuzzy model and Atanassov’s intuitionistic fuzzy
model. The decision makers can easily choose membership and non-membership grades from the
alternatives in a larger space with the q-rung orthopair fuzzy set model. Most arithmetic tools
rely on the min-max value of the observation set, while aggregation operators are mathematical
tools that play an important role in converting a set of observations into a unique aggregated value.
Hence, using all of these concepts, we introduced several new aggregation operators, namely the
q-rung orthopair fuzzy Einstein weighted averaging (q-ROFEWA) operator, the q-rung orthopair
fuzzy Einstein ordered weighted averaging (q-ROFEOWA) operator, the q-rung orthopair fuzzy
Einstein weighted geometric (q-ROFEWG) operator, and the q-rung orthopair fuzzy Einstein ordered
weighted geometric (q-ROFEOWG) operator under the q-ROF information. Some interesting features
of the proposed operators were discussed, and their illustration was also given. A brief introduction
about the t-norm and t-conorm was described, and new the t-norm and t-conorm for q-ROFNs were
established. Finally, a numerical example of the proposed approach was cited to demonstrate the
practical application of integrated energy modeling and sustainable energy planning issues. This
research lays the groundwork for comprehensive energy planning studies in Pakistan by combining
energy modeling and decision support as a common sustainable energy planning policy formulation
process. We hope our findings will be fruitful for the researchers working in the fields of information
aggregation, decision support systems, engineering, image processing, artificial intelligence, and
medical diagnosis. Long-term work will pay special attention to interval-valued q-ROF Einstein
aggregation operators, hesitant q-ROF Einstein fuzzy aggregation operators, and q-ROF m-polar
Einstein fuzzy aggregation operators.

During the research, some possible areas of improvement of the proposed approach and future
work directions were identified. When analyzing the formal basis of Yager’s q-rung orthopair fuzzy
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sets, it would be interesting to take into account their consistency. Afterward, extensive comparative
studies of the authors’ approach with other fuzzy MCDM methods are suggested, covering not only
the order of result ranking variants, but also accuracy, uncertainty level, and so on. Another potential
direction of the development of the proposed method is reusable reference model building, including
a full and coherent set of assessment criteria in the problem of sustainable energy planning, which for
other researchers would be an important element of the model objectification for this complex decision
making problem, but also of the proposed method’ effectiveness studies.
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Appendix A

Appendix A.1

Proof. Here, we prove Theorem 3; (i), (iii), (iv), and (viii), are similar.
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q)w), d2 = (2− (Y2)
q)w). On the right-hand

side,
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Gw1 =

〈 q
√

2(Y1)
w

q
√
(2− (Y1)q)w + ((Y1)q)w

, q

√
(1 + (F1)q)w − (1− (F1)q)w

(1 + (F1)q)w + (1− (F1)q)w

〉

=

〈 q
√

2c1
q
√

d1 + c1
, q

√
a1 − b1

a1 + b1

〉
and:

Gw2 =

〈 q
√

2(Y2)
w

q
√
(2− (Y2)q)w + ((Y2)q)w

, q

√
(1 + (F2)q)w − (1− (F2)q)w

(1 + (F2)q)w + (1− (F2)q)w

〉

=

〈 q
√

2c2
q
√

d2 + c2
, q

√
a2 − b2

a2 + b2

〉
Now,

Gw1 ⊗ε Gw2 =

〈 q
√

2c1
q
√

d1 + c1
, q

√
a1 − b1

a1 + b1

〉
⊗ε

〈 q
√

2c2
q
√

d2 + c2
, q

√
a2 − b2

a2 + b2

〉

=

〈 2 q
√

c1.εc2
(d1+c1).ε(d2+c2)

q
√

1 + (1− 2c1
d1+c1

).ε(1− 2c2
d2+c2

)
, q

√√√√ a1−b1
a1+b1

+ a2−b2
a2+b2

1 + a1−b1
a1+b1

.ε a2−b2
a2+b2

〉

=

〈
q

√
2c1.εc2

d1.εd2 + c1.εc2
, q

√
a1.εa2 − b1.εb2

a1.εa2 + b1.εb2

〉

=

〈
q
√

2 Yw
1 .εYw

2
q
√
(2−Y

q
1)

w.ε(2−Y
q
2)

w + (Y
q
1)

w.ε(Y
q
2)

w
,

q

√√√√ (1 +F q
1 )

w.ε(1 +F q
2 )

w − (1−F q
1 )

w.ε(1−F q
2 )

w

(1 +F q
1 )

w.ε(1 +F q
2 )

w + (1−F q
1 )

w.ε(1−F q
2 )

w

〉

Hence, it is proven.
(G1 ⊗ε G2)

w = Gw1 ⊗ε Gw2
(iv)

(G1 ⊕ε G2) =

〈
q

√√√√ Y
q
1 +F

q
2

1 +Y
q
1.εY

q
2

,
F1.εF2

q
√

1 + (1−F q
1 ).ε(1−F

q
2 )

〉

Therefore, we write (G1 ⊕ε G2) equivalent to:

(G1 ⊕ε G2) =

〈
q

√√√√ (1 +Y
q
1).ε(1 +Y

q
2)− (1−Y

q
1).ε(1−Y

q
2)

(1 +Y
q
1).ε(1 +Y

q
2) + (1−Y

q
1).ε(1−Y

q
2)

q
√

2 F1.εF2

q
√
(2−F q

1 ).ε(2−F
q
2 ) +F

q
1 .εF q

2

〉

Assume a = (1 +Y
q
1).ε(1 +Y

q
2), b = (1−Y

q
1).ε(1−Y

q
2), c = (F1)

q.ε(F2)
q, and d = (2−F q

1 ).ε(2−
F q

2 ), then:
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G1 ⊕ε G2 =

〈 q
√

a− b
q
√

a + b
,

q
√

2.εc
q
√

d + c

〉
w.ε(G1 ⊕ε G2) = w.ε

〈 q
√

a− b
q
√

a + b
,

q
√

2.εc
q
√

d + c

〉

=

〈
q

√√√√1 + ( a−b
a+b )

w − (1− ( a−b
a+b )

w

1 + ( a−b
a+b )

w + (1− ( a−b
a+b )

w
,

q
√

2.
( q√2.c

q√d+c

)
q
√
(2− 2c

d+c )
w + ( 2c

d+c )
w

〉

=

〈
q

√
aw − bw

aw + bw
,

q
√

2.cw
q
√

dw + cw

〉

w.ε(G1 ⊕ε G2) =

〈
q

√√√√ (1 +Y
q
1).ε(1 +Y

q
2)− (1−Y

q
1).ε(1−Y

q
2)

(1 +Y
q
1).ε(1 +Y

q
2) + (1−Y

q
1).ε(1−Y

q
2)

q
√

2 F1.εF2

q
√
(2−F q

1 ).ε(2−F
q
2 ) +F

q
1 .εF q

2

〉

Now, suppose a1 = ((1 + (Y1)
q)w), b1 = ((1 − (Y1)

q)w), c1 = ((F1)
q)w), d1 = (2 − (F1)

q)w),
a2 = ((2 + (Y2)

q)w), b2 = ((2− (Y2)
q)w), c2 = ((F2)

q)w), d2 = (2− (F2)
q)w). On the right-hand

side,

w.εG1 =

〈
q

√
(1 + (Y1)q)w − (1− (Y1)q)w

(1 + (Y1)q)w + (1− (Y1)q)w
,

q
√

2.(F1)
w

q
√
(2− (F1)q)w + ((F1)q)w

〉

=

〈
q

√
a1 − b1

a1 + b1
,

q
√

2c1
q
√

d1 + c1

〉
and:

w.εG2 =

〈
q

√
(1 + (Y2)q)w − (1− (Y2)q)w

(1 + (Y2)q)w + (1− (Y2)q)w
,

q
√

2.(F2)
w

q
√
(2− (F2)q)w + ((F2)q)w

〉

=

〈
q

√
a2 − b2

a2 + b2
,

q
√

2c2
q
√

d2 + c2

〉
Now,

w.εG1 ⊕ε w.εG2 =

〈
q

√
a1 − b1

a1 + b1
,

q
√

2c1
q
√

d1 + c1

〉
⊕ε

〈
q

√
a2 − b2

a2 + b2
,

q
√

2c2
q
√

d2 + c2

〉

=

〈
q

√√√√ a1−b1
a1+b1

+ a2−b2
a2+b2

1 + a1−b1
a1+b1

.ε a2−b2
a2+b2

,
2 q
√

c1.εc2
(d1+c1).ε(d2+c2)

q
√

1 + (1− 2c1
d1+c1

).ε(1− 2c2
d2+c2

)

〉

=

〈
q

√
a1.εa2 − b1.εb2

a1.εa2 + b1.εb2
, q

√
2c1.εc2

d1.εd2 + c1.εc2

〉

=

〈
q

√√√√ (1 +Y
q
1)

w.ε(1 +Y
q
2)

w − (1−Y
q
1)

w.ε(1−Y
q
2)

w

(1 +Y
q
1)

w.ε(1 +Y
q
2)

w + (1−Y
q
1)

w.ε(1−Y
q
2)

w
,

q
√

2 Fw
1 .εFw

2
q
√
(2−F q

1 )
w.ε(2−F q

2 )
w + (F q

1 )
w.ε(F q

2 )
w

,

〉

Hence, it is proven.
w.ε(G1 ⊕ε G2) = w.εG1 ⊕ε w.εG2
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(viii)
Take w1,w2 > 0:

w1.εG =

〈
q

√
(1 + (Y)q)w1 − (1− (Y)q)w1

(1 + (Y)q)w1 + (1− (Y)q)w1
,

q
√

2.(F )w1

q
√
(2− (F )q)w1 + ((F )q)w1

〉

=

〈
q

√
a1 − b1

a1 + b1
,

q
√

2c1
q
√

d1 + c1

〉
and:

w2.εG =

〈
q

√
(1 + (Y)q)w2 − (1− (Y)q)w2

(1 + (Y)q)w2 + (1− (Y)q)w2
,

q
√

2.(F )w2

q
√
(2− (F )q)w2 + ((F )q)w2

〉

=

〈
q

√
a2 − b2

a2 + b2
,

q
√

2c2
q
√

d2 + c2

〉
where ai = ((1 + (Y)q)wi ), bi = ((1− (Y)q)wi ), ci = ((F )q)wi ), di = (2− (F )q)wi ). Therefore,

w1.εG ⊕ε w2.εG=
〈

q

√
a1 − b1

a1 + b1
,

q
√

2c1
q
√

d1 + c1

〉
⊕ε

〈
q

√
a2 − b2

a2 + b2
,

q
√

2c2
q
√

d2 + c2

〉

=

〈
q

√√√√ a1−b1
a1+b1

+ a2−b2
a2+b2

1 + a1−b1
a1+b1

.ε a2−b2
a2+b2

,
2 q
√

c1.εc2
(d1+c1).ε(d2+c2)

q
√

1 + (1− 2c1
d1+c1

).ε(1− 2c2
d2+c2

)

〉

=

〈
q

√
a1.εa2 − b1.εb2

a1.εa2 + b1.εb2
, q

√
2c1.εc2

d1.εd2 + c1.εc2

〉

=

〈
q

√
(1 +Yq)w1+w2 − (1−Yq)w1+w2

(1 +Yq)w1+w2 + (1−Yq)w1+w2
,

q
√

2 Fw1+w2
1

q
√
(2−F q)w1+w2 + (F q)w1+w2

,

〉
= (w1 +w2).εG

Hence, it is proven.
w1.εG ⊕ε w2G = (w1 +w2).εG.

Appendix A.2

Proof. Theorem 3 is proven using mathematical induction.
For s = 2 :

q− ROFEWA(G1,G2) = F1.εG1 ⊕ε F2.εG2

As we know, both F1.εG1 and F2.εG2 are q-ROFNs, and also, F1.εG1 ⊕ε F2.εG2 is q-ROFN.

F1.εG1 =

〈
q

√
(1 + (Y1)q)F1 − (1− (Y1)q)F1

(1 + (Y1)q)F1 + (1− (Y1)q)F1
,

q
√

2(F1)
F1

q
√
(2− (Y1)q)F1 + ((F1)q)F1

〉

F2.εG2 =

〈
q

√
(1 + (Y2)q)F2 − (1− (Y2)q)F2

(1 + (Y2)q)F2 + (1− (Y2)q)F2
,

q
√

2(F2)
F2

q
√
(2− (Y2)q)F2 + ((F2)q)F2

〉
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Then:

q− ROFEWA(G1,G2) = F1.εG1 ⊕ε F2.εG2

=

〈
q

√
(1 + (Y1)q)F1 − (1− (Y1)q)F1

(1 + (Y1)q)F1 + (1− (Y1)q)F1
,

q
√

2(F1)
F1

q
√
(2− (Y1)q)F1 + ((F1)q)F1

〉

⊕ε

〈
q

√
(1 + (Y2)q)F2 − (1− (Y2)q)F2

(1 + (Y2)q)F2 + (1− (Y2)q)F2
,

q
√

2(F2)
F2

q
√
(2− (Y2)q)F2 + ((F2)q)F2

〉

= q

√√√√√√√√
(1+(Y1)

q)F1−(1−(Y1)
q)F1

(1+(Y1)
q)F1+(1−(Y1)

q)F1
+ (1+(Y2)

q)F2−(1−(Y2)
q)F2

(1+(Y2)
q)F2+(1−(Y2)

q)F2

1 +

(
(1+(Y1)

q)F1−(1−(Y1)
q)F1

(1+(Y1)
q)F1+(1−(Y1)

q)F1

)
.ε

(
(1+(Y2)

q)F2−(1−(Y2)
q)F2

(1+(Y2)
q)F2+(1−(Y2)

q)F2

) ,

(
q√2(F1)

F1
q
√

(2−(F1)
q)F1+((F1)

q)F1

)
.ε

(
q√2(F2)

F2
q
√

(2−(Y2)
q)F2+((F2)

q)F2

)

q

√√√√1 +

(
1− 2((F1)

q)F1

(2−(F1)
q)F1+((F1)

q)F1

)
.ε

(
1− 2((F2)

q)F2

(2−(F2)
q)F2+((F2)

q)F2

)

=

〈
q

√
(1 + (Y1)q)F1 .ε(1 + (Y2)q)F2 − (1− (Y1)q)F1 .ε(1− (Y2)q)F2

(1 + (Y1)q)F1 .ε(1 + (Y2)q)F2 + (1− (Y1)q)F1 .ε(1− (Y2)q)F2
,

q
√

2(FF1
1 F

F2
2 )

q
√
(2− (F1)q)F1 .ε(2− (F2)q)F2 + ((F1)q)F1 .ε((F2)q)F2

〉

which proves this for s = 2.
Assume that the result is true for s = k. We have:

q− ROFEWA(G1,G2, . . . ,Gk) =

〈
q

√
∏k

s=1(1 + (Ys)q)Fs −∏k
s=1(1− (Ys)q)Fs

∏k
s=1(1 + (Ys)q)Fs + ∏k

s=1(1− (Ys)q)Fs
,

q
√

2 ∏k
s=1 F

Fs
s

∏k
s=1(2− (Fs)q)Fs + ∏k

s=1((Fs)q)Fs

〉

Now, we will prove for n = k + 1,
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q− ROFEWA(G1,G2, . . . ,Gk+1) = q− ROFEWA(G1,G2, . . . ,Gk)⊕ Fk+1.εGk+1

=

〈
q

√
∏k

s=1(1 + (Ys)q)Fs −∏k
s=1(1− (Ys)q)Fs

∏k
s=1(1 + (Ys)q)Fs + ∏k

s=1(1− (Ys)q)Fs
,

q
√

2 ∏k
s=1 F

Fs
s

∏k
s=1(2− (Fs)q)Fs + ∏k

s=1((Fs)q)Fs

〉

⊕
〈

q

√
(1 + (Yk+1)

q)Fk+1 − (1− (Yk+1)
q)Fk+1

(1 + (Yk+1)
q)Fk+1 + (1− (Yk+1)

q)Fk+1
,

q
√

2(Fk+1)
Fk+1

q
√
(2− (Yk+1)

q)Fk+1 + ((Fk+1)
q)Fk+1

〉

=

〈
q

√√√√∏k+1
s=1(1 + (Ys)q)Fs −∏k+1

s=1(1− (Ys)q)Fs

∏k+1
s=1(1 + (Ys)q)Fs + ∏k+1

s=1(1− (Ys)q)Fs
,

q
√

2 ∏k+1
s=1 F

Fs
s

∏k+1
s=1(2− (Fs)q)Fs + ∏k+1

s=1((Fs)q)Fs

〉

Thus, the result holds for s = k + 1. This proves the required result.

Appendix A.3

Proof. (Theorem 4) Suppose Gs = 〈Ys,Fs〉 is the family of q-ROFNs. By the Definition of q-ROFN,

0 ≤ (Ys)
q + (Fs)

q ≤ 1.

Therefore,

∏n
s=1(1 + (Ys)q)Fs −∏n

s=1(1− (Ys)q)Fs

∏n
s=1(1 + (Ys)q)Fs + ∏n

s=1(1− (Ys)q)Fs
= 1− 2 ∏n

s=1(1− (Ys)q)Fs

∏n
s=1(1 + (Ys)q)Fs + ∏n

s=1(1− (Ys)q)Fs

≤ 1−
n

∏
s=1

(1− (Ys)
q)Fs ≤ 1

and:

(1 + (Ys)
q)Fs ≥ (1− (Ys)

q)Fs

n

∏
s=1

(1 + (Ys)
q)Fs ≥

n

∏
s=1

(1− (Ys)
q)Fs

n

∏
s=1

(1 + (Ys)
q)Fs −

n

∏
s=1

(1− (Ys)
q)Fs ≥ 0

∏n
s=1(1 + (Ys)q)Fs −∏n

s=1(1− (Ys)q)Fs

∏n
s=1(1 + (Ys)q)Fs + ∏n

s=1(1− (Ys)q)Fs
≥ 0

Therefore, we get 0 ≤ Yq-ROFEWA ≤ 1.
For Fq-ROFEWA, we have:
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2 ∏n
s=1((Fs)q)Fs

∏n
s=1(1 + (Ys)q)Fs + ∏n

s=1(1− (Ys)q)Fs
≤ 2 ∏n

s=1(1− (Ys)q)Fs

∏n
s=1(1 + (Ys)q)Fs + ∏n

s=1(1− (Ys)q)Fs

≤
n

∏
s=1

(1− (Ys)
q)Fs

≤ 1

Furthermore,

2 ∏n
s=1((Fs)q)Fs

∏n
s=1(1 + (Ys)q)Fs + ∏n

s=1(1− (Ys)q)Fs
≥ 0⇐⇒

n

∏
s=1

((Fs)
q)Fs ≥ 0

Moreover,

Y
q
q-ROFEWA +F q

q-ROFEWA =
∏n

s=1(1 + (Ys)q)Fs −∏n
s=1(1− (Ys)q)Fs

∏n
s=1(1 + (Ys)q)Fs + ∏n

s=1(1− (Ys)q)Fs
+

2 ∏n
s=1((Fs)q)Fs

∏n
s=1(2− (Fs)q)Fs + ∏n

s=1((Fs)q)Fs

≤ 1− 2 ∏n
s=1(1− (Ys)q)Fs

∏n
s=1(1 + (Ys)q)Fs + ∏n

s=1(1− (Ys)q)Fs
+

2 ∏n
s=1(1− (Ys)q)Fs

∏n
s=1(1 + (Ys)q)Fs + ∏n

s=1(1− (Ys)q)Fs

≤ 1

Hence, it is proven.

Appendix A.4

Proof. (Theorem 5) Let q-ROFEWA(G1,G2, . . . ,Gn) = (Y
q
p,F q

p) and q-ROFWA(G1,G2, . . . ,Gn) =

(Yp,Fp); by Equation (3) we have:

q

√
∏n

s=1(1 + (Ys)q)Fs −∏n
s=1(1− (Ys)q)Fs

∏n
s=1(1 + (Ys)q)Fs + ∏n

s=1(1− (Ys)q)Fs
= q

√
≤ 1−

n

∏
s=1

(1− (Ys)q)Fs

This implies that
Y

q
p ≤ Yp

These are equal iff Y1 = Y2 = . . . = Yn. Furthermore,

2 ∏n
s=1((Fs)q)Fs

∏n
s=1(2− (Fs)q)Fs + ∏n

s=1((Fs)q)Fs
≥ 2 ∏n

s=1((Fs)q)Fs

∑n
s=1 Fs(2− (Fs)q) + ∑n

s=1 Fs((Fs)q)
≥

n

∏
s=1

((Fs)
q)Fs

q

√
2 ∏n

s=1((Fs)q)Fs

∏n
s=1(2− (Fs)q)Fs + ∏n

s=1((Fs)q)Fs
≥

n

∏
s=1

((Fs))
Fs

This implies that:
F q

p ≤ Fp
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These are equal iff F1 = F2 = . . . = Fn.
This implies:

Y
q
p −F

q
p ≤ Yp −Fp

E(Y
q
p,F q

p) ≤ E(Yp,Fp)

Thus, we have the following relationship by defining the score function of q-ROFS.

q-ROFEWA(G1,G2, . . . ,Gn) ≤ q-ROFWA(G1,G2, . . . ,Gn)

Appendix A.5

Proof. We use mathematical induction to prove Theorem 11.
For s = 2:

q-ROFEWG(G1,G2) = GF1
1 ⊗ε GF2

2

As we know, both GF1
1 and GF2

2 are q-ROFNs, and also, GF1
1 ⊗ε GF2

2 is q-ROFN.

GF1
1 =

〈
q
√

2(Y1)
F1

q
√
(2− (F1)q)F1 + ((Y1)q)F1

, q

√
(1 + (F1)q)F1 − (1− (F1)q)F1

(1 + (F1)q)F1 + (1− (F1)q)F1

〉

GF2
2 =

〈
q
√

2(Y2)
F2

q
√
(2− (F2)q)F2 + ((Y2)q)F2

, q

√
(1 + (F2)q)F2 − (1− (F2)q)F2

(1 + (F2)q)F2 + (1− (F2)q)F2

〉

Then:
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q-ROFEWG(G1,G2) = GF1
1 ⊗ε GF2

2

=

〈
q
√

2(Y1)
F1

q
√
(2− (F1)q)F1 + ((Y1)q)F1

, q

√
(1 + (F1)q)F1 − (1− (F1)q)F1
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We proved this for s = 2.
Assume that the result for s = k is true; we have:

q-ROFEWG(G1,G2, . . . ,Gk) =
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q
√
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s=1 Y

Fs
s
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√
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〉
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Now, we will prove for n = k + 1,
q-ROFEWG(G1,G2, . . . ,Gk+1):

= q-ROFEWG(G1,G2, . . . ,Gk)⊗ G
Fk+1
k+1

=

〈
q
√

2 ∏k
s=1 Y

Fs
s

∏k
s=1(2− (Ys)q)Fs + ∏k

s=1((Ys)q)Fs
, q

√
∏k

s=1(1 + (Fs)q)Fs −∏k
s=1(1− (Fs)q)Fs

∏k
s=1(1 + (Fs)q)Fs + ∏k

s=1(1− (Fs)q)Fs

〉

⊗
〈

q
√

2(Yk+1)
Fk+1

q
√
(2− (Fk+1)

q)Fk+1 + ((Yk+1)
q)Fk+1

, q

√
(1 + (Fk+1)

q)Fk+1 − (1− (Fk+1)
q)Fk+1

(1 + (Fk+1)
q)Fk+1 + (1− (Fk+1)

q)Fk+1

〉

=

〈
q
√

2 ∏k+1
s=1 Y

Fs
s

∏k+1
s=1(2− (Ys)q)Fs + ∏k+1

s=1((Ys)q)Fs
, q

√√√√∏k+1
s=1(1 + (Fs)q)Fs −∏k+1

s=1(1− (Fs)q)Fs

∏k+1
s=1(1 + (Fs)q)Fs + ∏k+1

s=1(1− (Fs)q)Fs

〉

Thus, the result holds for s = k + 1. This proves the required result.

Appendix A.6

Proof. Suppose Gs = 〈Ys,Fs〉 is the family of q-ROFNs. By the definition of q-ROFN,
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Therefore, we get 0 ≤ Fq-ROFEWG ≤ 1.
For Yq-ROFEWG, we have:
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Furthermore,

2 ∏n
s=1((Ys)q)Fs
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s=1(1 + (Fs)q)Fs + ∏n
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≥ 0⇐⇒

n
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q)Fs ≥ 0

Moreover,

Y
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Hence, it is proven.
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12. Wątróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised framework for multi-criteria
method selection. Omega 2019, 86, 107–124.

13. Mirakyan, A.; De Guio, R. Integrated energy planning in cities and territories: A review of methods and
tools. Renew. Sustain. Energy Rev. 2013, 22, 289–297.

14. Strantzali, E.; Aravossis, K. Decision making in renewable energy investments: A review. Renew. Sustain.
Energy Rev. 2016, 55, 885–898.



Energies 2020, 13, 2155 35 of 40

15. Løken, E. Use of multicriteria decision analysis methods for energy planning problems. Renew. Sustain.
Energy Rev. 2007, 11, 1584–1595.

16. Martín-Gamboa, M.; Iribarren, D.; García-Gusano, D.; Dufour, J. A review of life-cycle approaches coupled
with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of
energy systems. J. Clean. Prod. 2017, 150, 164–174.

17. Arce, M.E.; Saavedra, Á.; Míguez, J.L.; Granada, E. The use of grey-based methods in multi-criteria decision
analysis for the evaluation of sustainable energy systems: A review. Renew. Sustain. Energy Rev. 2015,
47, 924–932.

18. Doukas, H. Modelling of linguistic variables in multicriteria energy policy support. Eur. J. Oper. Res. 2013,
227, 227–238.

19. Sałabun, W.; Piegat, A. Comparative analysis of MCDM methods for the assessment of mortality in patients
with acute coronary syndrome. Artif. Intell. Rev. 2017, 48, 557–571.

20. Ribeiro, R.A. Fuzzy multiple attribute decision making: a review and new preference elicitation techniques.
Fuzzy Sets Syst. 1996, 78, 155–181.
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