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Abstract: In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency
of a two-area power system based on descending gradient training and error back-propagation.
The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial
neural network structure is used to extract Jacobian and estimate the system model, and then,
the estimated model is applied to the controller, online. A proportional–derivative (PD) controller
is added to the type-2 fuzzy controller, which increases the stability and robustness of the system
against disturbances. The adaptation, being real-time and independency of the system parameters
are new features of the proposed controller. Carrying out simulations on New England 39-bus power
system, the performance of the proposed controller is compared with the conventional PI, PID and
internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our
proposed controller method outperforms the conventional controllers in terms of transient response
and stability.

Keywords: MLP; type-2 fuzzy; LFC; two-area power system

1. Introduction

Increasing demand for electrical power, complexity and nonlinearity of electrical power systems as
well as the need for supply of electricity with high stability and reliability emphasize the importance of
the load frequency control (LFC) in power systems. Furthermore, controlling the system in emergency
situations and sudden load changes such as short-term interruption is necessary to prevent frequency
deviations. Conventional controllers such as PI and PID are designed to best operate under specific
operating conditions, while their control performance is reduced if operating conditions vary under
sudden load changes; adjusting parameters of conventional controllers might be improper for the new
operating points. Therefore, for controlling frequency and dynamic performance of a generator in a
wide range of operating conditions, adaptive controllers are suitable. The use of a fuzzy controller to
regulate the voltage and frequency of the generator has become more popular during recent years [1–5].
Firstly, they are independent of the system model and do not allow the complexities of the dynamic
system model to be included in the design process. Secondly, the fuzzy controllers operation depends
on the human experts which have made this type of controller very popular in the industry [6–10].
Since the power system has uncertain nonlinear dynamics, the controllers with constant gain do
not perform well under variable and uncertain loading conditions. Therefore, some methods such
as artificial neural network, fuzzy logic and fuzzy neural networks have been used for frequency
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control [11,12], but these controllers are vulnerable to uncertainties and noises and do not perform
well against changing parameters.

In this paper, however, we propose a type-2 neural fuzzy controller, which can model more
uncertainty than type-1 fuzzy controllers and has lower sensitivity to the system parameters by
ignoring the system dynamics. In addition, it reduces computation by type-reduction, and it can adapt
to new requirements of system.

In the last decade, various methods have been developed to incorporate adaptive fuzzy logic into
the frequency control [13–16]. Some approach is suggested to improve the performance of fuzzy PI and
PID controllers in [17–21]. Moreover, an improved automatic generation control (AGC) method named
predictive optimal 2-degree-of-freedom proportion integral differential (PO-2-DOF-PID) is proposed
in [22]. In [23], the fuzzy logic is suggested to control the frequency deviation of a multi-area power
system, in which physical constraints such as the rate of production and the nonlinear characteristic of
the governor dead-band were considered.

Online fuzzy PI controller tuning using the bat algorithm method is presented in [24]. In addition,
an artificial neural network is used to control power generation in a multi-area thermal power plant
system in [25] and a third-order observer-based sliding mode control in [26]. An adaptive neural
fuzzy control system was applied to improve LFC in both hydro and thermal power systems in [27].
In [28], a novel PID-like neural network controller is proposed. The resilient back-propagation
algorithm with sign instead of the gradient is used to derive the rule of updating network weights.
The simulation experiment was carried out on an inverted-pendulum system. Reference [29] presents
an adaptive PID-like controller using a modified neural network for learning of system dynamics.
This controller applied to speed control of DC machine. Moreover, a simplified adaptive neuro-fuzzy
inference system (ANFIS) structure acting as a PID-like feedback controller to control nonlinear
systems is presented in [30]. In fact, all of the above-mentioned studies focused on system dynamics.
However, in our proposed method in this paper, the controller is not dependent on the system dynamic
parameters, and system parameters are assumed to be uncertain, and the controller is designed online.
The proposed controller is adaptive and adapts itself to system new conditions. It can be applied
in practical and real-world applications including the standard 39-bus New England system that
has satisfied our expectations despite nonlinearity of the power system. Furthermore, the proposed
controller is based on type-2 neural fuzzy, which performs better than type-1 fuzzy and models more
uncertainties. The control parameters were trained by the descending gradient method and the error
back-propagation posture so that the area control error signal could be zero. Jacobian of the system
model is extracted and is applied to the controller. Then, the control error signal is applied as a PID
to the controller input in order to increase the speed and compensate for the slower speed due to
parameter training. Then, the suggested method is compared with the PI, IMC-PID and PID controllers
for evaluation and comparison. Finally, to show effectiveness of proposed control, we applied this
method on New England test system 39-bus, which is widely used as a standard system for testing of
the power system analysis and control. Compared to our previous work in [31], the distinct features of
this paper are as follows:

• An adaptive type-2 fuzzy control system is proposed for frequency control of the two-area power system.
• PD controller is added to the controller to increase stability and robustness.
• Two re-heating and non re-heating areas are considered.
• Plant dynamics are assumed to be uncertain.
• Unlike similar methods, the Jacobian of the plant is not required.
• The center-of-set (COS) is used to order-reduction.
• The controller performance is evaluated on a larger-scale power system.

The remainder of this paper is organized as follows: Section 2 describes the theory of the proposed
controller. Sections 3 and 4 present the model of the studied system and the simulation results,
respectively. Finally, the paper is concluded in Section 5.
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2. Theory of the Proposed Structure

2.1. Structure of the MLP Neural Network

The neural network, with its structure shown in Figure 1, is used to model the system for adaptive
calculation of the system Jacobian.

Figure 1. MLP structure for system modeling [31].

The description of the used notation in Figure 1 is as follows:

u(t− z1), u(t− z2), ..., u(t− zn): inputs of the neural network;
z1, ..., zn : constant delays;
w1

11, w2
12, ..., w1

1n: weights connected to first neuron in the middle layer;
w1

21, w1
22, ..., w1

2n: weights connected to second neuron in the middle layer;
w1

h1, w1
h2, ..., w1

hn: weights connected to neuron h, h being the number of neurons in the
middle layer;

w21, w22, ..., w2h: weights connected to output and neurons of the output layer.

Output of neurons of the middle layer are obtained as follows:

neti = w1
i U (1)

oi = g(neti), i = 1, ..., h (2)

where
U = [u(t− z1), u(t− z2), ..., u(t− zn)]

T (3)

w1
i = [w1

i1, w1
i2, ..., w1

in] (4)

g(neti) =
1− exp(−neti)

1 + exp(−neti)

Inputs of the MLP includes the control signal and output of the system, and the output of the
MLP is obtained as follows:

y = w2o (5)

where
o = [o1, o2, ..., oh]

T (6)

w = [w21, w22, ..., w2h] (7)

Weights of this neural network are trained such that the cost function E is minimized:

E =
1
2

e2
est =

1
2
(yd − y)2 (8)
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where yd is the desired output, and y is output of the neural network. Weights at t + 1 are w(t + 1) =
w(t)− η ∂E

∂w . Gradient descent and back-propagation error are used for training. In order to obtain ∂E
∂w ,

the chain differentiation of ∂E
∂w = ∂E

∂e
∂e
∂y

∂y
∂w applies. By substituting ∂E

∂e = e, ∂e
∂y = −1, ∂y

∂w = 0, the rule of
training weights is obtained as follows:

w2(t + 1) = w2(t) + ηeesto (9)

Adaptive law for weights of the first layer would be:

w1
i (t + 1) = w1

i (t) + ηeest ǵ(neti)w2iU (10)

where w1
i is the vector of weights connected to ith neuron in the middle layer, w2i the weight connected

to output and ith the neuron in the middle layer. ǵ(neti) is the derivative of g(neti) with respect to neti
which is constant adaptive rate and η is the training rate of gradient descent.

Equation (10) is an adaptive equation based on gradient descent and differentiation with respect
to weights of hidden layers.

2.2. System Jacobian

Finally, the obtained model is used to calculate the system Jacobian:

∂∆ f
∂uc

=

(
[w1

11, w1
21, ..., w1

h1]diag[ǵ(net1), ..., ǵ(neth)]w2

)
(11)

where

∂∆ f
∂uc

: the derivative of the output with respect to control input;
[w1

11, w1
21, ..., w1

h1]: vector of weights connected to the first input and neurons of the middle layer;
[ǵ(net1), ..., ǵ(neth)]: vector of derivative of output of neurons of the middle layer with respect

to their input;
w2: vector of weights connected to output and neurons of the middle layer.

2.3. Type 2 Fuzzy-Neural Controller Structure

Since the power system has nonlinearity and parametric uncertainties, the control algorithm
must be able to operate under uncertain conditions efficiently. Fuzzy neural networks (FNNs) can be
considered as an appropriate control structure for such systems both in terms of fuzzy advantage for
reducing uncertainties and neural for learning. In general, there are two types of fuzzy; the type-2
fuzzy is the improved type-1 fuzzy, and both have the same fuzzy rules and membership functions.
The membership function of the type-1 is a fixed number, while it is a fuzzy set in the type-2. The type-2
fuzzy set has a third dimension, which helps to model the uncertainties where type-1 fuzzy is incapable
of modeling uncertainties. The type-2 fuzzy is used when the system complexity is high and high-speed
process is needed [32,33]. In the continuous state, a type-2 fuzzy set is defined as follows:

Ã =

{(
(x(x, u), µÃ(x, u)

)
|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]

}
(12)

where 0 ≤ µÃ(x,u) ≤ 1. Another expression for Ã is:

Ã =
∫

x∈X

∫
u∈Jx

µÃ(x, u)
(x, u)

(13)



Energies 2020, 13 , 2125 5 of 19

where
∫ ∫

denotes the union over all admissible input variables x and u. In fact, Jx ⊆ [0, 1] represents
the primary membership of x, and µÃ(x,u) is a type-1 fuzzy set known as the secondary set. An interval
type fuzzy is used to reduce the computation in which µÃ(x,u) = 1.

The general structure of a type-2 fuzzy system with 5 layers is shown in Figure 2. A type-2 fuzzy
system consists of five main blocks, which are the input fuzzifier, fuzzy rules base, inference engine,
defuzzifier and the type reducer. The first layer is the input layer, which is a crisp value. In the second
layer “the fuzzifier” process converts a crisp input vector into type-1 or type-2 input fuzzy system.
In the inference engine in the third layer, the fuzzy rules “IF–THEN” are combined for representing
the rule base. The rule base is extracted from numerical analysis or provided by an expert person.
As shown in Figure 2, the output processing block includes two parts: type reducer and defuzzification.
Since the inference engine gives type-2 fuzzy system set as output, a new block called “type-reducer”
is used between inference engine and defuzzifier that converts fuzzy set into crisp value. The type-2
reducer is an important part which maps the fired rule consequent sets into type-1 fuzzy system to
reduce the computation and increase the output speed. There are different methods to convert such as
Centroid, Height and Center-Of-Sets (COS). In this paper we used COS type-reduction [34]:

yl =
∑L

n=1 f̄ nyn

∑L
n=1 f̄ n + ∑N

n=L+1 f n +
∑N

n=L+1 f̄ nyn

∑L
n=1 f̄ n + ∑N

n=L+1 f n

yr =
∑R

n=1 f nȳn

∑R
n=1 f n + ∑N

n=R+1 f̄ n
+

∑N
n=R+1 f nȳn

∑R
n=1 f n + ∑N

n=R+1 f̄ n
(14)

Fuzzifier

Rules Defuzzifier

Inference

Type-
reducer

Type-2 input 
fuzzy sets

Type-2 output 
fuzzy sets

Crisp 
input

Crisp output

Type- 
reduced set

Layer 2Layer 1 Layer 3 Layer 4 Layer 5

Figure 2. The block-diagram of Type-2 Neuro-Fuzzy system.

It has been demonstrated in [34] that the defuzzified output can be calculated as Equation (15)
by simply taking an average of the yl and yr points. yl and yr, as the left and right end points of the
type reduced set, are defined in Equation (14), where r and l are the switching points defined between
[1, N − 1] that can be found via the Karnik and Mendel algorithm. f̄n, f

n
are the firing level, and ȳn, y

n
are centers of the consequent output, and N is the number of rules.

The numerical output of type-2 fuzzy system is as follows:

y =
yl + yr

2
(15)

Gaussian membership functions as follows:

µ̄Ã(x, u) = exp(−||X− Ck||2

σ̄2
k

) (16)
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µ
Ã
(x, u) = exp(−||X− Ck||2

σ2
k

) (17)

k = 1, ..., M

where Ci and σi are considered as the center and width of the Gaussian functions, respectively.
The structure of the proposed type-2 fuzzy controller for the multi-area power system is shown in
Figure 3. This controller has three inputs (∆ACE, D∆ACE, D−1 ACE), where ∆ACE = β∆ f + ∆Ptie,
and one output y. The number of utilized rules is 11, which is fixed and is obtained via trial and error.

Figure 3. Type-2 fuzzy structure.

2.4. Learning by Descending Gradient and Error Back-Propagation

In this section, the proposed controller based on a neural network is introduced. The output of
the neuro-fuzzy network constitutes the control signal, and parameters of this neuro-fuzzy network
are trained in such way that frequency changes ∆ f tend to zero. When ∆ f tends to zero, the control
objective is satisfied. In the next subsection, the structure of the neuro-fuzzy network and adjustment
of its weights are described.

The network weights are trained based on the back-propagation process and the descending
gradient training method. The square error between the optimal response (zero velocity changes)
and the network output at instant t is considered as the cost function:

E =
1
2

e2 =
1
2
(∆ f )2 (18)

where ∆ f the indicates the system output.
The error back-propagation algorithm is used to train the fuzzy system as follows:

w(t + 1) = w(t)− η
∂E
∂w

(19)

where ∂E
∂w is a cost function with respect to neural network parameters and is obtained from

Equation (20), where w represents the vector of the weights of the consequent, and η is the descending
gradient training rate.

∂E
∂w

=
∂E

∂∆ f
∂∆ f
∂uc

∂uc

∂y
∂y
∂w

(20)

In Equation (20), uc indicates the control signal, and y is the output of the neural network.
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∂∆ f
∂uc

in Equation (20) is the system Jacobian derived from the system model in Equation (11)
and the other terms are computed as follows:

E =
1
2

e2 =
1
2
(∆ f )2 ⇒ ∂E

∂∆ f
= ∆ f (21)

uc = y⇒ ∂uc

∂y
= 1 (22)

y = wTξ ⇒ ∂y
∂w

= ξ (23)

The flowchart of our proposed method is illustrated in Figure 4.

Type-2 Fuzzy controller

v Fire degrees of rules

v Output of the fuzzy system 
based on Nie-Tan

Unknown system dynamics 

MLP Structure

v Minimize Cost function

v Training Gradian Descent

System Jacobian

c

f

u





2 21 1
( )

2 2
E e f  
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w t w t
w




  


T

cu w 

 
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1

1

,...,
T

M

M

i i i i i

i

z z

z o o o o






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2

2

2

2

exp , 1,...,
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k

k

k

k

k

k

X C
o k M

X C
o k M





 
 
 
 

 
 
 
 


  


  

 
221 1

2 2
est dE e y y  

   2 21 estw t w t e o  

Proposed Method

v Training Back-Propagation 
and Gradian Descent

1
w

c

c

uE E f y

f u y w

   


    

Figure 4. The flowchart of the proposed method.

3. Dynamic Model of Power System

Block diagrams of the proposed method and two-area power system are shown
in Figures 5 and 6, respectively.
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Plant

ACE

ACE

d
ACE

dt
 

Model approximation

Controller

fU

MLP




PD

Type-2   
nerou Fuzzy

Figure 5. The proposed control structure.

According to Figure 6, the state-space model is described by the linear vector differential
Equations [12]:

ẋ = Ax + Bu + Gw (24)

where A, B and G are the system, input and disturbance matrices, respectively. The system
matrix calculations are given in Appendix A. Matrices B and G are described in
Equations (26) and (27), and x = [∆ f1 ∆Pt1 ∆Xg1 ∆ f2 ∆Pr ∆Pt2 ∆Xg2 ∆Ptie ∆Pc1 ∆Pc2],
u = [∆u1 ∆u2]

T , w = [∆Pd1 ∆Pd2]
T are the state variables, input vectors and disturbance vectors.

Proposed Controller

Proposed Controller

1
F (s)

2
F (s)

+

+ - -

+ +

+ +

ps ps
K /(1 sT )

ps ps
K /(1 sT )

t
1 / (1 sT )

t
1 / (1 sT )

sg sg
K /(1 sT )

sg sg
K /(1 sT )

12
2 T

s



12
a

12
a

r r r
(1 sKT)/(1 sT) 

+

Generating units with non re-heat (Area 1)

Generating units with re-heat (Area 2)
D2

P

D1
P

tie
P

-

1
x

3
x

2
x

5
x

9
x

6
x

7
x

8
x

10
x

4
x

+

1

1

R

2

1

R2

1

Figure 6. Two-area load frequency control (re-heat and non re-heat).
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The state-space model of the thermal power plant in a single area is as follows: ẋ1

ẋ2

ẋ3

 =


− 1

Tsg
0 − 1

RTsg
1
Tt

− 1
Tt

0

0 Kps
Tps

− 1
Tps


 x1

x2

x3

+


1

Tsg

0
0

 u +

 0
0
−Kps

Tps




ẋ1

ẋ2

ẋ3

ẋ4

 =


− 1

Tps

Kps
Tps

0 0

0 − 1
Tr

( 1
Tr
− Kr

Tt
) Kr

Tt

0 0 − 1
Tt

1
Tt

− 1
RTsg

0 0 1
Tsg




x1

x2

x3

x4

+


0
0
0
− 1

Tsg

 u +


−Kps

Tps

0
0
0

w (25)

For areas 1 and 2, the state-space model of the interconnected power system is defined as follows.
System matrix, A, is described in Appendix A.

B =

(
0 0 1

Tsg1
0 0 0 0 0 0 0

0 0 0 0 0 0 1
Tsg2

0 0 0

)T

(26)

G =

 −Kps1
Tps1

0 0 0 0 0 0 0 0 0

0 0 0 −Kps2
Tps2

0 0 0 0 0 0

T

(27)

4. Simulation Results

4.1. First Test System: Two-Area Power System

In this section, simulation is performed to illustrate the improved performance of our proposed
controller compared to PI, PID and IMC-PID controllers. The test system consists of an interconnected
power system with two-areas: (a) non re-heat “area-1” and (b) re-heat “area-2”. System parameters
and Nomenclature are shown in Tables 1 and A1.

Table 1. Numerical Data.

Notations Numerical Value

Pri 2000 MW
Tt 0.3 s
Tsg 0.08 s

Kps, Tps 120 s, 20 s
Kr, Tr 0.5 s, 10 s

T12 0.545/2π
Ri 1/2.4
Bi 0.425
Kd 0.4
a12 1
η −0.81

In this simulation, two disturbances of ∆PD1 = 0.02 and ∆PD2 = 0.03 are applied to areas 1, 2
of the system. Frequency deviations in areas 1,2 with the proposed controller are shown in Figure 7.
As shown, the magnitudes of the frequency deviation in the areas 1, 2 are 0.04 and 0.05, respectively,
which dies out very quickly and without any oscillations, while the frequency deviations with the PI
controller are highly fluctuating as shown in Figure 8, which dies out only after about 60 s.
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H
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non re-heat
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re-heat

Figure 7. Frequency deviation in areas 1 and 2 with the proposed controller (case a).
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Time (s)

-0.03
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-0.01

0

0.01

0.02

0.03

0.04

F
 (

H
z)

 Area 1
non re-heat

Area 2
re-heat

Figure 8. Frequency deviation in areas 1 and 2 with PI controller (case b).

We additionally compare the performance of our proposed controller with an internal model
controller based on PID (IMC-PID). For two-degree-of-freedom IMC-PID design, the transfer function
of the power systems is approximated with a second-order model. The IMC-PID tuning procedure is
as follows [35,36]:

• Divide the system model into two parts:

Φ̃(s) = Φα(s)Φβ(s) (28)

where Φα(s) is the minimum-phase part, and Φβ is the non-minimum-phase part.
• Design IMC controller for setpoint-tracking as follows:

Ψα(s) = Φ−1
α (s)× 1

(ηs + 1)n (29)
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where η is a tuning parameter and n is the relative degree of Φα(s).
• Design the IMC controller for disturbance-rejecting as follows:

Ψβ(s) =
λ1s + λ2s + ... + λms + 1

(ηβ(s) + 1)m (30)

where ηβ is a tuning parameter for disturbance rejection, m is the number of poles of Φ̃(s)
and λ1, λ2, ..., λm should satisfy:

(1− Φ̃(s))(Ψα(s)(Ψβ(s))|s=ϕ1,ϕ2,...,ϕn = 0 (31)

where ϕ1, ϕ2, ..., ϕn are the poles to be omitted.
• The Feedback controller is obtained using:

M(s) =
Ψα(s)Ψβ(s)

1− Φ̃(s)Ψα(s)Ψβ(s)
(32)

Then we use the Maclaurin series to tune the PID parameters by extending M(s). The PID
parameters of the IMC-PID controller are Kp = 4.62, Ki = 6.23 and Kd = 1.4. The PID
controller coefficients are tuned with a trial-and-error method. The simulation results are shown
in Figures 9 and 10. It can be seen from the frequency deviation response in cases a, b, c-I and c-II that
the IMC-PID and PID controllers have more oscillations compared to our proposed controller. It is
evident that the proposed method has less fluctuation and better performance than other controllers.
Moreover, the control signals in areas 1 and 2 with our proposed controller and PI controller are
shown in Figures 11 and 12, respectively, where both number and frequency of oscillations in PI
controller are larger compared to our proposed method. The power exchanges between the two-areas
are shown in Figure 13. It can be seen that power changes reach a steady value after a drop without
oscillation. Therefore, the proposed method shows a suitable transient response in the two-area system
and reaches a steady-state with no fluctuation.
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Figure 9. Frequency deviation in area 1 with the IMC-PID and PID controllers (case c-I).
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Figure 10. Frequency deviation in area 2 with the IMC-PID and PID controllers (case c-II).
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Figure 11. Control signal in areas 1 and 2 with our proposed controller.

4.2. Second Test System: 39-Bus New England Test System

A large-scale multi-area interconnected power system consists of several control areas, connected
by tie-line. Each area of multi-area power system includes a generator, governor, turbine and controller.
For simulations in this section, the 39-bus New England test system is used, which is similar to the
real-world power systems. For modeling, each area is considered to include a generator, governor and
turbines. Then, for each area, a decentralized controller is designed where frequency control is
performed by a generator. Moreover, a generator in each area is responsible for LFC. In this test system,
G9 and G1 generators are responsible for LFC in areas 1 and 2, respectively. In this method, a speed
governor system and four-stage steam is utilized. The speed governor system includes a proportional
regulator, speed relay, and a servo motor. The steam turbine also includes a double re-heat model,
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modeled by first-order transfer functions [36]. The parameters of the steam turbine, buses, load and
generators are given in [36,37].

0 10 20 30 40 50 60
Time (s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
C

on
tr

ol
 S

ig
na

l

Area 2
re-heat

Area 1
non re-heat 

Figure 12. Control signal in areas 1 and 2 with PI controller.
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Figure 13. Deviation of the tie-line power with the proposed and PI controllers.

Single-line diagram of 39-bus New England is shown in Figure 14, where it has 19 loads,
10 generators, 34 transmission lines and 12 transformers. There are 106.381 MW of conventional
generation and 74.051 MW load in area 1. In area 2 there are 298.47 MW of conventional generation
and 511.26 MW load. The main parameters of generator are given in [37]. Block diagram of control
area i = 1, 2 is presented in Figure 15. Parameters of control areas are given in Table 2.
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Table 2. Parameters of control area i = 1, 2 for 39-bus test system.

Full Name Value

Governor time constant (TGi) [s] 0.07
Turbine time constant (TTi) [s] 0.001
Load change in area i (∆PDi) 0.9

Load damping coefficient (Di) 1
Equivalent inertia constant (Hi) 2.35

Tie-Line synchronizing torque coefficient (T12) [s] 0.02
Speed-droop charateristic (R) 0.05

(18)

(3)

(2)

(25)

(37)

(30)

(1)

(35)
(4)

(5)

(6)

(7)

(8)
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Figure 14. Single-line diagram of 39-bus New England with two areas.
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The simulation results by using the proposed and PI controllers are demonstrated in
Figures 16 and 17. As depicted in Figures 16 and 17, the frequency deviations of areas 1 and
2 by proposed controller have very shorter settling time as well as overshoot than PI controller.
The value of parameters of PI controllers are Kp = −0.5 and Ki = −0.125, which are found using
trial-and-error method.
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Figure 16. Frequency deviation in area 1 with proposed controller and PI controller.
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5. Conclusions

A type-2 adaptive fuzzy controller is proposed in this paper, which increases the stability and
reduces the uncertainties for the LFC caused by the nonlinearity and parametric uncertainties of
power systems. Using MLP neural network structure, the Jacobian of system is applied online to the
controller, and type-2 fuzzy controller is designed to reduce uncertainty. Then, the descent gradient
and error back-propagation methods are used to train the network parameters. Further, a two-area
system is tested with re-heating units and non re-heating. Additionally, the proposed method is
characterized by versatility, real-time and computational reduction. Then, a PD controller is added
to enhance the robustness of the system. The performance of the proposed controller has been
compared with that of the conventional PID and internal model control based on PID (IMC-PID)
controllers. Simulation results, performed on the IEEE New England 39-bus power system, indicate the
superiority of our proposed method. For future studies, the proposed controller will be investigated
by incorporation demand response programs in systems with large penetration of wind turbines.
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Appendix A
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+
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+
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ẋ5 = − 1
Tr
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ẋ9 = B1x1 + x8

˙x10 = B2x4 − a12x8

A =



− 1
Tps1

Kps1
Tps1

0 0 0 0 0 −Kps1
Tps1

0 0

0 − 1
Tt1

1
Tt1

0 0 0 0 0 0 0
− 1

R1Tsg1
0 − 1

Tsg1
0 0 0 0 0 0 0

0 0 0 − 1
Tps2

Kps2
Tps2

0 0
a12Kps2

Tps2
0 0

0 0 0 0 − 1
Tr

( 1
Tr
− Kr

Tt2
) Kr

Tt2
0 0 0

0 0 0 0 0 − 1
Tt2

1
Tt2

0 0 0
0 0 0 − 1

R2Tsg2
0 0 − 1

Tsg2
0 0 0

2πT12 0 0 −2πT12 0 0 0 0 0 0
β1 0 0 0 0 0 0 1 0 0
0 0 0 β2 0 0 0 −a12 0 0


Table A1. Nomenclature.

Notations Full Name

i Subscript referring to area i.
Pri Rating of ith generator in MW.
Tt Time constant of turbine in s.
Tsg Time constant of speed governor in s.

Kps, Tps Time constant and gain of power system, respectively.
Kr, Tr Re-heat coefficient and time constant, respectively.

T12 Synchronizing coefficient.
Ri Governor speed regulation parameter in Hz per p.u. MW.

∆Ptie The tie-line power deviation.
∆ fi Frequency deviation.

∆PDi Load demand deviation.
∆Pr Re-heat output deviation.
Bi Frequency bias constant.
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