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Abstract: The wind turbine drivetrain suffers significant impact loads that severely affect the
reliability and safety of wind turbines. Bearings and gears within the drivetrain are critical
components with high repair costs and lengthy downtime. To realistically assess the system
reliability, we propose to establish an electromechanical coupling dynamic model of the wind
turbine considering the control strategy and environmental parameters and evaluate the system’s
reliability of wind turbine drivetrain based on loads of gears and bearings. This paper focuses on the
dynamic reliability analysis of the wind turbine under the control strategy and environmental
conditions. SIMPACK (v9.7, Dassault Systèmes, Gilching, Germany) is used to develop the
aero-hydro-servo-elastic coupling dynamic model with the full drivetrain that considers the flexibility
of the tower and blade, the stochastic loads of wind and waves, gear meshing features, as well as the
control strategy. The system reliability level of wind turbine drivetrain at different wind conditions
is assessed using survival signature and fault tree analysis (FTA), and the influences of strength
degradation of the transmission components on the system reliability are explored. Following this,
the bending fatigue reliability and contact fatigue reliability concerning different wind conditions are
compared in this paper. A case study is performed to demonstrate the effectiveness and feasibility of
the proposed methodology.

Keywords: reliability analysis; wind turbine drivetrain; dynamic model; fatigue damage
accumulation; survival signature; load sharing

1. Introduction

Due to climate change and energy crises across the world, it is an urgent task to develop renewable
energy sources to replace fossil fuels. In the past two decades, the energy obtained through wind
has been praised as a sustainable, environmentally friendly option that has achieved global acclaim.
What is less often noted is that wind turbines rely on a complex electromechanical system, which has
been designed to specify various design load cases, including power production, normal shutdown,
and power production in the case of faults [1]. Given the popularity of wind power, there have
been continuous advancements in wind turbine technology. At present, most turbines are built with
the variable-speed and variable blade-pitch-to-feather configuration. This configuration allows the
turbine’s blades to rotate through the pitch system. In comparison with fixed-pitch wind turbines,
these turbines can guarantee more stable output power and a greater wind capture efficiency with
the blades acting as brakes. One downside, however, is that the blade-pitch system frequently reacts
against the stochastic wind, which is affected by the control strategy and uncertain environment,
resulting in wind turbines operating under a complicated and unsteady load. As a result, wind turbine
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drivetrains have a relatively high failure rate. Maintenance costs and drivetrain downtime due to wind
curtailment are also high, lowering the net economic gain of using wind power. Therefore, there is
a clear need to study the dynamic characteristics and assess the dynamic reliability of wind turbine
drivetrains in order to mitigate operational and maintenance costs, reduce downtime, and enhance the
dynamic reliability and safety of wind turbines.

Some scholars have performed research on wind turbine dynamic behaviors and reliability
analysis of the wind turbine drivetrain. Helsen et al. [2] discussed the influences of the flexibility
within the multi-body approach for wind turbine gearbox modeling. Zhang et al. [3] explored the
influences of the supporting tower flexibility and investigated the natural characteristics of a megawatt
wind turbine drivetrain. Chen et al. [4] established an electromechanical coupling dynamic model of
the entire wind turbine, which considered the flexibility of blades, main-shaft, and hub. They studied
the dynamic behaviors using the measured load spectrum. Guo et al. [5] explored the coupling effects
of bearing clearance, gravity, input torque, and bending moment on the load-sharing characteristics
of planetary gears. Wang et al. [6] investigated the influence of gear modifications on the dynamic
behaviors of the wind turbine gearbox with consideration of elastic support. Girsang et al. [7] enhanced
the capability of FAST (Fatigue, Aerodynamics, Structures, and Turbulence, v7, NREL, Golden, CO,
USA) through the integration of a drivetrain’s dynamic model, which was built by SIMPACK using
MATLAB/Simulink (v8.6, MathWorks, Natick, MA, USA). They evaluated the internal drivetrain
loads caused by excitations from the wind and generator. Li et al. [8] presented a high-fidelity method
to perform the aero-elastic simulation for wind turbine using a dynamic overset computational fluid
dynamics code coupled with a multibody dynamics. Amir et al. [9] adopted the decoupled analysis
approach for the load effect analysis and built a detailed gearbox model for multibody simulation
with the inputs of the rotor torque and the non-torque loading on the main-shaft from an aero-elastic
simulation. However, the investigations mentioned above ignore the effects of the drivetrain dynamics
on the entire wind turbine responses.

There are few studies on the time-dependent reliability analysis of a wind turbine considering
the control strategy and the environmental parameters. Huang and Coolen [10] studied the reliability
and reliability sensitivity of a wind turbine based on the survival signature concerning components’
impacts on the system’s reliability. Li et al. [11] developed a dynamic model of planetary gear systems
in helicopters under the partial load considering the unequal load-sharing. Zhu et al. [12] established a
dynamic model of planetary gear systems with both the pins’ flexibility and the gyroscopic effect taken
into consideration. Qin et al. [13] conducted a dynamic reliability analysis of the gear transmission
system under stochastic wind load by the lumped-parameter method. Huang et al. [14] analyzed the
reliability of the kinematic accuracy of gear mechanisms using the presented method and explored the
influences of original errors on the transmission error of a gear mechanism. Xiao et al. [15] proposed a
reliability analysis method for structural systems with multiple failure modes and mixed variables,
which is suitable for complex systems. Nejad et al. [16] calculated the long-term fatigue damage of
the gear tooth and analyzed the reliability of the geared transmission system using the first-order
reliability method (FORM). They also established a vulnerability map of the gearbox that can help
rank the short-term fatigue damage of the gears and bearings of the gearbox [17]. Jiang et al. [18]
calculated the fatigue damage of the planet bearing of a wind turbine gearbox under different wind
speed distributions using HAWC2 (Horizontal Axis Wind turbine simulation Code 2nd generation, v2,
DTU Wind Energy, Lyngby, Denmark), SIMPACK, and Calyx (The three-dimensional finite element
code, v1, Advanced Numerical Solutions LLC, Hilliard, OH, USA). Calderon et al. [19] built a dynamic
model of the gearbox using the lump-parameter method and explored the dynamic behavior of the
planet bearing under extreme loads.

However, these studies did not explore the influences of random wind speed and the control
strategy on the reliability of wind turbine drivetrain, and therefore cannot represent the actual
performance and reliability of the system. The traditional stress and strength interference (SSI)
model can only be used in cases where there is a single load. Moreover, the SSI method is often
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applied to calculate the reliability index of a component with the known strength and load distribution,
which ignores the influences of random wind loads and the control strategy on the system reliability.
The results calculated by the traditional method are, therefore, very different from the reality in the
wind industry and may lead to significant errors.

This paper is aimed at developing the aero-elastic-servo-hydro dynamic model of a wind turbine
with the full drivetrain, which considers the flexibility of tower and blades, the stochastic loads of
wind and waves, the gear meshing features, as well as the control strategy. Then, we develop reliability
models for gears and bearings. The system reliability model of wind turbine drivetrain is modeled
based on the fault tree using the survival signature. To make the paper readable and logical, the rest of
this paper is structured as follows. Section 2 introduces the structure and transmission principles of
wind turbine drivetrain, including design parameters, the schematic layout of the gearbox, and the
topology of wind turbine drivetrain. Section 3 proposes the dynamic model of the wind turbine with
considerations of the control system and environmental parameters. Section 4 shows the gear reliability
model and the bearing reliability model. Following this, we develop the fault tree of the wind turbine
drivetrain considering bearings and gears. The system reliability model is established based on the
fault tree using the survival signature. Section 5 presents the preparations of the reliability analysis.
Results and discussions are given in Section 6. Section 7 summarizes some conclusions of this paper.

2. Structure and Transmission Principles of Wind Turbine Drivetrain

Due to the complex and harsh operating environment, wind turbines are confronting daunting
challenges from service reliability issues. The drivetrain is one of the most critical subsystems of wind
turbines. The failures of the wind turbine drivetrain often lead to high repair cost and long downtime.
High reliability is, therefore, crucial to wind turbines. In this study, a 5 MW reference drivetrain for a
wind turbine is considered, whose structure is shown in Figure 1. The NREL 5 MW wind turbine is a
typical three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled turbine [20].
The rated wind speed and the rated rotor speed are 11.4 m/s and 12.1 rpm, respectively. Table 1 shows
the 5 MW wind turbine specification. More parameters are described in [20].

Figure 1. Structure and coordinate system of wind turbine.

The wind turbine drivetrain is supported by the tower that is fixed to the seabed by monopoles.
The wind turbine drivetrain consists of the blade, hub, main shaft, main shaft bearing, gearbox, brake,
generator, etc. The transmission system of the gearbox has three stages: two planetary gear stages
and one parallel gear stage. Both the first stage and second stage are helical gear transmissions with
three planets. The parallel gear stage is also helical gear transmission with two downwind bearings.
The carrier of the first planetary gear stage is connected to the main shaft, and the pinion gear of the
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parallel gear stage is connected to the generator. The schematic layout and the bearing designations of
wind turbine drivetrain are shown in Figure 2. INP-X is the main shaft bearing, PLC-X means planet
carrier bearing, PL-X represents planet bearings, I-PLC-X and I-PL-X represent the mean planet carrier
bearing and planet bearing of the intermediate stage, IMS-X is intermediate shaft bearing, and HS-X is
the high-speed shaft bearing (X=A, B, and C). A and B (C) represent the locations of bearings installed
at the upwind and downwind of the gear mesh. From the layout of the wind turbine drivetrain shown
in Figure 2, two main bearings support the main shaft and two torque arms support the gearbox
housing. It is, therefore, a four-point suspension wind turbine drivetrain. The geometrical specification
of the gears and bearings of the wind turbine drivetrain can be found in the literature [21]. Bearing
types are as per SKF55 terminology.

Table 1. 5 MW wind turbine specification.

Parameter Value Parameter Value

Rating (MW) 5.0 Nacelle mass (kg) 240,000
Cut-in wind speed (m/s) 3 Rotor mass (kg) 110,000
Rated wind speed (m/s) 11.4 Hub height (m) 90
Cut-out wind speed (m/s) 25 Rated rotor speed (r/min) 12.1
Rotor diameter (m) 126 Gearbox ratio 97:1
Cut-in rotor speed (r/min) 6.9 Maximum absolute blade pitch rate (◦/s) 8
Tower mass (kg) 347,460 High-speed shaft brake torque (N·m) 28,116.3
Power control system Pitch

Figure 2. Schematic layout of 5MW wind turbine drivetrain.

3. Electromechanical Coupling Dynamic Model of Wind Turbines

3.1. Coordinate System Definition

The bodies’ motions are defined by relative coordinates in multibody systems (MBS). The relative
coordinate has significant advantages for dealing with the equations of motion of elastic bodies.
Moreover, the relative coordinate can be used to represent the absolute coordinate due to the body’s
free motion relative to the inertial system [22].

As shown in Figure 1, the coordinate systems of the foundation, blade, hub, and nacelle are
defined as OFXFYFZF, OBXBYBZB, OHXHYHZH, and ONXNYNZN, respectively. The relative coordinate
of tower (OFXFYFZF) is attached to the foundation, the relative coordinate of blade (OBXBYBZB) is
attached to the blade root, the relative coordinate of hub (OHXHYHZH) is located in the hub center,
and the relative coordinate of nacelle (ONXNYNZN) is fixed to the nacelle center that is above the
tower tip. One coordinate can be transformed into another using the coordinate transformation.
Each component has six DoFs, and the generator rotor has a axial rotational DoF [3,23].
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3.2. Aerodynamic and Wave Model

The wind and waves are the main external excitations with randomness, but they also have
a specific correlation. This paper adopts a joint probabilistic model of the mean wind speed (v),
significant wave height (Hs), and spectral peak period (Tp) for long-term prediction. Based on this,
the joint density function can be derived as follows [24],

fvHsTp(v, h, t) = fv(v) · fHs |v(h|v) · fTp |Hsv(t|h, v) (1)

where v is chosen as the primary parameter.
The Kaimal spectrum is used to model the short-term wind distribution according to the

IEC 61400-1, and the dimensionless equation of the power spectral density function is shown in
Equation (2) [25],

Sk( f ) =
4σ2

k Lk/Vhub

(1 + 6 f Lk/Vhub)
5
3

(2)

where Vhub denotes the wind speed at the hub height, f is the frequency, subscript k represents the
wind speed component (u, v, and w mean the longitudinal, lateral, and vertical directions, respectively),
σk is the velocity component standard deviation, and Lk represents the velocity component integral
scale parameter.

The wind profile V(z) that denotes the mean wind speed is a function with respect to the height (z),
which is given by the power-law as follows,

V(z) = Vhub/(
z

zhub
)α (3)

where zhub represents the hub height, and the power-law exponent α denotes vertical wind shear factor.
The aerodynamic force acting on the blades can be calculated using the blade element momentum

theory [24]. For a blade section with a length δr, the lift force and the drag force can be expressed,
respectively, as follows,

dL =
1
2

ρV2
relcCLδr, dD =

1
2

ρV2
relcCDδr (4)

where ρ means the air’s density; CL and CD are the lift and drag coefficients, respectively; and Vrel is
the relative velocity related to the induced velocity. Each blade is divided into 17 sections [20], and the
calculated aerodynamic force of each section is applied to the aerodynamic center point as shown in
Figure 3.

Figure 3. Schematic of blade section.

The wave loads can be calculated using Morison’s formula. This approach is well-suited when
the wavelength is longer than the monopoles diameter. The horizontal force on a trip of length (dz) is
expressed as follows,

dF = CMρwπ
D2

4
u̇dz + CDρwπ

D
2
|u|udz (5)
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where CM and CD represent the mass and drag coefficients, respectively; ρw is the mass density of the
water; D represents the diameter of the cylinder; and u is the horizontal undisturbed fluid velocity
evaluated at the strip center and a dot indicates a time derivative.

3.3. Control System

The flowchart of the integrated control system is presented in Figure 4. The generator-torque
controller is applied to maximize power capture under the rated operating condition, and the generator
torque is calculated by a tabulated function, as shown in Figure 5. Region 1 represents a control region,
in which the generator does not function before the cut-in wind speed (point A). Regions 2 and 4
are linear transitions. In Region 3, the generator torque is proportional to the square of the filtered
generator speed to maintain an optimal tip-speed ratio, which can optimize power capture. In Region 5,
the generator torque is inversely proportional to the filtered generator speed to hold the generator
power constant above the cut-out wind speed.

The blade-pitch controller aims to regulate generator speed if the speed is higher than the
rated operation point. The blade pitch angle commands are calculated using a gain-scheduled
proportional-integral, which can be expressed as follows,

P(θ) = KP(θ = 0) · GK(θ), KI(θ) = KI(θ = 0) · GK(θ), GK(θ) = 1/(1 + θ/θk) (6)

where θ is the blade pitch angle; KP(θ), KI(θ), and GK(θ) are the proportional gain, the integral gain,
and the dimensionless gain-correction factor, respectively. They are all dependent on the blade pitch
angle θ.
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Figure 4. Flowchart of the control system.
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3.4. Dynamic Model of the Wind Turbine Drivetrain

The electromechanical coupling dynamic model of the wind turbine is established in SIMPACK
based on the rigid-flexible coupled multibody dynamics method [26]. This model includes the blade,
main-shaft, gearbox, generator, and tower, as shown in Figure 6. Aerodynamics and hydrodynamics
are calculated using the third-party modules of the NREL AeroDyn (Aerodynamics, v15, NREL,
Golden, CO, USA) [27] and HydroDyn (Hydrodynamics, v2.05.00, NREL, Golden, CO, USA) [28],
respectively. The wind turbine control module is implemented using an external dynamic link library
(DLL) in the style of Garrad Hassan’s Bladed wind turbine package. A Timoshenko beam formulation
is used to represent the blade and tower as finite element models. The bending, torsional, and coupling
modes can be considered at the same time based on the Timoshenko beam theory. Moreover, the first
six and the first ten modes are taken into account respectively according to the GL (Germanischer
Lloyd) certification guide [29]. Bearings are simplified to a 6× 6 diagonal matrix. Gears are modeled as
rigid bodies with six degrees of freedom (DoFs), and the gear contact analysis takes the time-dependent
tooth meshing into consideration by fluctuating mesh stiffness according to the AGMA 2006 standard.
To consider the influences of gear tilt and obtain the load distribution across the tooth face width, gears
are modeled using the slicing approach.

HydroDyn module

Aerodynamic 
load

W
in

d
 s

p
e
ed

Hydrodynamic 
load

Generator speed

Rotate speed

Pitch angle

TurbSim

风
速

 (
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)
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纵向
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Dynamic model of 
wind turbine
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DLL

Force 
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Generator torque and 
pitch angle

Force 
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FE 241

Force 

element

FE 244

Figure 6. Simulation flow chart of wind turbine system.

The equations of motion for the MBS is derived by the Second Kind Lagrange Equation. Using
generalized co-ordinates, the dynamic differential equations of the MBS can be expressed as follows,

[M]{q̈}+ [C]{q̇}+ [K]{q} = {F} (7)

where [M], [K], and [C] represent the mass, stiffness, and damping matrix of the system, respectively.
{q̈}, {q̇}, and {q} represent the vectors of the accelerations, speeds, and displacements, respectively.
{F} is the load vector that is equal to (Fx, Fy, Fz, Mx, My, Mz)T. The displacement matrix {q} in a six
DoFs system is equal to q = (x, y, z, α, β, γ)T.

The generator torque (Tgen) could be calculated by [21]

Tgen = Kp · e + KI ·
∫ t

0
edt (8)
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where Kp and KI are proportional and integral gain, respectively; e = w− wre f denotes the difference
between angular velocity of the generator shaft obtained by the MBS model and reference value
obtained from the global analysis. The detailed properties of generator can be found in [20].

4. Dynamic Reliability Model of the Wind Turbine Drivetrain

The wind turbine drivetrain is treated as a series-parallel connection system in this paper.
The survival signature is adopted to build the system reliability model of wind turbine drivetrain with
multiple types of components. The realistic reliability models of bearings and gears play an essential
role in the reliability assessment of wind turbine drivetrain. Therefore, based on the international
standard and the Lundberg–Palmgren theory, the reliability formula of bearings is derived in Section 4.2.
The gear reliability model is studied based on the Hertz theory and the fatigue damage accumulation
rules. Moreover, a fuzzy reliability model of gears with consideration of fatigue damages is proposed
in Section 4.3. All proposed approaches are used to establish the system reliability model of the wind
turbine drivetrain. The technical flowchart of the system reliability is given in Figure 7.

Start

• Environment parameters;
• Structure parameters; • Operating conditions

a. Dynamic model of whole wind turbine shown in Figure 6
[M]{q̈}+ [C]{q̇}+ [K]{q} = {F}

b. Load history of gears and bearings

{ F i
gear(t) and F j

bearing(t)}

c. Calculation of contact stress and bending stress

{σ̄i
H and σ̄i

F , i = s, p, r, g1, g2} using Equation (17) and (18)
� Hertz theory; � ISO 6336-3:2006;

d. Extraction of load characteristics
� Statistical counting; � Amplitude-mean rain-flow matrix;

e. Probability statistics
� Probability densities of stress means and amplitudes

f1. Bearing reliability using Equation (14)
� Lundberg-Palmgren theory;

� ISO 281:2007;

f2. Gear reliability using Equation (26)
� Damage accumulation theory;

� SSI; � S-N curve; � Fuzzy number;

g. Fault tree of WT drivetrain
Survival signature

using Equation (10)

h. System time-dependent reliability Rss
sys(t) using Equation (28)

i. System failure rate using Equation (24)

End

Figure 7. The technical flowchart of the proposed method.

4.1. Survival Signature

Assume a coherent system with m components of K ≥ 2 types, with mk components of type
k ∈ {1, 2, · · · , K} and ∑K

k=1 mk = m. The probability that the system functions is denoted as Φ(l)
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(l = 1, 2, · · · , m). If the system has l components that function, the rest m − l components in the
system do not function. The state vector x = (x1, x2, · · · , xK) ∈ {0, 1}m with the sub-vector xk =

(xk
1, xk

2, · · · , xk
mk
) is used to express the components’ states of the type k (∑mk

i=1 xk
i = lk). The structure

function φ(x) is equal to 0 if the system does not function and φ(x) = 1 if the system functions.
The system’s survival function is defined as Φ(l1, l2, · · · , lK), which denotes a probability that the
system functions while lk components of type k function, for lk = 0, 1, · · · , mk [30].

Considering that there are (mk
lk
) state vectors xk with lk components of its mk components xk

i = 1.

The set of the state vectors for components of type k is denoted by Sk
l . Let Sl1,··· , lK represent the set

of all state vectors for the system. All the state vectors xk ∈ Sk
l are equally likely to occur under the

condition that the failure times of mk components of type k are able to be interchanged. Therefore,
Φ(l1, l2, · · · , lK) can be obtained by

Φ(l1, l2, · · · , lK) =

(
K

∏
k=1

(
mk
lk

)−1
)
× ∑

Sl1,··· , lK

φ(x) (9)

The number of type k components of the system that function at time t can be mathematically
represented as Ck

t ∈ {0, 1, · · · , mk} (t > 0). By applying the failure times and the reliability function
(Rk(t) = 1− Fk(t)) of components of different types, the probability that the entire system functions
at time t can be derived as follows,

Rsys(t) =
m1

∑
l1=0
· · ·

mK

∑
lK=0

[
Φ(l1, · · · , lK)

K

∏
k=1

((
mk
lk

)
[Rk(t)]

lk [1−Rk(t)]
mk−lk

)]
(10)

4.2. Bearing Reliability

Bearings are standard mechanical components, and the lifetime of bearings follows
three-parameter Weibull distribution [31]. According to the lifetime distribution function, the bearing
reliability can be calculated by

Rb(t) = e−
(

t−γ
η

)β

(11)

where t is the function time; γ denotes the position parameter; and η and β represent the scale
parameter and the shape parameter, respectively.

According to the international standard (ISO 281:2007) and the Lundberg–Palmgren theory [32–34],
the rating life of the roller bearing can be obtained by

Lh = α1 · αSKF ·
106

60nw

(
C
P

) 10
3

(12)

where Lh is the basic rating life (h), C is the basic rating load (kN), P means the equivalent dynamic
load (kN), nw means the rotation speed of the bearing (r/min), α1 is life adjustment factor for reliability,
and αSKF represents life modification factor.

The basic rating life is defined as the basic rating life with statistical reliability of 90%.
In engineering practice, the reliability of the rolling bearing under the rated lifetime equals to 0.9,
then we can obtain the following additional relation,

ηβ = (Lh − γ)β/ ln
1

0.9
(13)

Then, according to Equations (11)–(13), the reliability of the rolling bearing can be expressed
as follows.

RL
b (t) = exp

[(
t− γ

Lh − γ

)β

· ln 0.9

]
(14)
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4.3. Gear Reliability Considering Fatigue Damage Accumulation

4.3.1. Gear Stresses Calculation

Tooth root bending fatigue and tooth surface contact fatigue are the two main damage modes of
gear transmissions. For gears with large modulus under the normal operating condition, the contact
fatigue is more likely to cause the failure of the gears than the bending fatigue [35]. The tooth fatigue
may lead to significant vibration and noise and accelerate gear failure. In this paper, the contact
fatigue is taken as the primary failure mode to evaluate the reliability of the wind turbine drivetrain.
According to the Hertz theory, the contact stress can be calculated by

σ̄H =

√√√√√ F̄c

LρΣ

1

π

(
1−µ2

1
E1

+
1−µ2

2
E2

) (15)

where F̄c is the calculation load, F̄c = K · F̄m. K is the load factor that is equal to KAKVKHβKHα [36],
and F̄m is the meshing force of the gear pair. KA, KV , KHβ, and KHα are the application factor,
the dynamic factor, the face load factor, and the transverse load factor for contact stress, respectively.
L is the length of the line of action. ρΣ is compositive curvature radius. E1 and E2 are the elastic
modulus of the materials of two gears, and µ1 and µ2 are their Poisson’s ratio, respectively.

The formula (15) could be rewritten as

σ̄H = Zε

√
2

sin α

√√√√√ 1

π

(
1−µ2

1
E1

+
1−µ2

2
E2

)√KF̄m

bd1

µ± 1
µ

(16)

Let ZH =
√

2
sin α and ZE =

√
1

π

(
1−µ2

1
E1

+
1−µ2

2
E2

) , the contact stress takes the form

σ̄H = ZHZEZε

√
F̄m

bd1

µ± 1
µ

KAKVKHβKHα (17)

where ZH is the contact coefficient, ZE is elasticity coefficient, µ is the ratio of the teeth number, and Zε

is the coincidence coefficient.
According to the international standard (ISO 6336-3:2006) [37], the tooth root bending stress is

determined as the product of nominal tooth root bending stress and a stress correction factor. The tooth
root bending stress could be calculated by

σ̄F =
F̄t

bmn
KAKVKFβKFαYFYSYβ (18)

where F̄t means the nominal tangential load; b is the face width of pinion gears; mn means the normal
module; and YF, YS, and Yβ represent the form factor, the stress correction factor, and the helix angle
factor, respectively.

4.3.2. Fuzzy Reliability Model

In reality, loads of each component suffering vary with time and do not follow a specific
distribution [38]. It is therefore necessary to use the fuzzy language to depict and assess uncertainties
in material properties and operating status [39]. The strength of mechanical components may decrease
during the mission. The strength of components at each time t is defined as the residual strength.
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The attenuation of residual strength is inextricably linked to the micro-damage inside the material.
The cumulative fatigue damage variable (D) of the materials can be expressed as follows,

D = 1−
(

1− n
N f

) 1
1−T(σM ,σ̄)

, T (σM, σ̄) = 1− 1
a lg |σM/σ−1(σ̄)|

(19)

where n is the number of load cycles, N f is the fatigue life, σM means the stress amplitude, σ̄ represents
the mean stress, a is the material constant, and T(σM, σ̄) is related to the load and the material.

The fatigue load-life curve (S–N curve) is employed as

N f = C · σ−m
M (20)

where C and m are the material constants; when calculating the contact fatigue life, m is equal to
6; when calculating the bending fatigue life, m is equal to 9. The constant C can be obtained using
Equation (20).

To calculate the fatigue life, we need to transform the asymmetric cyclic stress (stress ratio r 6= −1)
to the symmetric cyclic stress (stress ratio r = −1) using Equation (21),

σmax − σmin

σa(−1)
+

σmax + σmin

σb
= 2 (21)

where σb is the material tensile strength limit, and σmax and σmin represent the peak and valley values
of the cyclic stress, respectively.

According to Equations (19)–(21), the residual strength model based on nonlinear fatigue damage
criterion can be expressed as follows,

r(n) = r(0)− [r(0)− σmax]

1−
(

1− n
N f

) 1
1−T
 (22)

where r(0) is the initial static strength, σmax means the amplitude of the cyclic stress.
Then, the residual strength model concerning time t can be derived by transforming the load

cycles to the service time t from Equation (22).

r(t) = r(0)− [r(0)− σmax]

1−
(

1− t
L f

) 1
1−T
 (23)

where L f is the fatigue life related to the duration of the load.
Based on the SSI theory, the time-dependent reliability of components considering the residual

strength degradation can be expressed as R(t) = Pr{r(t)− σ > 0}.
Using the components’ reliability, we can obtain the failure rates of each component at a given

time t. The failure rate of each component can be calculated by

λ(t) = −R
′
(t)

R(t)
= −d ln R(t)

dt
(24)

The failure of transmission gears is uncertain. The SSI theory defines the interference region
and the reliability region by the limit state. However, this limit state may be fuzzy in most cases.
In engineering practice, the failure of components transforming from a safe state into a failed state
is a gradual process. We, therefore, choose the fuzzy number to represent it. For the strength of gear
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transmission, the trapezoidal fuzzy number is adopted in this paper. Its graphic representation is
shown in Figure 8. The membership function can be expressed as follows,

µi(x) =


1, x ≤ a1
a2−x
a2−a1

, a1 < x ≤ a2

0, x > a2

(25)

where µi(x) means the membership degree of fuzzy number x, and a1 and a2 are fuzzy lower and
upper bounds, respectively.

M
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e
rs

h
ip
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e
g
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e 1

a2a10 x

i (x)

Figure 8. Membership function of the trapezoidal fuzzy number.

Considering the strength degradation of components and letting a1 = ri(t), a2 =1.1 ri(t) [40],
the fuzzy reliability function of components can be expressed as follows,

R̄i(t) =
∫ +∞

−∞
µi(σi, t)gi(t)dσi

=
1

0.1ri(t)

[
(1.1ri(t)− σi)Φ

(
1.1ri(t)− σi

Si

)
− (ri(t)− σi)Φ

(
ri(t)− σi

Si

)
+

Si√
2π

(
exp

(
− (1.1ri(t)− σi)

2

2S2
i

)
− exp

(
− (ri(t)− σi)

2

2S2
i

))]
(26)

where Si is the standard deviation of allowable stresses, and Si = σiCi, Φ(·) means the normal
distribution function.

4.4. System Reliability Model

The wind turbine drivetrain can be divided into four parts for a better FTA: main shaft failure,
first stage failure, second stage failure, and third stage failure [41], which are transformed into the fault
tree shown in Figure 9. There are four load-sharing subsystems, including planets and downwind
bearings of the parallel stage. As Figure 9 depicts, the WT drivetrain system consists of four types of
load-sharing components, namely, T1, T2, T3, and T4.

From the fault tree of wind turbine drivetrain, the minimal cut sets of subsystems can be obtained
using the MOCUS algorithm as follows,

T: {E1,E2,E3,E4}, E1: {1, 2}
E2: {3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15}, {3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15}, {3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15}
E3: {16,17,18,19,20,21,22,23,24,27,28}, {16,17,18,19,20,21,22,23,25,27,28},

{16,17,18,19,20,21,22,23,26,27,28}
E4: {29,30,32,33,35,36}, {29,31,32,33,35,36}, {29,30,32,34,35,36}, {29,31,32,34,35,36}

where T and Ei (i = 1, 2, 3, 4) are depicted in Figure 9.
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The FT-based system reliability of the wind turbine drivetrain with series-parallel connection
subsystems can be expressed as follows,

Rsys(t) = RE1(t) · RE2(t) · RE3(t) · RE4(t) (27)

where RE1(t) = Rx1(t) · Rx2(t).

RE2(t) =
11

∏
i=3

Rxi (t) · Rx14(t)Rx15(t) +
10

∏
i=3

Rxi (t) · Rx12(t)Rx14(t)Rx15(t) +
10

∏
i=3

Rxi (t) ·
15

∏
j=13

Rxj(t)

RE3(t) =
24

∏
i=16

Rxi (t) · Rx27(t)Rx28(t) +
23

∏
i=16

Rxi (t) · Rx25(t)Rx27(t)Rx28(t) +
23

∏
i=16

Rxi (t) ·
28

∏
j=26

Rxj(t)

RE4(t) =
30

∏
i=29

Rxi (t) ·
33

∏
j=32

Rxj(t) ·
36

∏
k=35

Rxk (t) + Rx29(t) ·
33

∏
i=31

Rxi (t) ·
36

∏
j=35

Rxj(t)

+
30

∏
i=29

Rxi (t) · Rx32(t) ·
36

∏
j=34

Rxj(t) + Rx29(t) ·
32

∏
i=31

Rxi (t) ·
36

∏
j=34

Rxj(t)

Four subsystems take survival signature into consideration in this study, which happens in planet
gear subsystems and bearing subsystems of the third stage. According to Equations (10) and (27),
the survival signature-based reliability model of wind turbine drivetrain can be calculated by

Rss
sys(t) = RE1(t) · R

′
E2
(t) · R′E3

(t) · R′E4
(t) · Rss(t) (28)

where R
′
E2
(t), R

′
E3
(t), and R

′
E4
(t) represent the system reliability without consideration of subsystems

of type T1, T2, T3, and T4; Rss(t) is the subsystem reliability of type Ti(i = 1, 2, 3, 4) using survival
signature. The formula of Rss(t) is derived using Equation (10) as follows.

Rss(t) =
m1=3

∑
l1=0

m2=3

∑
l2=0

m3=2

∑
l3=0

m4=2

∑
l4=0

[
Φ(l1, · · · , l4)

4

∏
k=1

((
mk
lk

)
[Rk(t)]

lk [1−Rk(t)]
mk−lk

)]
(29)

5. Reliability Analysis

5.1. Survival Signature

The reliability analysis of the wind turbine drivetrain is performed based on the survival signature.
As it is shown in Figure 2, planet gears of 1st stage (No. 11, 12, 13), planet gears of 2nd stage (No.
24, 25, 26), and downwind bearings of intermediate shaft and high-speed shaft (No. 30, 31, 33, 34)
can be treated as load-sharing systems. The reliability block diagram of load-sharing systems is
presented in Figure 10. The survival signature of the load-sharing system can be obtained using the R
package developed by Louis [42], which is summarized in Table 2. Based on the survival signature,
the reliability of load-sharing subsystems for each point at time t can be calculated from Equations (10),
(14), and (26). To study the effects of wind conditions on the system reliability, in this paper, we choose
three different mean wind speeds: 9 m/s, 11 m/s, and 13 m/s.
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Figure 9. Fault tree of the wind turbine drivetrain.

T1

T1

T1

11

12

13

T2

T2

T2

24

25

26

T3

T3

30

31

T4

T4

33

34

Figure 10. Reliability block diagram of load-sharing systems.

Table 2. Survival signature of the wind turbine drivetrain.

l1 l2 l3 l4 Φ(l1, l2, l3, l4)

1 [1,2,3] [1,2] [1,2] 1
2 [1,2,3] [1,2] [1,2] 1
3 [1,2,3] [1,2] [1,2] 1
0 [1,2,3] [1,2] [1,2] 0

[1,2,3] 0 [1,2] [1,2] 0
[1,2,3] [1,2,3] 0 [1,2] 0
[1,2,3] [1,2,3] [1,2] 0 0

5.2. Fatigue Damage Accumulation

From Section 3, the time histories of dynamic meshing force of each gear pair and the bearing
support are obtained from the dynamic model of the wind turbine. Due to space limitations, the sun
gear of the 1st stage is taken as an example. Figure 11a gives the details of tooth load distribution of
the sun gear. The results show that the tooth loads change periodically and the peak loads appear
alternately at both ends of gears. The tooth root bending stress in the time domain can be calculated by
Equation (18), which is shown in Figure 11b.
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(a) Dynamic meshing force
distributed along tooth width

(b) Tooth root bending stress of sun
gear

Figure 11. Calculation of tooth root bending stress of sun gear of 1st stage.

In this study, the statistical counting is performed by the commonly used rain-flow counting
approach to obtain the amplitude-mean rain-flow matrix of each component. The resultant mean
amplitude-frequency histogram of the bending stress of the sun gear is presented in Figure 12a.
Researchers proposed some fatigue damage rules, like linear, bilinear, and nonlinear rules [43,44].
Among these, the Miner linear rule [45] is generally accepted in engineering practice.

(a) Mean amplitude
frequency histogram

(b) Mean bending stress
frequency histogram

(c) Mean bending stress
probability density

Figure 12. Probability densities of the mean bending stress and the amplitude.

5.3. Load Distribution

In engineering practice, the mean load generally follows the Gaussian distribution or the Normal
distribution [46]. The rain-flow counting method can be used to derive the mean bending stress
frequency histogram and the mean bending stress probability density of the sun gear of the 1st stage
shown in Figure 12b,c. The results of Figure 12c show that the statistical mean frequency follows
the Normal distribution. To verify this point, we conduct the Anderson–Darling Normality Test of
the bending stress of the sun gear. The p-value is 0.069, that is, greater than 0.05, which means the
normal distribution should be accepted. We can, therefore, obtain the mean and the standard deviation
of the bending stress of the sun gear, respectively. The parameters of the Normal distribution of
other components could be derived in the same way. For the contact stress of gears, corresponding
parameters could be calculated by Equation (17) and the same methods.

6. Results and Discussion

From Sections 3 and 4.2, we can obtain the reliability of the bearing system of the wind turbine
under different wind conditions, the results of which are shown in Figure 13. According to the results
of reliability analysis, the reliability of the bearing system is the highest, while the mean wind speed
equals 9 m/s, and the reliability of the bearing system with respect to mean wind speeds of 13 m/s
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and 11 m/s are second and third, respectively. However, the results are a little different from those
calculated without consideration of the control system. The wind turbine drivetrain suffers larger
loads under rated wind speed than that of 9 m/s and 13 m/s considering the control strategy.
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Figure 13. Reliability of bearing system with different average wind speed.

From Sections 3 and 4.3, we can obtain the reliability of the gear system considering the bending
fatigue failure and contact fatigue failure, which are shown in Figure 14a,b, respectively. The results of
the contact fatigue reliability and bending fatigue reliability are very different. The bending fatigue
reliability of the gear system is larger than the contact fatigue reliability under the same mean wind
speed. As it is shown in Figure 14a, the gear system reliability is the largest when v = 9 m/s. The gear
system reliability with respect to the mean wind speed of 13 m/s and 11 m/s are second and third,
respectively. In Figure 14b, a comparison of the contact fatigue reliability with respect to mean wind
speeds reveals that the influences of changes in the mean wind speeds on the system reliability of
wind turbine drivetrain decline in the order Rc

13m/s(t) > Rc
11m/s(t) > Rc

9m/s(t). The results show that
the larger mean wind speed contributes to the higher reliability of the gear system at a given time t.

(a) Gear system reliability with bending
fatigue failure

(b) Gear system reliability with contact
fatigue failure

Figure 14. Reliability of gear transmission system considering different failure modes.

Based on the FT of the wind turbine drivetrain, the system reliability of wind turbine drivetrain is
obtained using Equation (27). The system reliability of wind turbine drivetrain considering bending
fatigue failure and contact fatigue failure are shown in Figure 15a,b, respectively. The bending fatigue
reliability of wind turbine drivetrain is in line with that of the bending fatigue reliability of the
gear system and the bearing system reliability. In Figure 15a, the bending fatigue reliability of the
system using the survival signature is a little larger than that of the series-parallel system. Therefore,
the survival signature-based reliability model proposed in this paper can contribute to a more realistic
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estimate of the system reliability. As it is shown in Figure 15b, the results are very different from that of
the system reliability considering bending fatigue failure in Figure 15a. The contact fatigue reliability
of the system is smaller than the bending fatigue reliability of the system [35]. The reliability of the
series-parallel system with respect to the mean wind speed of 13 m/s is the largest among four curves at
any given time t. The order of the system reliability is R13m/s

sys (t) > R11m/s
sys,ss (t) > R11m/s

sys (t) > R9m/s
sys (t)

when 0 < t < 7.8, the order of the system reliability is R13m/s
sys (t) > R11m/s

sys,ss (t) > R9m/s
sys (t) > R11m/s

sys (t)
when 7.8 < t < 15.7, and the order of the system reliability is R13m/s

sys (t) > R9m/s
sys (t) > R11m/s

sys,ss (t) >
R11m/s

sys (t) when 15.7 < t < 25.

(a) System reliability considering
bending fatigue failure

(b) System reliability considering contact
fatigue failure

Figure 15. System reliability of wind turbine drivetrain considering different failure modes.

Figure 16 shows the influences of strength degradation on system reliability. From this figure,
we can see that the strength degradation has a significant influence on system reliability while t > 8.9,
because both the strength degradation and the dependent failure are considered. The system failure
rate considering the strength degradation is also explored in this paper, the results of which are shown
in Figure 17. As it is shown in Figure 17, the failure rate curve of the system with strength degradation
is very different from that of the system without considering strength degradation. The system’s
failure rate without considering strength degradation declines rapidly at the early stage, and then
smoothly increases. The failure rate of the system with strength degradation is significantly greater
than that of the system without considering strength degradation while t > 4.2. Therefore, in the wind
power industry, service providers of wind turbines can design different maintenance strategies and
allocate sources at distinct stages according to the failure rate curves to improve the reliability and
safety of wind turbines to a greater extent.
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Figure 16. System reliability considering strength degradation.
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Figure 17. System failure rate considering strength degradation.

7. Conclusions

Time-dependent fatigue reliability analysis of the wind turbine drivetrain is essential to secure the
high-reliability service of large wind turbines. This paper focuses on the dynamic reliability analysis
of a wind turbine drivetrain. Based on the fault tree, we develop the system reliability model of
the wind turbine drivetrain using the survival signature. The bending fatigue reliability and contact
fatigue reliability of the wind turbine drivetrain concerning different wind conditions are studied.
The influences of strength degradation of transmission components on the system reliability and the
failure rate are also explored. The critical points of this paper are summarized and represented as
follows.

(1) The bending fatigue reliability is a little larger than the contact fatigue reliability at a given
wind condition, which is in line with the result of the literature [35]. As it is shown in Figures 13 and
14a,b, the reliability of the bearing system is lower than that of the gear system at a given time t under
the same wind condition. For the bearing system, the reliability under the mean wind speed of 11 m/s
is the lowest compared with the others because the control strategy functions and maximizes power
generation at the rated wind speed. The wind turbine begins to change the pitch angle (or the yaw
angle) if the wind speed is higher than the rated wind speed, which can reduce the external loads and
ensure the safety and reliable operation of the entire wind turbine. Therefore, the rank of the wind
turbine’s reliability under different mean wind speeds is Rbearing

11m/s (t) < Rbearing
13m/s (t) < Rbearing

9m/s (t). For the
gear system, the order of the bending fatigue reliability concerning wind conditions is the same as the
reliability of the bearing system, and the larger the mean wind speed, the higher is the contact fatigue
reliability of the gear system. As the service life of the wind turbine increases, the system reliability
gap between different wind conditions becomes larger.

(2) As it is depicted in Figure 17, the reliability of the wind turbine drivetrain considering strength
degradation is much lower than that of the system without consideration of strength degradation.
The system reliability values of wind turbine drivetrain considering strength degradation are 0.882,
0.7401, and 0.5831 when the service time is t = 10, 15, and 20, respectively. Compared with the
system reliability values without consideration of strength degradation, the system reliability values
considering strength degradation drop to 0.83%, 9.33%, and 20.95% at service time t = 10, 15, and 20,
respectively. Due to the strength degradation and fatigue damage accumulation, the system failure
rate considering strength degradation increases significantly during the mission. With the help of the
reliability information of wind turbine drivetrain, wind turbine designers could allocate the reliability
values of critical components and develop maintenance strategies within the complete life cycle to
optimize the power generation.

The future works are given below.
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According to the reliability level and failure rates of wind turbines, we would like to develop
maintenance strategies at distinct stages to improve the reliability and availability of wind turbines
and optimize power generation.
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Abbreviations

The following abbreviations are used in this manuscript:

FTA fault tree analysis
SSI stress and strength interference
NREL national renewable energy laboratory
DLL dynamic link library
MBS multi-body system
WT wind turbine
DoFs degrees of freedom
T1, T2, T3, T4 four types of load-sharing components

Nomenclature

v, Hs, Tp mean wind speed, wave height, and spectral peak period
Vhub, V(z), zhub the wind speed at the hub height, the wind profile, and the hub height
Fi

gear(t), Fj
bearing(t) the dynamic meshing force of gear i and the supporting force of bearing j at time t

σ̄i
H , σ̄i

F contact stress and bending stress of the ith gear
mk, lk the number of components of type k and the survival components’ number of type k
λ(t) the failure rate of components or system
Φ(l1, l2, · · · , lK) survival signature of the system with m components of type K
RL

b (t) the reliability of the rolling bearing
R̄i(t) the fuzzy reliability of the ith component
Rsys(t), Rss

sys(t) the system’s reliability without and with using the survival signature
Ri m/s

sys (t) the system’s reliability with respect to the mean wind speed of i m/s
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